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General Introduction 

The prime objective of the Hazard and Risk Model is to forecast seismic hazard and risk for the local 

population living on and around the Groningen gas field and in particular the risk metrics of the Meijdam 

safety norm.  This model has been extensively documented.   

As an alternative approach for forecasting production induced seismicity, a methodology based on 

Machine Learning (ML, a branch of artificial intelligence in the field of computer science) to forecast 

seismicity for the Groningen field was explored, in the context of the measurement and control protocol.  

This report documents the Machine Learning study into developing a methodology for spatiotemporal 

induced seismicity forecasts within the Groningen field.  Machine learning has been used also in other 

studies of the earthquake in the Groningen field (Ref. 1 to 3).   
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Executive Summary 

Business purpose: 

Decades of gas production caused induced seismicity in the Groningen gas field, located in the 
Northern part of the Netherlands. The capability to forecast induced seismicity depending on 
production strategy is an essential element of the Probabilistic Seismic Hazard and Risk Assessment 
(PSHRA) for the exposed population. As part of the Study and Data Acquisition Plan in the 
context of the Measure and Control Protocol, this study evaluates a methodology based on 
Machine Learning (ML, a branch of artificial intelligence in the field of computer science) to 
forecast production induced seismicity for the Groningen field. This study is a direct extension of 
the methodology developed in Limbeck et al. (2018), in two ways: 

• The range of validity is extended by (i) validating forecast performance on a hold-out set, (ii) 
qualitatively validating the similarity between short-term (1-3 months) and long-term (1-5 
years) forecasts and (iii) based on synthetic “ultimate states” (assumptions about reservoir 
conditions long after shut-in), ensuring that our methodology forecasts an approximately 
zero seismicity rate long after shut-in.  

• The range of applicability is extended from temporal (event rate) forecasts to spatiotemporal 
forecasts.   

 

Methodology Evaluation: 

The range of validity of the event rate model of Limbeck et al. (2018) is extended by the following: 

• ML models can capture the negative trend in seismicity observed during the 2013-2016 
hold-out period, like the depletion thickness and vertical strain thickness Moving Average 
baselines. 

• Model selection based on short-term (1-3 months) or long-term (1-5 years) performances 
in terms of mean bias error remains unchanged, despite the decrease in performance 
observed for longer-term forecasts.  

• The model performance has been evaluated using a Poisson likelihood. The Poisson 
likelihood of the mean forecast model is analytically the same as the likelihood of a bin-
wise constant Poisson point process model. Hence, we have constructed, examined, and 
evaluated a wide range of probabilistic models.  

• The pipeline can generate a probability density function if used with the Poisson link. The 
distribution, per field, is Poisson with the parameter that is predicted. 

 

The range of applicability is extended to spatiotemporal: 

• ML models can now forecast event rates per cell over a freely defined grid of adjustable 
resolution. Hence it is now possible to investigate the regional response of seismicity rates 
to certain production scenarios. The aggregated performance of these forecasts is 
comparable in the temporal domain to that of the event rate report (Limbeck et al., 2018).  

• The spatiotemporal performance of the ML models, in particular, that of random forests 
and support vector machines, is significantly better than that of the Depletion Thickness 
and vertical Strain Thickness Moving Average baselines if evaluated using the likelihood 
ratio method for combined spatiotemporal performance evaluation. 

• ML models can now make use of spatially varying dynamic and spatial features per grid cell 
rather than using averages over the entire reservoir, or predefined regions to then make 
forecasts at the individual grid cell level. 
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Limitations: 

The methodology developed in this study has the following main limitations: 

• The methodology generates spatiotemporal induced seismicity forecasts. An important 
additional seismicity dimension, event magnitude, is not considered beyond a minimum 
magnitude. As such, a separate magnitude model would be required to complement the 
current spatiotemporal model. 

• Part of the spatiotemporal input data and the “ultimate states” are based on reservoir flow 
model history matches and forecasts. Consequently, the ML results are intrinsically linked 
to the accuracy of the reservoir model. Furthermore, the current ML pipeline is only 
guaranteed to forecast negligible seismicity long after the field shut-in within a specific 
range of ultimate states (and given no-depletion and steady-state situations).   
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1. Introduction: Overview, Earlier Work & Study Goals  

1.1. Earlier Induced Seismicity Forecasts for Groningen 

Discovered in 1959, with an initial recoverable reserve estimate of 2900 billion m3 gas, the 
Groningen gas field is amongst the largest gas fields in the world (TNO, 2017). Production 
commenced by NAM in 1963. By 2015, around 2000 billion m3 have been produced. The reservoir 
of the Groningen field is the Upper Rotliegend Group of Early Permian age, consisting of porous 
sandstone and located at a depth between 2600 m and 3200 m, with the water zone around 3000 
m deep. The gas in the reservoir is sealed by a thick impermeable salt and anhydrite layer of the 
overlying Zechstein Group, as depicted in Figure 1. The Groningen field has several fault systems 
with around 1500 known faults, whose existence does not impact permeability in a significant way.  

 

Figure 1: Geological cross-section of the Groningen field (NAM, 2016) 

Following decades of gas production, the historically aseismic region experienced induced 
earthquakes for the first time in 1991. The frequency and intensity of earthquakes increased steadily 
to around ten or more earthquakes per year with a magnitude equal to or larger than 1.5 as of 2003. 
Following an earthquake of magnitude 3.6 on the Richter scale with an epicenter in the village of 
Huizinge in 2012, a Study and Data Acquisition Plan (Nederlandse Aardolie Maatschappij, 2016a) 
was put in place to better understand how gas production at reservoir depth affects safety at the 
surface, and to test the effectiveness of mitigation measures. This led to an integrated Probabilistic 
Seismic Hazard and Risk Assessment (PSHRA) starting from gas production, sequentially followed 
by compaction, seismicity, ground motion, exposure, building strengthening and finally risk and 
safety of inhabitants, see Figure 2.  
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Figure 2: Causal chain from gas production to the safety of people in or near a building (NAM, 

2016) 

The Study and Data Acquisition Plan encompasses this study in the context of the Measure and 
Control Protocol (Nederlandse Aardolie Maatschappij, 2016b). The focus of this study is 
seismologic modelling (element 3 of PSHRA) and forecasting. 

Here, we explicitly use the word “forecast” instead of “prediction” in the context of seismicity as 
within seismology both terms refer to different approaches to gain more quantitative insights in 
future seismicity (Marzocchi and Zechar, 2011). Predictions refer to high confidence statements 
about the location, timing, and magnitude of a future seismic event, whereas forecasts are used to 
describe quantitative statements about future event statistics. This study and all other studies to 
date which have been able to provide reliable statements (DeVries et al., 2018) about future 
seismicity in the Groningen field are forecasts – due to limitations in both available data and human 
understanding of geophysical mechanics triggering earthquakes. To avoid any confusion between 
audiences versed in different scientific fields, we observe that within the field of machine learning 
the term “prediction” is applied in a broader sense than in seismology, as in the context of statistics, 
‘prediction’ refers to the process of determining the magnitude of statistical variates at some future 
point of time (Marriott et al., 1990).  In a few sections on machine learning (e.g., chapter 6), some 
instances of the word ‘prediction’ are used for machine-learning oriented expositions in line with 
common practice in that community. 

1.2. Machine Learning Seismicity Forecasts Elsewhere 

Machine Learning (ML) is a branch of statistical computer science which over the last decade has 
been applied successfully in a wide variety of domains (Jordan and Mitchell, 2015). In the context 
of physics, ML allows for experimental control over a vast number of factors (Langley, 1988) 
making it suitable for physical modelling (Liu, 2018). Due to their nature, ML models can perform 
well in situations where underlying processes are not fully understood (Melnikov et al., 2018) or 
are complex (Carrasquilla and Melko, 2017). The use of ML concomitantly with information about 
physical phenomena is called theory-guided machine learning (TGML; Karpatne et al., 2017). 
TGML allows for the introduction of scientific consistency, knowledge, and protocols in ML 
models. Also, these models often are more (physically) interpretable than a standard ML model. 
Despite being a relatively new area of research, many traditional scientific fields are taking 
advantage of this paradigm. ML and physical knowledge have proven to accurately forecast the 
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behaviour of a large spatiotemporal chaotic physical system where the mechanical description of 
the dynamics is limited (Pathak et al., 2018) – accurate forecasts up to eight times the regular 
forecast horizon could be achieved. Deep learning applied to forecast the locations of aftershocks 
yielded better results compared to a physics-based model and provided insights as to the relative 
importance of different physical parameters in aftershock localization (DeVries et al., 2018).  
Several studies have shown that pure ML models without the guidance of domain knowledge may 
lead to incorrect models (e.g., Wagner and Rondinelli, 2016). 

Given that, ML seems a viable tool to complement physical and statistical seismicity modelling 
efforts and has become increasingly popular for seismic analysis. Three main ways in which ML 
has been applied within seismicity studies are (i) earthquake identification (Perol et al., 2017; Rouet-
Leduc et al., 2017), (ii) catalogue-based seismicity forecasting (Panakkat and Adeli, 2009) and (iii) 
model parameter inference (e.g. the Gutenberg-Richter �-value, Asencio-Cortés et al., 2016). On 
top, we note that in the context of PSHRA machine learning is used already for optimisation of 
the production distribution over the Groningen field to reduce seismicity, see Nederlandse 
Aardolie Maatschappij (2017). A non-exhaustive review aimed to shed light on the role of ML in 
seismicity analyses is given below.  

Earthquake identification is often made by acoustic or ground vibration wavelet analysis of seismic 
detection sensors. A recent study of Rouet-Leduc et al. (2017) estimated time to fault failure based 
on a local moving time window signal emitted by laboratory faults. In their study, a vast number 
of potential features was computed for every single time window (e.g., 0th/1st/2nd order statistics), 
and the most useful features are used in a Random Forest (RF) model achieving a high 
determination coefficient (�� = 0.89). Interestingly, the RF model accurately forecasted failure 
not only when failure is imminent but throughout the failure cycle. Features which quantify signal 
amplitude distribution (e.g., variance and higher-order moments) are highly effective for 
forecasting, despite their high variability. The authors acknowledge that this effort remains 
academic, however. We note that if a connection between seismic wavelets and fault properties 
could be identified, it would help the development of deterministic geomechanical models. Perol 
et al. (2017) employed a scalable Neural Network to consistently detect and localize earthquakes 
based on a single waveform. They claim to detect 20 times more earthquakes than previous 
methods, which is important to make seismic catalogues more complete, in turn improving Hazard 
and Risk Assessments for induced seismicity in Oklahoma. A possible caveat of this study is the 
fact that it requires a pre-existing history of catalogued seismicity and is therefore less suitable for 
areas of lower activity or more recent instrumentation. Ramirez and Meyer (2011) used a kernel 
ridge-regression algorithm to study seismic phases from seismic recordings. Their method consists 
of a multi-scale potential predictor extraction on low-dimensional manifolds. In addition, they 
merged their regression scores across the potential predictor manifolds. The authors concluded 
that their algorithm could correctly forecast around 75% of the classification rates for seismic data 
collected in the US during 2005 and 2006.  

Seismicity forecasting via earthquake catalogues uses dates, locations, and magnitudes of 
earthquakes to forecast future earthquakes. Panakkat and Adeli (2009) forecast earthquake times 
and locations for earthquakes for magnitude � ≥ 4.5 using a wide variety of Neural Networks. 
These networks were offered multiple seismicity indicators derived from an earthquake catalogue 
(e.g., Gutenberg-Richter’s �-value, the average magnitude of the last � events, the mean-square 
deviation about the regression line based on Gutenberg-Richter’s inverse power law curve for � 
events, etc.) as parameters. The magnitude of their error in forecasting the epicentral location of 
high magnitude events was always within 20-40 miles, which the authors claim to be useful for 
emergency management and planning. Rouet-Leduc et al. (2017) utilized an RF algorithm on lab-
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induced earthquakes to investigate hidden signals preceding the events. They suggest that previous 
literature only based on earthquake catalogues may be incomplete. 

Asencio-Cortés et al. (2016) proposed a meta-analysis setup to find out the best set of parameters 
and concluded that it is possible to use ML techniques to calculate the �-value. Last et al. (2016) 
focused on understanding whether future maximum earthquake magnitude exceed the median of 
maximum yearly magnitudes (for the same region). Several ML algorithms used here are also 
utilized in their study (Decision Trees, K Nearest Neighbours, Support Vector Machines and 
Neural Networks). Their results point out to a variant of a decision tree as the most accurate ML 
model. Their features are based on observed earthquake catalogues and derived relations, e.g., the 
Gutenberg-Richter law.  

1.3. Open questions from Event Rate report 

The goal of the event rate report Limbeck et al. (2018) was to develop an ML-based methodology 
to forecast production induced seismicity event rates for the Groningen field. That methodology 
allowed probing of a wide variety of possible linear and non-linear combinations and interaction 
terms between physical variables without assuming a priori knowledge on the nature of the 
relationships between these variables. A two-step approach was employed: a factorial experimental 
setup followed by meta-analysis (analysis of the effectiveness of the experimental setup) was used 
to select robust and relatively well-performing models and meta parameters. The selected models 
and meta parameters were used for seismicity event rate forecasts. 

The event rate forecasts were evaluated in three ways: (i) quantitatively; (ii) qualitatively and (iii) the 
range of validity. Quantitatively, we noted that with the data used in that setup, in general, the ML 
models were not statistically significantly better than baseline models. Qualitatively, we observed 
that for the Winningsplan 2016 (Nederlandse Aardolie Maatschappij, 2016c), the selected models 
and meta parameters forecast a relatively stable seismicity event rate for the coming five years, in 
line with the default PSHRA forecasts. For the average production scenario announced by the 
Ministry of Economic Affairs and Climate in March 2018 (Ministry of Economic Affairs and 
Climate Policy, 2018) (hereafter the post-March 2018 average production scenario) model 
behaviour diverged qualitatively. Both in the Event Rate report (Limbeck et al., 2018) and the 
current report, ML models are divided into two classes, namely (i) extrapolating and (ii) non-
extrapolating. According to our definition (see Glossary) non-extrapolating models are unable to 
forecast outside their target range of calibration – see also Kneale and Brown (2018), while 
theoretically extrapolating models can – see Appendix A for details.  

The range of validity of the methodology described in Limbeck et al. (2018) was influenced by 
three key aspects, which all might have played a role in the unphysical forecasts of, in particular, 
the non-extrapolating models for the post-March 2018 production scenario. 

• First, the model evaluation strategy was geared towards maximum statistical power, thereby 
decreasing uncertainties and hence improving the ability to statistically distinguish between 
the forecasts of various models. Models were evaluated and retrained after each step 
forward when uncertainties were still relatively small. An implied (although not technically 
fundamental) assumption is that one step forward (1-3 months) forecast performance is 
indicative for many steps forward (1-5 years) forecast performance. This assumption was 
not always satisfied in Limbeck et al. (2018) and could lead to selecting models which 
performed well on the short term (1-3 months) but not on the long term (1-5 years).  

• Second, physical variables like � and ��  are monotonically evolving features and thus 
are guaranteed to go out-of-bounds of the convex hull of the past values of the feature set. 
Given the fact that some of these features were expected (and for RFs were shown) to play 
a major role, this posed a challenge for non-extrapolating models which might result in 



 - 5 -  

 

unphysical behaviour, for example by forecasting a constant increase in seismicity after 
production rates decreased to zero.  

• Third, the model and evaluation selection criteria measured concordance with physical 
constraints only indirectly – through concordance with past (physically-sound) 
observations. 

Three concrete steps which could mitigate the limitations on the range of validity are: 

• Investigate usage of long-term (1-5 years) forecasts to validate model performance, instead 
of the short-term (1-3 months) forecast performance evaluations used in this study. 

• Analyse the degree to which the event rate forecast feature values exceed the convex hull 
of historical feature values and analyse the impact thereof.  

• Extend the model evaluation and selection criteria with rules encoding ultimate states about 
reservoir conditions long after shut-in from multiple reservoir-model forecasts running up 
to the year 2100. 

 

Regarding the definiteness of the conclusions reported in Limbeck et al. (2018), we note that in 
light of the (from an ML perspective) relatively limited number of events, all data available at the 
start of the study was used for model meta-analysis (and thus model selection). Although various 
safeguards were put in place, forecast performance estimates might be on the optimistic side, and 
a hold-out set would be required to validate these estimates. Ideally, the training and testing period 
of the hold-out set ends around a moment that the production strategy changes. Models which 
forecast a change in seismicity following a change in production strategy probably capture 
underlying mechanisms driving seismicity better. Two approaches were identified. First, a 
validation set will be obtained naturally over time. An appropriate cut-off moment between 
training/testing and validation might be before the post-March 2018 production scenario is 
enacted. The disadvantage is that it will take quite some years to obtain a large enough validation 
set. For this reason, a second approach, training/testing the model up to the production shut-ins 
following the Huizinge earthquake in 2012 and using the remaining years for validation was 
proposed. A disadvantage of this second approach is that it roughly halves the number of events, 
which might impact our ability to discriminate between models. Despite that, the second approach 
was chosen because it could be directly implemented.  

 

1.4. This Study: Machine Learning-based Spatiotemporal Seismicity Forecasts 
for Groningen 

This study is a direct continuation of the Event Rate work initiated in Limbeck et al. (2018). The 
primary goals of this continuation study are to: 

i) Address the outstanding limitations of the temporal analysis listed in the previous 
section, most notably addressing the unphysical model behaviour; 

ii) Extend the methodology for ML-based induced seismicity event rate forecasts for the 
Groningen field to also include a spatial forecasting component to achieve 
spatiotemporal forecasts over the field.  

The study uses and extends the ML forecasting pipeline as developed in Limbeck et al. (2018) as 
shown high-level in Figure 3, where the elements stand for the following:  

• Data sources are selected, including earthquake event catalogues, static, dynamic and 
geomechanical reservoir model data and seismic data, and potential predictors (features) 
are generated from them.  
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• Meta-parameters define the experimental setup within which models are trained and do 
forecasts. Our meta-parameters can be divided into two sets: (i) those related to our 
forecasting target like minimum magnitude (ii) those describing our experimental setup, 
grid size and smoothing bandwidth. 

• The model evaluation strategy is based on a walk-forward evaluation strategy with spatial 
cross-validation with two standard evaluation metrics and an additional likelihood method1, 
including the associated standard error estimates for the standard metrics. 

• Machine learning models are generated for each experiment that is carried out - loosely 
based on empirical performance studies at least the following algorithms are tested: RFs, 
KSVMs, KNNs, and GLM variants. 

• Meta-Analysis is employed on top of factorial runs of experiments to analyse the impact 
of model and meta-parameter choices on forecast performance. Based on the meta-analysis 
robust models with meta-parameter sets are selected for each target. These models are 
subsequently trained and used for seismicity forecasts.  

• Automated orchestration framework enables, as the title says, automated runs of a 
factorial setup of experiments. 

 

 

Figure 3: High-level overview of the forecast methodology of this study. 

Report Structure 

The report is structured to first address the open questions of the event report as these also impact 
the spatiotemporal models presented in this study, to then describe the spatiotemporal model 
extension. Specifically, this study is structured as follows: 

• The event rate model limitations are addressed in chapter 2, which: 
o Validates the ML models using as hold-out set the period between 2013-2016; 
o Demonstrates that the model performance for both short-term and long-term 

forecasts remains alike; 
o Indicates that the nature of 5-year hold-out forecasts is similar to the forecasts 

performed during the training period; 

                                                 

1 The evaluation metrics guiding us throughout this study are the Mean Absolute Error (MAE), a standard choice in machine 

learning, and the Root Mean Square Logarithmic Error (RMSLE), particularly useful for count data with a large low-end tail as is 

the case here. There is a third error metric that we use in the form of the likelihood of a model given certain input data which is 

then used to compare two models using the likelihood ratio. 
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o Confirms that the ML models forecast negligible seismicity given no gas production 
and assuming an ultimate state (long after shut-in) reservoir condition.  

• Data sources for input feature definition for spatial forecasting are discussed in chapter 3 
(potential predictors) and chapter 4 (the target: earthquakes).  

• The spatiotemporal experimental setup is described in chapter 5. The aggregation, gridding, 
and smoothing of spatial predictors and forecasting targets are discussed, in addition to the 
feature and experiment down-selection approach that is applied to identify and exclude 
experiments from the factorial setup that are deemed as ineffective. 

• The extensions required to enable spatiotemporal model validation are detailed in chapter 
6. 

• Ultimate-state constraints as introduced in chapter 2 to overcome event rate model 
limitations are enabled for a spacetime setting in chapter 7, followed by evaluation of the 
spatiotemporal seismicity forecasts in three ways:  

o A quantitative evaluation based on forecast performance; 
o A qualitative analysis of spatially aggregated event rates, in comparison with the 

pure event rate forecasts, developed earlier; 
o Full spatiotemporal forecasts. 

• Conclusions and a discussion are presented in chapter 8. We note that while both the range 
of validity and the range of applicability have been substantially progressed, pending 
confirmation of both and more definite conclusions on forecast performance, the models 
reported on here should not be used for business decisions. 
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2. Extensions to the Event Rate model proposed by Limbeck et al. (2018) 

In this chapter, we discuss additions to the experimental set-up presented in Limbeck et al. (2018) 
to evaluate in detail the range of validity of seismicity event rate forecasts using the machine 
learning methodology proposed by Limbeck et al. (2018). Our prime objective is to show that the 
ML methodology can forecast accurate seismicity event rates in the case of strong and sudden 
changes in production scenarios. This topic becomes especially relevant given the post-March 2018 
production scenario announced by the Ministry of Economic Affairs and Climate (Ministry of 
Economic Affairs and Climate Policy, 2018) – see chapter 10.2 in Limbeck et al. (2018). We start 
by highlighting that the accuracy and the (range of) validity of the event rate forecasts are mainly 
determined by four aspects, namely: 

i) The quality of the forecast during the hold-out validation period;  
ii) The short-term forecast performance being indicative of long-term performance;  
iii) The degree by which monotonically evolving features will be outside of the observed 

model training range, and; 
iv) ML algorithms being, in principle, data-driven and not explicitly aware of physical 

mechanisms. 

We advise reading Limbeck et al. (2018), in order to understand the extensions proposed to their 
methodology and how the above aspects impact the forecast of event rates. Regarding (i), we 
perform a validation forecast using hold-out data between 2013-2016 on a model trained on data 
between 1995-2012. We pay particular attention to the fact that the ML models capture the 
observed decay in earthquake rate (see Glossary) observed from 2013 onward. In (ii), we investigate 
the evaluation strategy of assessing models using their short-term performance – when 
uncertainties are smallest – henceforth ensuring maximum statistical power and an altogether better 
capability to distinguish among the various forecasts. We qualitatively show that the performance 
of all ML models remains alike for both short-term (1 to 3 months) and long-term (1 to 5 years) 
forecasts. Concerning (iii), features such as Pressure (P) and Hydrocarbon Column Thickness 
(HCT) are monotonically decreasing and increasing, respectively. That means, these – and likely 
other features as well – may eventually be out of the variable range used to train our models. To 
address that, we compute the so-called convex hull (Balas, 2010) for the training data and calculate 
the minimum distance between every unique point in the forecast set and the training convex hull. 
With that in hand, we show that our features during the forecast period lie outside the convex hull 
which encompasses the training data. We show that this out-of-the-convex-hull behavior is also 
observed within the forecasts performed within the training and testing period. Therefore, we argue 
that the overall quality of our forecasts should remain alike to the hold-out set forecasts performed 
during the training and testing period. Lastly, we further scrutinize the model general validity by 
including a physics-based analysis besides the mathematical ones discussed in (i-ii-iii). We highlight 
that our models – to some extent – already naturally encode underlying physical laws since our 
input features come either from observations or physically-sound numerical models. That alone, 
however, does not prevent the ML pipeline to relate these features in an unphysical fashion – since 
ML models are not naturally aware of physical models. Hence, we address (iv) by guaranteeing 
non-negative seismicity forecasts and by constraining2 the models to an ultimate post-shut-in state 
where seismicity rate is set to zero, production is zero, pressure changes and other derivatives are 
also zero and reservoir pressure is within a possible range of depleted states under different 
production scenarios. We show that with these additions, the ML models can consistently forecast 
negligible seismicity when gas depletion ceases (i.e., all first and second order derivates of time-

                                                 

2 See Glossary 
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dependent features are zero) and pressure/HCT stabilize within the range obtained from the 
different production scenarios. In contrast, a continued-depletion situation would still result in 
non-zero derivatives, and hence seismicity rates would remain non-zero. 

2.1. Validating forecast quality using a hold-out set of observations between 2013 
and 2016  

Limbeck et al. (2018) used all available data between 1995 and 2016 to perform an ML model meta-
analysis. There, it was asserted that this is needed to ensure an optimal choice in the meta- 
parameters to model seismicity. Since the objective here is not to tune or choose a new set of meta-
parameters, part of the data is used as a hold-out set, hence creating a validation set. The period 
between 2013 and 2016 shows a pronounced decrease in earthquake rate, making this period 
suitable to evaluate the quality of the (hold-out) forecasts. To do so, an experiment for �!"# = 1.2 
is designed, identical to the one presented in Limbeck et al. (2018) – their Table 17 - but spanning 
from 1995 up and including 2012 (ID: FC95-12-1.2). That leaves the leftover period containing 
observations (2013-2016) as validation of our methodology. We are interested to evaluate to what 
degree ML models can capture the steep decrease in earthquake rate observed in that period.  
Echoing the results extensively discussed in Limbeck et al. (2018) – see their Appendix 8 – we 
observe in Figure 4 that weighted mean pressure (weighted mean P) and weighted mean 
hydrocarbon column thickness (weighted mean HCT) are the main seismicity rate drivers for the 
period 1995-2012. These are followed – to a much lesser extent – by temporal derivatives of gas 
produced (Q in m3), HCT (m), and P (bar). As discussed in Limbeck et al. (2018), these features 
are representatives of a highly correlated group of features, which would, in turn, yield equally 
performing models. 

 

Figure 4: Variable importance plot (with uncertainties) for experiment FC95-12-1.2. 

Aiming to understand the model responses to changes in important individual variables, we show 
in Figure 5 the ICE plots for weighted mean P and weighted mean HCT. Seismicity rates increase 
as weighted mean P decreases. The max-min ranges for both variables as well as the respective 
general trends are similar to the ones discussed in Limbeck et al. (2018) for their similar experiment 
RF-FC35-1.2 (1995-2016). Do notice that by not including the period 2013-2016 as training data, 
we are roughly halving the number of events used to train our models. However, regardless of 
small differences, these results suggest that the main features explaining seismicity between 1995 
and 2012 remain consistent throughout at least 2016. 
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Figure 5: ICE plots for the main seismicity drivers of FC95-12-1.2 for (a) weighted mean P and 

(b) weighted mean HCT. 

Next, seismicity is forecasted for the period between 2013 and 2016 using training data from the 
period 1995-2012. To illustrate the results, we show in Figure 6 the seismicity evolution calculated 
by the KSVM model. 

 

Figure 6: 3-month average seismicity forecasts (red line) compared to observations (blue dotted 

line) for the KSVM model within GFO. Results obtained for the production plan 2016 scenario. 

The vertical black line indicates the end of 2012, i.e., the end of the training period. 

Note that the KSVM can capture the decay in seismicity observed from 2013 onwards. Besides the 
KSVM, all non- and extrapolating ML models are able – to different extents – to forecast the decay 
in seismicity observed from 2013 onward. In Table 1, we show the MAEs and their respective 
standard errors for the selected non- and extrapolating models for the period 2013-2016 compared 
against the observations. The standard errors are calculated based on the Jackknife resampling 
method, as described in Limbeck et al. (2018) and section 6. 

Models which are heavily dependent on the pressure variation with time, such as the Depletion 
MA, perform well – since it is known that activity rate scales with reservoir pressure depletion.  
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According to the Wilcoxon signed-rank test, the MAE results obtained with the Depletion MA 
model are not statistically significantly better than any of the other individual ML models (& >0.05 for all individual models) but are better than the moving average baseline (& = 0.01248, test 
statistic ( = 25 ). The same is observed if we individually compare the ML models to the moving 
average model (& ≪ 0.05 for all the individual comparisons). 

Table 1: MAE with standard errors (day-1) between the hold-out set forecasts and observations for 

the period 2013 and 2016 for non-extrapolating and extrapolating models 

Non-extrapolating models Extrapolating models 

RF 0.0353 (±0.0061) SVM 0.0401 (±0.0082) 

KNN 0.0375 (±0.0073) GLMtop 0.0377 (±0.0085) 

MA (baseline) 0.057 (±0.011) Dep MA (baseline) 0.0319 (±0.0055) 

 

The results for the validation set (2013-2016) indicate that our current ML pipeline can capture the 
decay in seismicity observed from 2013 onward statistically indistinguishable from the Depletion 
MA baseline and significantly better than the moving average baseline. Consistently, these results 
echo the ones already discussed in Limbeck et al. (2018). From an MAE perspective, these values 
are considerably higher than the ones for the period 1995-2012 (see Table 2) because of the 
significant variability in seismicity between 2013 and 2016 and the high frequency of events on 
average during that period compared to 1995-2012. 

2.2. Evaluating Concordance Between Short and Long-term Forecast 
Performances  

The strategy proposed by Limbeck et al. (2018) of assessing the ML models using their short-term 
performance is further evaluated by qualitatively investigating if the long-term and short-term 
forecasts behave similarly. Also, the impact of altering initial conditions on the MAE is quantified 
by reproducing the same base experiment discussed in the previous sub-section but shifting the 
starting date in monthly steps by one year in total, i.e., 12 different experiments per individual 
forecast window (FW). In Figure 7, we present the min/max and the average MAE for the 12 
different starting dates per forecast window (FW) for both short-term (small FWs) and long-term 
(large FWs) forecasts. The results are shown for both the periods 1995-2012 and 2013-2016. 
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Figure 7: MAE (in day-1, vertical axes) per different forecast windows (horizontal axes). The solid 

lines indicate the average MAE for different starting dates for every FW. The shaded areas 

describe the total MAE range for the different experimental initial conditions per FW. Small FWs 

represent short-term forecasts while large FWs represent long-term forecasts. Left plots are for 

1995-2012 and right plots for 2013-2016. 

As expected, for all ML models shown in Figure 7 (RF, KNN, KSVM, GLM Top), there is a loss 
in performance (i.e., higher MAE) for long-term (large FWs) forecasts compared to short-term 
(small FWs) for both 1995-2012 (left plots) and 2013-2016 (right plots) periods. For the period 
1995-2012 (left plots), all ML models are within an average MAE (thick lines) roughly between 
0.025-0.035. For the period 2013-2016 (right plots), the average MAE is larger (around 0.030-0.050) 
– indicating a loss in performance compared to the 1995-2012 period. The consistent increase in 
MAE variation for all FWs (shades) during 2013-2016 (right plots) compared to 1995-2012 (left 
plots) can be partially explained by the more significant variability in seismicity after 2012 and by 
the frequency of events being on average higher during 2013-2016 if compared to 1995-2012. By 
visually inspecting the non-extrapolating model's evolution (upper plots), the model choice remains 
unchanged for all different FWs (i.e., short- and long-term forecasts) for both periods 1995-2012 
(left plots) and 2013-2016 (right plots). For the extrapolating models (lower plots), we reach similar 
conclusions except for the Depletion MA baseline results. That said, Limbeck et al. (2018) showed 
that the MAE results of their ML short-term forecasts are statistically indistinguishable. Here, the 
average MAEs and the ranges observed in Figure 7 considerably overlap, qualitatively indicating a 
similar outcome. That is valid for both short (small FWs) and long-term (large FWs) forecasts. In 
conclusion, these results qualitatively indicate that the performance of all ML models remains alike 
for both short-term (1 to 3 months) and long-term (1 to 5 years) forecasts for all ML models.  

2.3. Convex-Hull analysis to evaluate model validity for the forecast period 

We use convex hulls to evaluate if/when earthquake rate forecasts may become unreliable due to 
out-of-bound features. A convex hull is commonly defined as the smallest convex set that contains 
a given set of points (Efron, 1965; Balas, 2010). Here, convex hulls are used to evaluate if the 
features used by the ML models lie within or outside a convex hull calculated for the same features 
during training, which might be important for the validity of the so-called non-extrapolating ML 
models used in this study.  

The out-of-bounds issue motivates the use of the convex hull to ensure the forecast range does 
not require excessive extrapolation. We acknowledge that there are other methodologies than the 
convex hull available in the literature to perform this type of “change-point detection” (Liu et al., 
2013) or “novelty detection” (Markou and Singh, 2003). Notably, we highlight the works from 
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Chandola et al. (2009) and Pimentel et al. (2014) for providing extensive reviews on other viable 
approaches (e.g., Gaussian models, likelihood range, clustering, nearest neighbours, among others). 
Here, we select the convex hull technique as our tool of choice because it is efficient, easily 
interpretable across disciplines and provides insights on temporal dependencies by calculating 
distances between newer features and the ones used to calculate the training convex hull. According 
to (Majumdar et al., 2010), convex-hull applications are widely found in many different instances, 
such as medicine, biology, computer sciences, mathematics, physics, astrophysics, geography, and 
many others – see Getz and Wilmers (2004; Stout et al. (2008); Van De Weygaert et al. (2011), 
Chupeau et al. (2015) and Wolsey and Yaman (2018) for recent applications. 

There are many convex-hull algorithms available in literature – see Avis et al. (1997) for a review 
on different methodologies. We take advantage of the Quickhull algorithm Barber et al. (1996) to 
calculate the convex hulls for both the training and forecast sets. A d-dimensional convex hull can 
be represented by its vertices and facets. Each facet comprises vertices, neighbouring facets, and a 
hyperplane equation. According to Barber et al. (1996), Quickhull uses two different geometric 
operations: oriented hyperplane through d-points and signed distance to the hyperplane. A 
hyperplane defines points with negative distances to it. Analogously, if the distance is positive, the 
point is classified as above the hyperplane. The algorithm assigns every new point to an outside set 
and Quickhull locates a visible new facet for each point. In case a point is above these facets, one 
of the new facets is selected. If the point is below, it is then assigned as already inside the convex 
hull and therefore discarded.  

A caveat of this method is that it is not able to identify specific areas inside the polytope without 
feature distribution support. That means that a particular combination of features may be inside 
the outer hyperplanes of the convex hull but in an area that is outside of the feature training range. 
Hence, being outside of the convex hull does imply being outside the feature training range, but 
that does not guarantee that a point inside the convex hull lies inside the feature training range.  

Besides using Quickhull to obtain the convex hull for the training set and to verify if the points in 
the forecast period fall inside/outside the polytope, we also calculate the minimum distance 
between every forecast point and the training-convex-hull. Distance calculations provide a better 
understanding as to how far – in the feature domain – training and forecast sets are and if there is 
any temporal dependence in the forecast set. To calculate distances, we use an algorithm from the 
CGAL library (CGAL Project, 2018) that calculates the (squared) distances between two convex 
polytopes. Briefly, the polytope algorithm allows for efficient calculations of the smallest distance 
between two convex hulls. This problem is formulated as an optimization problem with linear 
constraints and a convex quadratic objective function. The solution is obtained using an efficient 
solver for quadratic programs (Gärtner and Schönherr, 2000). We highlight that the execution time 
increases approximately linearly with the number of points for any fixed dimension, which allows 
for the inclusion of all the significant features for the entire training and forecast periods in the 
distance calculation while keeping the execution time within a few seconds. 

In CGAL and Quickhull, all features (for training and forecast periods) are centred and scaled 
based on their respective means and standard deviations for the training period, followed by 
calculating whether the features - used to make the forecasts - lie inside the convex hull made with 
the (centred-scaled) training data. This approach is in alignment with how our data are used within 
the model training procedure first described in Limbeck et al. (2018). If forecast features lie outside, 
we calculate their minimum (squared) distance to the training convex hull. To understand which 
of the features explain these distances, we also calculate for every individual feature the number of 
times it lies outside the min-max training range during the forecast period. Note that individual 
forecast features lying inside their min-max ranges are not guaranteed to be inside the convex hull. 
Therefore, the range is used solely to highlight features outside of the min-max range since that 
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implies to be outside of the convex hull as well. The results for the baseline experiment (FC95-12-
1.2) are displayed in Figure 8. 

The results in Figure 8a show that all points in the forecast period (2013-2017) display a (squared) 
distance larger than zero. Here, every point represents the squared distance between the vector 
containing the forecast features for that specific date and the convex hull encompassing all the 
training features. That means all forecasts have features which lie outside the training convex hull. 
That is not surprising, however, since Figure 8(b) shows that weighted mean P and weighted mean 
HCT are always outside the range observed in training. As these variables are monotonically 
evolving, they get further away from the training range, which also explains the positive trend for 
the squared distances. The dotted-line (median) and shade (IQR) in Figure 8(a) represent the 
variation in distance found in every forecast window within a 5-year period from 1995 until 2012: 
These statistics are calculated starting with a training set containing the minimum number of points, 
according to section 5.5 in Limbeck et al. (2018) – for all forecast windows up to 5 years ahead. 
Then, one point is added to the training set, and the process is repeated until the training set 
encompasses all the points within 1995-2012. These statistics show that the distances observed for 
the forecast period starting in 2013 are within the range of distances previously observed during 
the period 1995-2012. This qualitatively indicates that the nature of the forecasts should not 
obviously differ from our hold-out set forecasts during the training period. In addition to that, the 
direction in which the convex hull is extended seems to remain mainly dependent on P and HCT. 

  

Figure 8: (a) Squared distance between every vector containing the forecast features in the forecast 

period (2013-2016) to the convex hull encompassing all training features (1995-2012). The dotted-

line represents the median distance between every forecast window within a 5-year period from 

1995 until 2012. The shades indicate the respective IQR – see text – and (b) fraction of features in 

the forecast period outside their respective min-max training range. Results obtained for the 

production plan 2016 scenario for a 5-year forecast window. 

Extending on these results, a natural next step is to repeat this simulation excluding weighted mean 
P and weighted mean HCT from the set of available features – since those are monotonically 
declining variables and will consistently increase the distance between forecast and training periods. 
The idea is to identify a set of features which would remain inside the training convex hull during 
forecast. We show these results in Figure 9. 

Here, 80% of the forecast features lie outside the training convex hull, however roughly within the 
observed variation in distance (IQR) found during training. The outlier observed at the beginning 
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of 2017 – with a squared distance roughly equal to 5 – is explained by an 11-fold-larger-than-
average variance of the temporal derivative of compaction. We highlight the much smaller 
magnitude of the squared distances if compared to the experiments including weighted mean P 
and weighted mean HCT. Also note that the prominent upward trend observed in Figure 8 is not 
present here, confirming that weighted mean P and weighted mean HCT are the primarily 
responsible mechanisms for increasingly distancing the forecast feature values from the training 
feature values. The same is also found in Figure 9b, where only some variances are observed, for a 
much shorter period, outside the min/max training range. 

 

  

Figure 9: Squared distance between every vector containing the forecast features in the forecast 

period (2013-2016) to the convex hull encompassing all training features (1995-2012). Results 

obtained for the experiment excluding the weighted means of P and HCT and the production 

plan 2016 scenario, for a 5-year forecast window. The dotted-line represents the median distance 

between every forecast window within a 5-year period from 1995 until 2012. The shades indicate 

the respective IQR – see text – and (b) fraction of features in the forecast period outside their 

respective min-max training range. 

Another valid approach aimed at having the forecast features inside the training convex hull is only 
to use features we can guarantee will remain inside the training range. Here, we show results for an 
experiment using solely the weighted mean of the temporal variation of P and the scaling relation 
between seismicity rate and depletion. These are essentially the features used by the Depletion MA 
model (see Limbeck et al. (2018) for the formulation details). The forecast results for this 
experimental setup, as expected, always remain inside the training feature convex hull – i.e., squared 
distances equal to zero throughout the entire forecast period. That approach, however, comes 
associated with a strong decay in forecasting performance – as discussed next. 

In Table 2 to Table 7, we summarize and compare the performance of numerical experiments 
(ALL) containing all available features, (noPnoHCT) all but weighted means P and HCT, and 
(onlyDeltaPc) only scaling and weighted mean of the temporal variation of P, for both periods 1995-
2012 (Table 2-Table 4) and 2013-2016 (Table 5-Table 7).  
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Table 2: MAE with standard error (day-1) for experiment ALL - (1995-2012) 

Non-extrapolating models Extrapolating models 

RF 0.0231 (±0.0028) KSVM 0.0253 (±0.0029) 

KNN 0.0249 (±0.0028) GLM Top 0.0257 (±0.0027) 

MA (baseline) 0.0266 (±0.0033) Dep MA (baseline) 0.0291 (±0.0037) 

Table 3: Same as Table 2, but for experiment noPnoHCT - (1995-2012) 

Non-extrapolating models Extrapolating models 

RF 0.0289 (±0.0037) KSVM 0.0318 (±0.0040) 

KNN 0.0298 (±0.0039) GLM Top 0.0309 (±0.0036) 

MA (baseline) 0.0266 (±0.0033) Dep MA (baseline) - 

Table 4: Same as Table 2, but for experiment onlyDeltaPc - (1995-2012) 

Non-extrapolating models Extrapolating models 

RF 0.0284 (±0.0039) KSVM 0.0301 (±0.0041) 

KNN 0.0288 (±0.0039) GLM Top 0.0265 (±0.0037) 

MA (baseline) 0.0266 (±0.0033) Dep MA (baseline) - 

Table 5: Same as Table 2, but for experiment All - (2013-2016) 

Non-extrapolating models Extrapolating models 

RF 0.0353 (±0.0061) KSVM 0.0401 (±0.0082) 

KNN 0.0375 (±0.0073) GLM Top 0.0377 (±0.0085) 

MA (baseline) 0.057 (±0.011) Dep MA (baseline) 0.0319 (±0.0055) 

Table 6: Same as Table 2 but for experiment noPnoHCT - (2013-2016) 

Non-extrapolating models Extrapolating models 

RF 0.0484 (±0.0086) KSVM 0.0497 (±0.0087) 

KNN 0.0511 (±0.0094) GLM Top 0.0519 (±0.0073) 

MA (baseline) 0.057 (±0.011) Dep MA (baseline) - 

Table 7: Same as Table 2, but for experiment onlyDeltaPc - (2013-2016) 

Non-extrapolating models Extrapolating models 

RF 0.078 (±0.010) KSVM 0.081 (±0.010) 

KNN 0.082 (±0.010) GLM Top 0.075 (±0.010) 

MA (baseline) 0.057 (±0.011) Dep MA (baseline) - 

 

Non-extrapolating and extrapolating ML models perform similarly within each experiment. This 
conclusion is valid for both training and forecast periods. Specifically, for the 1995-2012 training 
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period, we use a paired Wilcoxon test to show that the performance of the best ML model (RF for 
ALL and noPnoHCT, and GLM Top for onlyDeltaPc) is not significantly different from the other 
ML models nor baselines. For the period 2013-2016, the paired Wilcoxon tests show that for 
experiment ALL, all individual ML models are statistically indistinguishable from the Depletion 
MA (& > 0.05) and statistically better than the moving average. Since weighted mean P is not a 
feature in experiments noPnoHCT and onlyDeltaPc, there are no results for Depletion MA in these 
cases. For the experiment noPnoHCT, the MAE results indicate that only the RF model performs 
significantly better than the moving average (& = 0.009125, ( = 23). For all other ML models, & > 0.05 suggests that these models perform similarly to the moving average. Hence, we conclude 
that removing weighted mean P and weighted mean HCT fairly worsens our modelling 
performance, albeit decreasing the distance between the feature spaces of the training and forecast 
periods. While that is an important result, we show in Figure 8 that the out-of-range magnitudes 
for training and forecast periods remain similar throughout the entire forecast period. For 
experiment onlyDeltaPc, MAEs are much higher than for previous experiments, and the Wilcoxon 
tests confirm that all individual ML models perform significantly worse than the moving average 
baseline (& ≪ 0.05 for all individual models).  

In conclusion, we have qualitatively shown that the nature of the forecasts discussed here should 
remain similar to the hold-out set forecasts performance during the training period. Removing 
weighted mean P and weighted mean HCT from the list of features reduces the magnitude of the 
squared distances between forecast and training points considerably – as well as removes the 
upward trend in squared distances observed throughout the entire forecast period. That, however, 
worsens the overall modelling performance. In the next section, we discuss how we address 
negative forecasts and non-zero seismicity rates even after the field has been long shut-in. 

2.4.  Evaluating seismicity forecasts given an ultimate post-shut-in field state 

This section introduces extensions to our ML models that ensure seismicity forecasts are not 
producing negative rates and that seismicity rates decrease towards zero in the time after the field 
has been shut in. We trivially guarantee seismicity forecasts greater than or equal to zero throughout 
the entire forecast period, by forcing seismicity to zero in case of any spuriously generated negative 
seismicity forecast, to ensure the applicability and validity of the long-term (1 to 5 years) forecast 
results. Note that this procedure was already in place and is discussed in Limbeck et al. (2018). 
Second, positive and/or increasing seismicity rates long after the field shut-in date or complete 
depletion of the field is addressed by providing input training features to the ML models for when 
the system has theoretically reached its “ultimate state”. We define “ultimate state” as the stable 
state the system reaches long after gas production has ceased (leaving aside processes that operate 
on geological time scales) – see Glossary. This “ultimate state” of the field is calculated using 
scenarios from the reservoir flow model (Van Oeveren et al., 2017). 

We aim to extend the training range and therefore try to limit the ML model capacity to relate 
variables in a way that is known to be physically impossible. In doing so, we train the ML models 
with first and second derivatives of time-dependent features set to zero and with features from 
reservoir flow model forecasts, such that the ML model seismicity forecasts decrease to 
approximately zero after the field is shut in and the pressure in the field approaches a new 
equilibrium state. From an ML perspective, we turn an extrapolation problem (no ultimate state 
provided) into an interpolation problem (ultimate state provided). Concretely, the MoReS asset 
model for Groningen (Van Oeveren et al., 2017) and subsequent compaction and subsidence 
models (Bierman, S., Kraaijeveld, F., Bourne, 2015) are used to obtain forecasts for the post-March 
2018 average production scenario up to 2100, when it is expected that the reservoir and the 
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overburden have reached an “ultimate state” situation and induced seismicity is significantly 
decreased or ceased in its entirety.  

According to the MoReS simulation for the post-March 2018 average production scenario, 
weighted mean � and weighted mean ��  are in 2100 equal to 86 bar and 97.3 m, respectively. 
To minimize the risk of overfitting or teaching the model a training feature field to be again 
observed in the forecast period, we do not provide these exact values as training data to our ML 
pipeline. Instead, we use data obtained from two extreme production scenarios: shut-in 2019 and 
maximum depletion. The former accounts for a field shut in happening in 2019 (maximizing e.g., 
weighted mean �), while the latter describes a situation where the maximum amount of gas is 
depleted (minimizing e.g., weighted mean �). In addition to � and �� , gas production rate and 
all temporal derivatives are also provided as training features and assumed to be zero (i.e., a steady-
state situation). Under these steady-state conditions, with no production, seismicity rate is also set to 

zero. In Figure 10, we sketch our setup using P as an example: 

 

Figure 10: Sketch of the ultimate states for weighted mean pressure provided as training data to 

the ML pipeline. 

By using these as training data, we are essentially ensuring the ML models to forecast no seismicity 
under the conditions mentioned above. Specifically, the feature values for weighted mean � and 
weighted mean ��  representing these two-possible extreme definite states are shown in in Table 
8Error! Reference source not found.: 

Table 8 Values of the ultimate-state features for the production scenarios shut-in 2019 and 

maximum depletion. 

Production scenarios P (bar) HCT (m) 

Shut-in 2019 94 97.3 

Maximum depletion 37 97.8 

By using both weighted mean � and weighted mean ��  obtained from the MoReS extreme 
scenarios as ultimate feature states, it is guaranteed that the post-March 2018 average production 
scenario falls within this range. We highlight that under a different production scenario, where for 
example ultimate pressure does not fall within the range given in Table 8, the pipeline needs to be 
readjusted. Hence, our ML models are guaranteed to be able to forecast negligible seismicity within 
the ranges provided in Table 8 (and given no-depletion and steady-state situations), but in case a 
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new production scenario is used, the pipeline needs to be re-validated. The features simulated for 
both production scenarios are added 10 times each to our ML pipeline. We arrive at ten by means 
of a sensitivity analysis where we empirically tried different repetitions (2, 4, 6, 8, and finally 10) 
and concluded that ten repetitions per production scenario is the minimum number of repetitions 
the ML pipeline needs to learn that the features within the range displayed in Table 8 (and no 
depletion and steady-state) should lead to negligible seismicity. Hence, the reason we add the 
features exactly 10 times each is solely to provide the ML models with sufficient amount of 
synthetic training data and ensure the forecast of negligible seismicity rates. In addition, by adding 
ten points, we are not significantly impacting model performance – as shown in Table 9. In Figure 
11, we show the temporal evolution of seismicity from 1995 until 2100 for the cases with and 
without ultimate states. 

Figure 11: Hold-out set seismicity forecast (2013-2100) for (left) RF, and (right) KSVM. 
Results obtained for the post-March 2018 production scenario. Turquoise dashes indicate 
the observations (1995-2012). The black line represents the forecast without ultimate 
states. The red band represent the maximum variation between the experiment described 
in Table 8 and the sensitivity analysis for the different forecasts with ultimate states (Table 

10) – see text. 

The seismicity forecasts for both RF and KSVM models converge to zero around 2037. The 
inclusion of ultimate states does not significantly impact model performance during both 1995-
2012 and 2013-2016 periods if compared to models without the ultimate states, as shown in Table 
9. A paired Wilcoxon test confirms that the MAE values for the experiments are not significantly 
different. 

Table 9 Comparison between MAE with standard error (in day-1) for experiments with and without 

ultimate state constrains for the periods 1995-2012 and 2013-2016.  

Without ultimate state With ultimate state 

RF (1995-2012) 0.0231 (±0.0028) RF (1995-2012) 0.0224 (±0.0030) 

KSVM (1995-2012) 0.0253 (±0.0029) KSVM (1995-2012) 0.0282 (±0.0035) 

RF (2013-2016) 0.0353 (±0.0061) RF (2013-2016) 0.0328 (±0.0065) 

KSVM (2013-2016) 0.0401 (±0.0082) KSVM (2013-2016) 0.0365 (±0.0076) 
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Finally, we further extend the robustness of these conclusions by performing a sensitivity analysis 
on the values discussed in Table 8. A series of individual experiments (S1-S5) is designed where we 
independently add different weighted mean � and weighted mean ��  pairs as ultimate state 
points to the training set, as shown in Table 10. Consistent with the experiment described in Table 
8, all other input features (including gas production), and seismicity rate itself are set to zero. The 
aim of these five independent runs is twofold: (i) to show that results remain similar for any 
production scenario within the ranges shown in Table 10, and (ii) ) to evaluate if deviations around 
the MoReS forecast values affect our results. We set the weighted means � and ��  values for 
every experiment to gradually depart from the Shut-in 2019 values. The difference between the 
sensitivity analysis experiments and the experiment shown in Table 8 is the fact that sensitivity 
experiments (S1-S5) are independent of each other, meaning that they provide the ultimate state 
points to the training set one experiment at the time, instead of as a range as in Table 8. Hence, 
the points in experiment S1 are used to run solely one experiment, and points in experiment S2 are 
used to run another independent experiment, and so on.  

Table 10 Sensitivity analysis on the synthetic points for pressure and HCT provided to the training 

set for five different independent experiments. 

Experiments P (bar) HCT (m) 

S1 (Shut-in 2019) 94 97.30 

S2  90 97.35 

S3 86 97.38 

S4 82 97.40 

S5 78 97.42 

 

The results for all the five independent experiments (S1-S5) are virtually indistinguishable if 
compared to the experiment described in Table 8. Note in Figure 11 that the red band indicating 
the variation in seismicity rate for these experiments is very narrow, showing the almost negligible 
impact of this sensitivity analysis for both training (1995-2012) and forecast (2013-2100) periods. 
Despite results being discussed until 2100, we highlight that no quantitative claims are made about 
model forecast performance for such long-term forecasts. Consistently, we limit our long-term 
analysis up to 5 years. The interest with the ultimate state analysis is to show that in the very long 
term, models forecast no seismicity given no gas production and an ultimate state field situation. 
That, as expected, agrees with current physical expectations. Besides allowing the ML models to 
learn new relationships among the variables, the ultimate state constraining is especially important 
for the non-extrapolating models. That is because the inclusion of these points widens the feature 
training range and by extension the convex hull for the training period. That means � and ��  
throughout the entire forecast period now remain within the training convex hull. That claim, 
however, is only valid for these monotonic variables and is not applicable for variances or 
derivatives since these can very well deviate from previously observed values. 
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3. Spatiotemporal features related to induced seismicity  

The extended event rate model discussed in the previous section forms the basis for further 
extensions towards a spatiotemporal model, where seismicity rates are forecasted in both time and 
space throughout the Groningen field. The spatiotemporal models require the use of the spatial 
component of the existing temporal features (e.g., reservoir pressure) as well as new spatial (time-
invariant) features. The selection of spatiotemporal input features is guided by the physical 
understanding of the seismicity in the Groningen field, using the Coulomb stress model (3.1). Using 
this model, we distinguish between spatially varying time-invariant features (3.2) and spatially and 
temporally varying features (3.3). Finally, a summary of all spatiotemporal model features is 
presented in 3.4, in addition to a summary of how these features were generated and from which 
data or models they were obtained. Additional details regarding data sources are provided in 
Appendix B.  

3.1. Overview of seismicity mechanisms in the Groningen field 

Induced seismicity in the Groningen field is compaction-driven, resulting from production-driven 
pore pressure decrease in the reservoir. The pressure decrease initially is strongest near the gas 
production wells. The volume changes associated with gas production in the direct vicinity of the 
producer wells generate a pressure decrease near these wells, which propagates throughout the 
reservoir via a diffuse process controlled by the rock matrix porosity and permeability. Provided 
that the rock mechanical and flow properties have been accurately measured and modelled, the 
pore pressure diffusion throughout the reservoir can be captured by a reservoir flow model, which 
is calibrated to pressure, rate and temperature measurements at the producer wells.  

The average reservoir pore pressure in the Groningen field has dropped from a pre-production 
pressure of 180 bars to below 100 bars in the present day. The decrease in pore pressure increases 
vertical effective stress, as the compressible reservoir rock compacts with depletion whereas the 
vertical overburden volume, and stress, acting on the reservoir remains constant. The increase in 
effective stress in the reservoir also increases the normal and shear stresses acting on faults within 
the reservoir. The Coulomb stress definition can be used to describe the stress state of a fault, and 
its proximity to failure. The Coulomb stress is the amount of stress (in Pascal) that is acting on a 
fault surface, as a function of the principle stresses in the earth subsurface and the geometry and 
orientation of the fault. The Coulomb stress can be defined as a constant value on the entire fault 
surface, assuming a planar fault, or at each individual point on a fault surface, if a more detailed 
fault geometry and rock property description is available. We use the following definition for 
Coulomb stress on faults in a homogeneous elastic thin-sheet model (Bourne and Oates, 2017): � = �" + ∆�, 

where C is the maximum Coulomb stress (in Pa) on the fault plane at failure conditions, �" is the 
initial Coulomb stress (i.e. the combined effect the tectonic stress regime and the fault orientation) 
and ∆� is the change in Coulomb stress induced by a change in pore pressure ∆�: ∆� = −/∆�, 

where / is a material constant capturing the poroelastic reservoir rock behaviour and the fault 
frictional properties: / = (1 + 0)12 − 0, with 1 = 34�5�(345), 
where 6 is the Poisson’s ratio (dimensionless ratio of radial strain to axial strain measured in e.g., a 
core plug), 2 is the Biot coefficient (dimensionless poroelastic rock property constant describing 
grain vs. bulk volume compressibility) and 0 is the dimensionless fault friction coefficient, which 
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defines the shear stress required to induce slip on a fault. Following this model, the Coulomb stress 
at any point on a fault is defined by a combination of matrix rock properties (6, 2), fault properties 
(geometry, friction angle 0), pore pressure and the magnitude and orientation of the three principle 
stress components in the subsurface. All these properties are expected to be a function of space, 
but constant in time, at least at the production time scale (as opposed to geological time scales), 
with the exception of pore pressure, which changes as a function of production.  

In the case of Groningen, it has been demonstrated that this model needs to be extended from 
homogeneous elastic to a model that incorporates pre-existing fault geometries using geometric 
heterogeneities and elastic heterogeneities to account for observed lateral variations in reservoir 
compressibility (Bourne and Oates, 2017): � = �" + 0∆� − 70 + √1 + Γ�:1�;<<, 

where � represents the reservoir bulk modulus (in Pa), ;<< is the purely vertical strain 
(dimensionless) and Γ captures the other nonzero elements of the vertically averaged strain 
tensor, ;=< and ;><: Γ� = 4 ?@ABC D?@EBC?@BBC . 

 

The pre-existing fault geometries are incorporated by defining the fault friction range that leads to 
fault instability as a function of Γ: 

0 = 1√1 + Γ�1 − 1 + �F�G
, 

with, �F = ∆� ;<<⁄  �G = 3IG J3453D5K,  

where IG is the bulk compressibility (Pa-1) in poroelasticity theory. Note that these equations 
assume that the fault orientation is ‘optimal’ from a failure perspective. As the overburden stress 
and rock and fault friction properties remain constant, fault failure is controlled by changes in the 
pore pressure in the reservoir, and the initial Coulomb stress of each fault:  �" > −∆�. 

It follows that even if the reservoir would be homogeneously depleting, some faults are more prone 
to failure than others as their initial Coulomb stress state may differ because of geometrical and 
elastic heterogeneities discussed above.  

The above equations provide a physical model for induced seismicity, defined by Coulomb stress. 
However, the rock properties and stress parameters can at best only be measured at the locations 
of the wells, and fault friction properties cannot be measured directly in the reservoir. Hence, we 
identify in the following sections data-driven features that can serve as proxies for the two main 
mechanisms, i.e. �" and ∆� in the above equations. The spatiotemporal features to be considered 
in the machine learning approach should capture spatial variations in the reservoir and overburden 
that may influence the initial Coulomb stress of the faults (spatially-varying time-invariant features) 
and the change in Coulomb stress induced by gas production, which can be varying in space and 
time. Examples of such features have already been investigated in other works, such as the Hazard 
and Risk Assessment model (Figure 12). This section builds upon those earlier findings in guiding 
the selection of features for the ML models. The following subsections discuss the relevant ML 
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predictor features that have been identified based on their impact on either the initial Coulomb 
stress or change in Coulomb stress. 

 

Figure 12 Spatial comparison of seismic event density (a) and other features using data from the 

period between April 1995 and January 2017 (Bourne and Oates, 2017). 

3.2. Spatial features as proxies of initial Coulomb stress 

We analyse three groups of features that may influence the initial local Coulomb stress state 
acting on faults: 

1. The fault geometry, including offset and fault orientation attributes; 
2. Poroelastic reservoir rock properties; 
3. Pre-production geological variations in overburden stress. 
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Fault properties 

The initial Coulomb stress is a function of the fault orientation relative to the orientation of the 
paleostress field principal stress components (Barton et al., 1995). The overburden stress in the 
Groningen field is the largest principal stress component (i.e., normal faulting regime), and the 
smallest horizontal principal stress component is oriented in an N070 direction, based on in-situ 
stress measurements and focal mechanisms of a subset of studied induced seismic events (van Gent 
et al., 2009). The vertical stress component acting on the fault plane is, therefore, a function of the 
overburden stress and the fault dip angle, and the horizontal stress component is a function of the 
angle between the fault strike and the regional minimum principal stress direction. Although there 
is a scatter in the orientation distribution of faults, most faults are observed to strike in NNW-SSE 
and ENE-WSW directions (Figure 13). Note that the ENE-WSW striking faults are sub-parallel to 
the regional minimum principal stress direction (N070) and may, therefore, be more prone to 
failure.  

Second, the fault geometry influences the peak Coulomb stress as irregularities on a fault plane can 
form weak points that fail relatively easily, whereas a perfectly planar fault surface may sustain a 
larger Coulomb stress change before failing, but the subsequent slip patch of such a perfectly planar 
fault is likely larger than the slip patch of a fault with an irregular geometry.  

In addition to surface size and orientation, fault offset can impact the initial Coulomb stress. Faults 
contained within the reservoir have sand-on-sand contacts. These contacts are unlikely to result in 
peak normal or shear stress concentrations along the fault, but faults that extend into the Zechstein 
formation overlying the reservoir can experience salt migrating into the fault zone, changing the 
fault frictional properties of those faults compared to the faults with sand-on-sand contacts. Fault 
frictional properties can also vary depending on the gas saturation of the fluid that permeates 
through the fault (Candela et al., 2018) and on the amount of shale in the fault zone, as shale can 
‘lubricate’ faults resulting in aseismic rather than seismic slip (Buttinelli et al., 2016; Candela et al., 
2018). As in-situ friction properties of faults are not directly measurable, we use the shale volume 
in the reservoir rock, the ratio between the gas column and water column heights and the gas 
saturation in the aquifer as possible proxies for fault friction variations throughout the field (Figure 
14).  

Last, fault density is a relevant parameter impacting spatial initial Coulomb stress variations in the 
reservoir: In the hypothetical situation where all faults have the same friction and orientation 
properties, the spatial distribution of induced seismicity is likely correlated to the fault density.  
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Figure 13: Rose diagram of the fault azimuth distribution sampled from the Petrel model (100 m 

spacing). As longer faults will have more sampling points, the rose diagram is length-weighted. 

The dashed line indicates the regional horizontal minimum principal stress direction. 

 

Figure 14 Potential reservoir proxies for fault friction variations: a) Ratio between the gas column 

and water column heights, normalized over reservoir thickness, as an indicator of how much of the 

reservoir and fault rock is exposed to water versus gas. Note that the regions outside the Groningen 

field outline (black outline) are not taken into account; b) Gas saturation in the carboniferous, 

underlying the reservoir, based on extrapolation of saturation measurements in several wells that 

penetrated the carboniferous. Data based on observations from five wells, mostly in the south of 

the field; c) Shale (vs sand) ratio. Grey indicates 100% shale. 

 

The beforementioned fault properties are used as input features for use in the Machine Learning 
workflow and are obtained from two data sources: 

1. The Petrel geological model of the Groningen field (Figure 15). In this model, faults have 
been manually interpreted from 3-D seismic reflection data. The interpreted faults have 
been converted into a gridded model with a spatial resolution of 100 x 100 meters, and for 
each cell, fault attributes are calculated. The fault intensity is calculated by taking the 
cumulative length of fault traces within an area (P21 following the intensity definitions by 
Dershowitz and Herda (1992)). The conversion of fault interpretations to a fault model has 
as benefit that fault attributes including orientation (strike and dip), offset and depth are 
available at a constant 100 m spacing, but the disadvantage of this approach is that in the 
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conversion from interpretation to model, manual adjustments to the fault network may 
have been made to avoid gridding issues. To ensure that the anisotropy in the fault network 
is maintained in the ML models, the faults and their attributes are divided into two 
orientation families, based on the paleostress orientation. One set contains all faults with a 
strike of N070±45° or N250±45° (“ESE-WNW”), and the other set contains faults striking 
N160±45° or N340±45° (“NNW-SSE”).  

2. Additional features are derived directly from the seismic reflection data: To minimize data 
sampling artefacts resulting from human bias when interpreting faults and modelling bias 
when converting the interpreted faults into a fault network model, seismic attributes are 
extracted from the 3-D seismic data that act as proxies for fault attributes (Figure 16). The 
selected attributes are the surface gradient, the mean amplitude in the reservoir interval and 
variance, which is calculated using an inline/crossline range of three, and mild vertical 
smoothing (15 samples). These attributes are extracted from the seismic amplitude data 
around the level of the top reservoir surface and represent proxies for seismic-scale 
structural deformation (i.e., faults). The disadvantage of these attributes is that they are 
dimensionless proxies for faults and do not provide absolute measures of fault orientation, 
density or offset.  

Further details regarding the origin and uncertainty of these sources are given in section 3.4 and 
Appendix B. 

 

Figure 15 Fault network in the Petrel reservoir model: a) Top view of the fault network at the 

intersection with the top reservoir surface; b) Fault strike orientation between 0 and 360°; c) Fault 

dip angle orientation. 
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Figure 16 Seismic attributes as proxies for structural deformation in the reservoir: a) Gradient map 

of the top reservoir surface; b) Mean amplitude of the reservoir interval; c) Variance attribute 

calculated around the top reservoir surface. Hot colours indicate high variance. 

 

Reservoir rock properties 

The initial Coulomb stress may be influenced by rock property variations throughout the reservoir. 
There are several rock properties, measured in wells and interpolated between wells using 
correlations with acoustic impedance, that may be used as proxy features for these Coulomb stress 
variations. These features are available from the geological reservoir model, at a 100 m resolution: 

- Shale volume (Figure 14c), as shale and sand have different Poisson’s ratios; 
- Porosity, which affects the diffusivity of pressure changes in the reservoir (Figure 17a); 
- Uniaxial compressibility, which is partly constrained by inversion of geodetic data (i.e., not 

correlated to acoustic impedance) (Figure 17b-d). 
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Figure 17 Reservoir properties: a) Porosity [-]; b) Thickness [m]; c) Compressibility [MPa-1]; d) 

Compressibility multiplied by reservoir thickness [m/MPa]. 

Overburden properties 

The vertical stress is a function of depth and overburden density (LM = NOP; Figure 18). The 
overburden density is the largest uncertainty for quantifying overburden stress, as the thickness of 
the overburden is relatively well-constrained by seismic reflection and well data, whereas density is 
only calculated from petrophysical logs in the overburden. The overlying Zechstein formation is 
the main source of overburden density uncertainty, as its density is lower than that of other 
overburden formations, and its thickness and density (using velocity as a proxy) are spatially varying 
as the Zechstein consists of a combination of halite and anhydrite (Figure 19; Table 11). The 
Zechstein thickness and velocity maps are used as proxies for overburden density variations, in 
addition to a geomechanical overburden stress model obtained from a geomechanical Finite-
Element model of the Groningen reservoir (Appendix B; Figure 18b). 
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Table 11: Properties of the different salt types in the Zechstein Fm. (Romijn, 2017), compared to 

the density of other overburden formations. 

Formation Density [kg/m3] Velocity (Vp) [m/s] 

Halite 2090 4400 

Anhydrite (floaters and basal layer) 2810 5900 

 

 

Figure 18: Overburden stress distribution in Pascal at the depth of the top reservoir horizon. 

Compressional stresses are represented as negative values.  

 

Figure 19 Zechstein properties obtained from seismic data (25 x 25 m resolution): a) Zechstein 

thickness mapped from seismic reflectors; b) Zechstein interval velocity obtained from seismic. 
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3.3. Spatiotemporal features as proxies for Coulomb stress changes  

The change in Coulomb stress ∆� depends on  changes in pore pressure ∆�, which is driven by 
the volume of gas production and the pressure diffusion through the reservoir, combined with the 
distribution of geometric and elastic heterogeneities throughout the reservoir. The main sources of 
these heterogeneities, the pre-existing fault network and reservoir compressibility, do not change 
significantly during gas production, but pore pressure does change during production. Gas 
production is measured at a high temporal resolution, but spatially sparse as data is only available 
for clusters of wells. Production-related features are therefore only included using a field-wide 
averages. 

The spatial pressure changes resulting from gas production are available throughout the reservoir, 
as pressure change is modelled using a reservoir flow simulation code (MoReS). The static 
geological model forms the input data for the initial pre-production (static) reservoir state and 
describes the geometry of the reservoir and the time-invariant flow properties of the rock (i.e., 
porosity, permeability). The dynamic model is initialized using initial pressures measured from wells 
and using a fluid property model based on Pressure, Volume and Temperature (PVT) data of fluid 
samples. Based on these initial pressures and fluid and rock properties, a numerical finite-difference 
solver calculates the pressure gradient throughout the reservoir as a function of well production 
rates and volumes. The resulting model describes in 3-D for each grid cell the changes in saturation, 
fluid composition and pressure, calibrated to available historical well data.  

The temporal analysis of ML for seismicity (Limbeck, et al., 2018) made extensive use of a range 
of dynamic features from the reservoir flow model, such as pressures, production rates, changes in 
hydrocarbon column thickness (HCT) and compaction. However, in the spatiotemporal ML 
models, the pressure is the only spatiotemporal feature used from the dynamic reservoir flow 
model, as other features are primarily derived from pressure. Production data is only used as a 
field-wide aggregated average.  

 

3.4. Overview of spatiotemporal features for ML models 

We summarize here all features that were presented in the sections above and that form the 
predictor inputs for the ML models, with a brief description summarizing how these features relate 
back to the Coulomb stress model, and from which data source they were obtained (Table 12). For 
each data or model source from which the features are derived, the model or data origin and the 
calculation methods for obtaining the different features are summarized (Table 13). See Appendix 
B for a more elaborate discussion of data and model origin, and for several alternatives regretted 
features and the motivation for discarding these features. 

 

Table 12: Features used in the spatiotemporal ML approach  

FEATURE 
NAME 

DESCRIPTION DATA 
SOURCE 

MODEL LABEL 

Fault density P21 (cumulative fault length per grid cell area) 

fault intensity per reservoir grid cell 

Fault model 

from the Petrel 

geological model 

F_ALL.Density 

Fault dip angle Fault dip angle between 0 and 90° F_ALL.Dip.mean 

Fault strike angle Fault strike angle between 0 and 360° F_ALL.Dip.Azimuth.mean 
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Fault offset Vertical reservoir offset along faults (in meters) F_ALL.Reservoir.Offset.mean 

Fault reservoir thickness Average reservoir thickness at the location of 

the faults 

F_ALL.Av.Reservoir.Thicknes

s.Mean 

NNW-SSE fault density The density of the orientation subset of faults 

with a strike within the range N160±45° or 

N340±45° 

F_NS.Density 

NNW-SSE fault dip 

angle 

Fault dip angle between 0 and 90° for the 

orientation subset of N160±45° (or 

N340±45°) striking faults 

F_NS.Dip.mean 

NNW-SSE fault strike 

angle 

Fault strike angle between 0 and 360° for the 

N160±45°/ N340±45° subset of fault strikes. 

F_NS.Dip.Azimuth.mean 

NNW-SSE fault offset Vertical reservoir offset along faults (in meters), 

for the N160±45°/N340±45° striking group of 

faults 

F_NS.Reservoir.Offset.mean 

Reservoir thickness at 

the location of NNW-

SSE faults 

Average reservoir thickness at the location of 

the N160±45°/N340±45° striking faults 

F_NS.Av.Reservoir.Thickness.

Mean 

ENE-WSW fault density The density of the orientation subset of 

N070±45°/N250±45° striking faults 

F_EW.Density 

ENE-WSW fault dip 

angle 

Fault dip angle between 0 and 90° for the 

orientation subset of N070±45°/N250±45° 

striking faults 

F_EW.Dip.mean 

ENE-WSW fault strike 

angle 

Fault strike angle between 0 and 360° 

(N070±45°/N250±45° striking faults) 

F_EW.Dip.Azimuth.mean 

ENE-WSW fault offset Vertical reservoir offset along faults (in meters), 

for the N070±45°/N250±45° striking group of 

faults 

F_EW.Reservoir.Offset.mean 

Reservoir thickness at 

the location of ENE-

WSW faults 

Average reservoir thickness at the location of 

the N070±45°/N250±45° striking faults 

F_EW.Av.Reservoir.Thickness

.Mean 

Surface gradient Surface gradient (seismic dip map) of the top 

reservoir surface as a proxy for fault locations 

Seismic attribute SeisDip.val.mean 

Mean amplitude Mean seismic amplitude of the reservoir 

interval as a proxy for faults and other 

structural deformation features 

SeisMeanAmp.val.mean 

Variance volume 

attribute 

Seismic volume attribute is capturing the 

variance around the depth of the top reservoir 

formation, as a proxy for structural 

deformation in the reservoir. 

SeisVar.val.mean 

Interval velocity 

Zechstein formation 

Interval velocity (in m/s) for the seismic 

interval of the Zechstein formation, as a proxy 

SeisVint.val.mean 
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for lateral density variations in the Zechstein, 

caused by the anhydrite floaters. 

Zechstein formation 

thickness 

Thickness (in meters) of the Zechstein 

formation, as a proxy for lateral overburden 

density variations resulting from the relatively 

low-density salt. 

SeisZechThick.val.mean 

Vshale The amount of shale versus sandstone in the 

reservoir rock. The shale ratio may affect the 

friction behaviour of faults, as shale in the fault 

core increases the probability of aseismic 

versus seismic slip, and the ratio between shale 

and sand is a potential proxy for spatial 

variations in the elastic rock properties 

(Poisson’s ratio). 

Petrel geological 

model (well data 

interpolated 

using acoustic 

impedance) 

avg_vsh.val.mean 

Gas column height 

versus water column 

height 

The ratio between the gas column height and 

water column height at each individual location 

in the reservoir (prior to production), as a 

potential proxy for lateral variations in the fault 

friction behaviour. 

Petrel geological 

model 

(interpolated 

well data) 

gc_vs_wc.val.mean 

Gas saturation in the 

aquifer 

Gas saturation in the Carboniferous (aquifer), 

as a potential proxy for lateral variations in the 

fault friction behaviour.  

Petrel geological 

model (limited 

well data, 

interpolated 

using kriging 

without 

constraint to 

other features). 

sg_carb.val.mean 

Porosity Mean reservoir porosity (weighted vertical 

average) 

Petrel geological 

model (well data 

interpolated 

using acoustic 

impedance 

cross-

correlation) 

statRes.porosity2D.mean 

Compressibility Reservoir rock compressibility [MPa-1] for 

calculating compaction and strain thickness 

from pressure changes. 

Inversion from 

subsidence data.  

statRes.cm 

Reservoir thickness Reservoir thickness in meters, used for 

calculating compaction and strain thickness. 

Petrel geological 

model 

interpreted 

seismic 

statRes.thickness2D.mean 

Top reservoir depth The depth of the top reservoir surface in 

meters. 

statRes.Ztop.mean 

Top reservoir surface 

gradient 

The average gradient at each location calculated 

from the gradient in the adjacent cells. Only 

considers average absolute gradient without 

orientation. 

Calculated from 

top reservoir 

surface data. 

statRes.topoGrad.mean 
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Mean overburden stress Overburden stress at the top reservoir level in 

Pascal (before production). 

3-D Finite 

Element model 

(COMSOL) 

Sv.Sv.mean 

Absolute reservoir pore 

pressure 

Average reservoir pressure, based on the 

vertical weighted average 

MoReS reservoir 

flow model 

weighted.mean.P 

Change in pore pressure 

over time 

The first temporal difference of pressure weighted.mean.dPdT 

Rate of pore pressure 

change over time 

The second temporal difference in pressure weighted.mean.d2PdT2 

Field-averaged pressure Field-wide average reservoir pressure weighted.mean.P.agg 

Field-average pressure 

change 

Field-wide averaged change in pressure weighted.mean.dP.aggdT 

Field-average rate of 

pressure change 

Field-averaged second derivative of pore 

pressure 

weighted.mean.d2P.aggdT2 

Produced gas volume Field-wide total volume of produced gas in a 

period of time (in m3) 

sum.Q.Gas.M3 

Average production rate Field-wide average production rate over a time 

period (in m3) 

sum.dQdT.Gas.M3 

Variance in production 

rate 

Field-wide variance production rate (m3)  variance.dQdT.Gas.M3 

Change in production 

rate 

The second derivative of field-averaged 

production 

sum.d2QdT2.Gas.M3 

Variance in production 

rate change 

The variance of the second derivative of field-

averaged production 

variance.d2QdT2.Gas.M3 

Compaction  Amount of compaction within a time step (i.e., 

incremental compaction) in meters, using 

MoReS pressure, reservoir thickness and 

compressibility. 

Calculated from 

MoReS pore 

pressures using 

compressibility 

and reservoir 

thickness 

features. 

mean.C  

Change in compaction 

rate 

The second temporal difference in compaction mean.d2CdT2 

Cumulative compaction Cumulative compaction since the start of 

production 

mean.cumC 

X coordinate Coordinate in meters, using the Rijksdriehoek 

coordinate system. Regularly spaced grid. 

Calculated from 

resampled spatial 

input grids. 

RD_X 

Y coordinate Coordinate in meters, using the Rijksdriehoek 

coordinate system. Regularly spaced grid. 

RD_Y 
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Table 13 Summary for all the data/model sources from which features in the previous table are 

extracted, including the origin of the model or data, the format, and resolution in which the data 

is available, and how ML features are calculated from this data format. 

DATA 

SOURCE 

ORIGIN FORMAT  RESOLU

TION 

FEATURE 

CALCULATION 

Fault model 

from the 

Petrel 

geological 

model 

Petrel geological grid (i.e., regular 

grid at 100x100 horizontal 

resolution and variable vertical 

resolution). The 3-D fault model is 

converted to 2-D by extracting 

fault line traces at the intersection 

between top reservoir and faults. 

The Petrel fault model is based on 

seismic fault interpretation with 

manual post-processing to avoid 

gridding issues. 

Fault length traces 

discretized into 

unstructured point 

set at a 100 m 

resolution, with fault 

attributes for each 

point.  

100x100 m • Mapping of fault points per 

fault orientation set to a grid.  

• Averaging of fault attributes 

(e.g., orientation, thickness) 

for multiple points within a 

cell. 

• Fault density is calculated 

using the sum of points 

within a cell. 

Seismic 

attribute 

3-D seismic volume attributes 

calculated from seismic amplitudes 

around the top reservoir (surface 

attributes) or from the reservoir 

interval. 

2-D point set with x, 

y data, and attribute 

values. 

25x25m Mapping of the points to the ML 

grid, using averaging for multiple 

points within a single cell. 

Petrel 

geological 

model (well 

data 

interpolated 

using acoustic 

impedance) 

Petrel geological 3-D model. 

Property values are calculated from 

well log data and interpolated in 3-

D using a correlation with acoustic 

impedance. Converted to map 

features using (cell) volume 

weighted averaging in the vertical 

direction. The only exception is 

sg_carb.val.mean, which is 

interpolated using kriging instead 

of acoustic impedance. 

Regular gridded 2-D 

point set with x, y 

center coordinates 

per cell and attribute 

values. 

100x100m • Mapping of the points to the 

ML grid, using averaging for 

multiple points within a single 

cell. 

• The topographic gradient in 

each cell is calculated from 

the average surface gradient 

of the 8 neighbouring cells. 

Compressibilit

y inverted 

from 

subsidence 

data.  

Compressibility model inverted 

from geodetic (subsidence) data. 

2-D regular point set 

with x, y and 

compressibility 

values. 

500x500m 

resolution 

Mapping of the points to the ML 

grid, using averaging for multiple 

points within a single cell. 

3-D Finite 

Element 

model 

(COMSOL) 

Model geometry is based on the 

horizon and fault surfaces 

interpreted from seismic. 

Mechanical rock properties are 

obtained from the static geological 

model. 

2-D point set of the 

stress state at the top 

reservoir, variable 

resolution. 

Variable, an 

average of 

150 m, 

minimum of 

25 m 

(seismic 

resolution)  

Mapping of the points to the ML 

grid, using averaging for multiple 

points within a single cell. 
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MoReS 

reservoir flow 

model 

Model geometry and static 

properties are upscaled from the 

geological model. The fluid model 

obtained from PVT data, and 

pressure, saturation, temperature 

and flow are modelled based on 

calibration to measurements at 

wells.  

3-D point set with 

cell center points, 

cell volume, and 

dynamic attributes. 

Variable, an 

average of 

650 m, 

minimum of 

80 m. 

• Vertical aggregation from 3-D 

to 2-D using cell-volume 

weighting, using averaging 

(e.g., pressure) or summation 

(e.g., production) 

• 2-D upscaling or downscaling 

of reservoir simulation grid to 

ML grid using averaging or 

summation. 

• The depletion thickness and 

vertical strain thickness 

baselines are calculated using 

compressibility and thickness 

data at the ML grid scale. 

 



 - 36 -  

 

4. Spatiotemporal Earthquake Data and Target Definition 

The goal of this study is to forecast seismicity event rates in space and time: the number of 
earthquakes within a certain time interval, within a certain region, above a certain minimum 
magnitude. This section describes earthquake measurements and the choices made to generate the 
target from these measurements. 

4.1. Earthquake measurements 

The KNMI (the Royal Netherlands Meteorological Institute) has seismicity monitoring stations 
throughout the Netherlands and specifically in Groningen3. The network is described in more detail 
in, e.g., Dost et al. (2012) and Dost and Haak (2002). Measurements from this network are 
automatically processed by KNMI and earthquakes detected are formally published in a catalogue4, 
which we use as a source for seismic events. The induced seismicity catalogue has a straightforward 
structure as shown in Table 14: The data is provided in a tabular form with each row representing 
an event, with event date and time, location, latitude, longitude, depth, magnitude and evaluation 
mode. Most of these fields are self-explanatory, possibly except for the location field5 but that field 
is not used in our analysis. 

Table 14 KNMI induced earthquake catalogue data structure 

Date Time Location Lat Lon Depth Mag Eval mode 

1986-dec-26 07h47m51s Assen 52.992 6.548 1 2.8 Manual 

1987-dec-14 20h49m48s Hooghalen 52.928 6.552 1.5 2.5 Manual 

… … … … … … … … 

4.2. Uncertainties 

The number of sensors in the seismic sensor network, their locations and the data processing 
procedures used influence detection sensitivities and location uncertainties. As the network has 
been extended over time, detection sensitivity and location uncertainties vary over time. Table 15 
provides an overview of sensitivities as reported by the KNMI (see, e.g., Dost et al., 2012, 2017; 
Kraaijpoel et al., 2015; Spetzler and Dost, 2017). In general, the horizontal location uncertainty is 
around 1 km, and the vertical uncertainty is between 1-2 km. Given the sizeable vertical uncertainty, 
vertical locations are pre-set to 3 km for nearly all events. 

 

 

 

 

 

 

                                                 

3 For an overview of these stations, see https://www.knmi.nl/nederland-nu/seismologie/stations.  

4 Catalogue available at https://www.knmi.nl/kennis-en-datacentrum/dataset/aardbevingscatalogus.  

5 Up to November 30, 2016 the location field described the city or village centre nearest to the event, whilst as of December 1, 

2016 the municipality border within which the event took place is registered. 
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Table 15 KNMI Seismic Sensor Network developments over time 

Time Detection Localisation Comments 

Since 1995 ≥ 1.5 ≥ 2.3-1.5 Network installed (8 borehole stations in 
Northern Netherlands) 

±±±±2010 Processing software upgrade, real-time continuous data transmission 

2009-2010 ≥ 1.0 ≥ 1.5 6 additional borehole stations in Northern 
Netherlands 

2015-2017  ≥ ~0.5 Major extension: 64 additional borehole 
stations in Northern Netherlands 

4.3. Choice of minimum magnitude ����, temporal interval and temporal 

aggregation period ���� 

The magnitude of completeness �Q of a sensor network is usually defined as the lowest value of 
the moment magnitude of an event for it to be detected with 100% reliability. Event counts with 
a moment magnitude below �Q are incomplete, which in principle does not pose a problem for 
machine learning algorithms as long as �Q is constant over time: Algorithms would simply forecast 
observed seismicity. However, with the detection sensitivity increasing over time, an increase in 
the detection of earthquakes is a combination between a change in seismicity and a change in 
detection sensitivity. As this effect is strongest for low magnitude seismicity a minimum magnitude 
cut-off �!"# is chosen, only earthquakes with a magnitude equal to or higher than �!"# are taken 
into account. A sensible choice for �!"# is the magnitude of completeness �Q – this choice would 
ensure that all signal picked up comes from seismicity instead of sensor network sensitivity changes. 
Given the improvements in the sensor network over time, the choice of �Q and the start of the 
temporal interval  GRSFR are coupled: a later  GRSFR might allow for a lower �Q and vice versa. The 
choice for both parameters is, of course, driven by the desire to use as much of the data as possible, 
while avoiding the introduction of bias. 

 

Following the extensive analysis of �!"# in section 3.2 of Limbeck et al. (2018), we proceed with 
the following choices for �!"#,  GRSFR and  STT: 

• Following both KNMI reported �Q values and the PSHRA default �!"# = 1.5 with  GRSFR = 1995 are used with a  STT = 3 months. 
• For consistency with earlier work,  U#V = 2016. Event data from 2017 and 2018 is hence 

not used for model training, such that all model forecasts from January 1 2017 can be 
compared to observations to assess out-of-sample performance. 
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4.4. Choice of geospatial interval and forecasting target 

Following Limbeck et al. (2018), the geospatial area of interest is delineated by the outline of the 
Groningen field Outline (GFO; Figure 20). Note that only reservoir-related induced events are 
considered when using this boundary and that events in the aquifer are excluded. 

The forecasting target used in this study is the earthquake rate, i.e., the number of earthquakes in 
three months (equivalent with earthquake count for uniform temporal intervals). 

 

 

Figure 20: Groningen field Outline (GFO) geospatial view Google Maps (2018)6 

 
 

                                                 

6 Map data © GeoBasis-DE/BKG (© 2009) Google. Google Maps image retrieved from: 

http://maps.googleapis.com/maps/api/staticmap?center=53.5,7&zoom=9&size=640x640&scale=2&maptype=roadmap&langu

age=en-EN&sensor=false 
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5. Spatiotemporal Experimental Setup 

The spatiotemporal models require that the spatial and temporal features defined in the previous 
sections are combined into a single feature data table. The processing of different spatial data at 
different resolutions into a data table suitable for ML modelling is handled through gridding 
(discussed previously in section 3.4) and smoothing of data (section 5.1), and conversion of the 
data into machine learning features (section 5.2).  

To optimize simulation times, feature down-selection is applied based on the extent to which 
features are correlated to the forecasting target and to each other (section 5.3). In addition, 
conclusions from earlier work help to down-select the meta-parameters (5.4), resulting in a final 
subset of experiments summarized in section 5.5. Referring back to the high-level workflow (Figure 
3), the experimental setup to go from raw data to feature creation and aggregation can be visualized 
in more detail (Figure 21). The steps from this figure are explained in more detail in the next 
subsections.  

 

 

Figure 21 Flowchart of the spatiotemporal experiment setup 

5.1. Spatial smoothing of the target and input data 

Smoothing is applied to account for varying resolutions of the spatial features. Spatial smoothing 
requires several trade-offs, between ensuring that each cell contains data for all features, avoiding 
discretization errors where the results of the models are influenced by the grid resolution, keeping 
computation times within acceptable limits and dealing with spatially sparse seismic events. The 
spatiotemporal predictor features are obtained from different data sources with varying resolutions 
(Table 13): 

- Seismic reflection data: 25 m; 

- Geological reservoir model (based on well data interpolated using seismic): 100 m; 

- Dynamic reservoir model: On average 400 m, with local refinements around the wells; 

- Geomechanical model: variable resolution between seismic resolution and dynamic reservoir 
model resolution; 

- Geodetic data has a non-uniform but relatively high spatial resolution at the surface, but the 
reservoir compaction inverted from this data has an approximate bandwidth of 3000 m, 
constrained by the depth of the reservoir. 

All input features are projected onto a single regular-spaced grid with a 1500 m resolution through 
averaging or summation depending on the feature. At this resolution, the property distributions 
are sufficiently smooth without generation of discretization artefacts. Note that further increasing 
the number of cells comes at a significant computational cost. The value of each feature at the grid 
cell area and the grid cell centre locations form the actual features for the ML models. The gridding 
approach for each data source is described in Table 13 in section 3.4. Once all data is mapped to 
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the specified grid resolution, spatial smoothing is applied to account for spatial uncertainties 
(Figure 22). A symmetric Gaussian kernel smoother is used for the predictor features. To account 
for anisotropy in the fault network, smoothing is applied separately to the two fault orientation 
groups of NNW-SSE and ENE-WSW striking faults.  The smoothing bandwidth is guided by the 
lowest resolution data, i.e., the compressibility and compaction features, as reservoir 
compressibility is modelled through inversion of subsidence data. The distance between subsidence 
data and reservoir compressibility (i.e., reservoir depth) limits the maximum resolution in 
compressibility that can be resolved. We investigate a range of bandwidths between 1500 and 5000 
meters. This range of bandwidths includes the value of 3500 m, which was found to be the optimal 
bandwidth by Bourne and Oates (2015). 

 

 

  

 

Figure 22: Example of smoothing of the Zechstein thickness map (thickness in meters), using a 

grid resolution of 500 m (a) and a kernel smoothing bandwidth of 1500 m.  

In training the models, the target is also smoothed to a resolution identical to the resolution used 
for the predictor feature smoothing, but model validation is done using the actual event counts 
without smoothing. It is important to note that with smoothing there could be some loss of 
information within the field outline which might cause the sum of smoothed event counts within 
the field outline to not be the same as the recorded event count. Several checks have been 
implemented to ensure that the impact is as minimal as possible. Firstly, we have made sure that 
only events that occur within the limits of the Groningen field outline as seen in Figure 23 are 
taken into account. Second, we have added extra padding (i.e., additional) cells to the rectangular 
grid over which events are initially smoothed to make sure that events that occur close to the 
borders are not cut out, and finally, an additional buffer was added to the final cropping to make 
sure that no empty cells are taken into the final experiment. 
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Figure 23: Events considered are in red, the Groningen outline in green with the buffer in blue and 

the rectangular grid over which events are smoothed to the 500 m spatial event resolution in the 

background. 

 

After taking these preventive measures into account, we find that there is still some small but to 
the best of our knowledge immaterial difference between the sum of smoothed event counts and 
the observed event counts, with an error of 0.6% on average. This error is calculated as the 
difference between the field-wide average of a feature value compared to the post-smoothing field-
wide average. Based on this error, the spatially aggregated temporal event count forecast is expected 
to be slightly lower than the temporal event count from Limbeck et al. (2018). However, we note 
that if the sum of smoothed event counts is rounded to the nearest integer then both counts, 
smoothed and observed match 100%. One aspect to bear in mind is that further increasing the 
buffer could most likely eliminate the error altogether, however here the caveat is that by selecting 
our observation cells based on such a more extensive area would not only inflate the number of 
cells hence increasing computational time significantly on an already time consuming process but 
also that there may be events associated with these cells that will not be taken into account as the 
models consider only events within the field outline.  

 

5.2. Spatiotemporal Binning with Spatial Coordinates as Features  

The spatiotemporal dataset is integrated into a full spatiotemporal matrix using the same data 
conversion conventions used for the event rate report (Limbeck et al., 2018). The data has been 
structured in long form, where the full spatiotemporal information is stored for each location for 
each timestamp, with other columns providing the specific spatiotemporal features (Table 16). 
More specifically the data is stored in slow time and fast space format to use spacetime terminology, 
meaning that for each date all locations are shown before moving on to the next date rather than 
all dates for one location and then moving on to the next locationError! Reference source not 
found.. This matrix takes the form of a full spacetime grid of observations for spatial features 
(points, lines, polygons, grid cells) X" , Y = 1, . . . , � and observation b time Z[ , \ = 1, . . . , � is 
obtained when the full set of � × � set of observations P^ is stored, with _ = 1, . . . , ��. 

In ML terms this results in a matrix of size � × � whe 

re all the features have been aggregated as per their description in sections 3.4 and 5.1 (averaged, 
summed, smoothed) per grid cell and time. The allocation of feature values to a specific grid cell is 
done by using the coordinate information available. The methodology used is contained in the “sp” 
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and “maptools” packages in R by which we assign the feature values to the cell that contains the 
coordinates linked to those values. Table 13 shows a diagram of how the table is structured, each 
row in the table corresponds to a cell in the grid at a specific time and all the features have been 
aggregated at that level. E.g., the mean pressure (weighted.mean.P) at a given row in the dataframe 
is the mean pressure value at the cell with centroid RD_X, RD_Y at a given Date. 

 

Table 16 Diagram showing spacetime format used. Each row corresponds to a cell in the grid at a 

specific time, and all features are aggregated per cell per time. 

Date RD_X RD_Y Features 

1995-01-01 20000 55000 … 

1995-01-01 21000 56000 … 

1995-01-01 22000 57000 … 

1996-01-01 20000 55000 … 

1996-01-01 21000 56000 … 

1996-01-01 22000 57000 … 

 

Furthermore, the centroid coordinates of each cell in the grid are passed to the model as features, 
to ensure that most of the models that had already been implemented such as KSVM, Random 
Forest and GLM can be reused while enforcing the explicit use of location for earthquake 
forecasting. The rationale behind using the coordinates as features is that if the location has a 
significant impact in the ability of the model to forecast seismicity, the models will be able to 
automatically derive spatial areas where seismicity is likely to occur, by also leveraging potential 
non-linear relations between location and the other spatial and dynamic features. However, the real 
impact of the coordinates must be considered since they are likely dependent on the mapped spatial 
properties like faults and could, in fact, obfuscate or act as a proxy for these properties. Further 
experiments without using the coordinates as features could provide a clearer picture of whether 
the coordinates are important in and by themselves, this idea is expanded upon in the 
recommendations section of this report. 

Moreover, we would like to emphasize the fact that models are not being trained on a cell-by-cell 
basis. Each model used has access to all the cells in the grid that are available for training within 
the given resampling iteration then to make forecasts on a cell by cell basis. Notice how this 
approach is dramatically different from one in which models are trained with data within a specific 
region (with no access to information about other regions) then to make forecasts on that same 
region. What we are trying to do is feed the model with information about all parts of the reservoir, 
so that if spatial differences exist that can improve the forecasting performance, that they could be 
picked up by the models. 

5.3. Feature (down)selection 

The ML input features presented in section 3 were selected based on their relation with the 
Coulomb stress model for seismic events induced by compaction (Table 12). Within this list of 
features, there are however multiple features that may be a proxy for the same physical mechanism, 
such as gas column height and gas saturation in the aquifer. We, therefore, apply a feature cross-
correlation cut-off based on the average and distribution of Pearson correlation coefficients per 
grid cell, that groups highly cross-correlated features and selects one feature out of that group as 
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representative for that group (Figure 24, and Appendix C for the spatial and spatiotemporal 
correlation analysis). For spatially varying time-invariant data, the correlation is calculated in all 
locations and averaged. For time-dependent data, the average coefficient for all locations and all 
timesteps from the spatiotemporal feature table is used. Only that feature is carried further into the 
ML pipeline. To remain consistent with earlier work, a cross-correlation threshold of 0.8 is used 
(Limbeck et al., 2018). The remaining features after cross-correlation and grouping that are used in 
the ML models are listed in (Table 17).  

 

Figure 24: Correlation matrix for time-invariant spatial data (see Appendix C for the complete 

spatiotemporal cross-correlation matrix). Dark blue and red colours show strong correlations and 

anti-correlations respectively. Lighter colours and smaller circles show poor correlations between 

features. Label abbreviation legend is found in Table 12. 

 

Table 17 List of downselected features following cross-correlation threshold filtering and grouping 

FEATURE 
NAME 

DESCRIPTION MODEL LABEL 

NNW-SSE fault 

density 

The density of the orientation subset of faults with a 

strike within the range N160±45°/N340±45° 

F_NS.Density 
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NNW-SSE fault 

offset 

Vertical reservoir offset along faults (in meters), for the 

N160±45°/N340±45° striking group of faults 

F_NS.Reservoir.Offset.mean 

Reservoir thickness 

at location of 

NNW-SSE faults 

Average reservoir thickness at the location of the 

N160±45°/N160±45° striking faults 

F_NS.Av.Reservoir.Thickness.Me

an 

Variance volume 

attribute 

Seismic volume attribute is capturing the variance 

around the depth of the top reservoir formation, as a 

proxy for structural deformation in the reservoir. 

SeisVar.val.mean 

Compressibility Reservoir rock compressibility [MPa-1] for calculating 

compaction and strain thickness from pressure changes. 

statRes.cm 

Top reservoir depth The depth of the top reservoir surface in meters. statRes.Ztop.mean 

Top reservoir 

surface gradient 

The average gradient at each location calculated from 

the gradient in the adjacent cells. Only considers average 

absolute gradient without orientation. 

statRes.topoGrad.mean 

Mean overburden 

stress 

Overburden stress at the top reservoir level in Pascal 

(before production). 

Sv.Sv.mean 

Absolute reservoir 

pore pressure 

Average reservoir pressure, based on the vertical 

weighted average 

weighted.mean.P 

Change in pore 

pressure over time 

The first temporal difference of pressure weighted.mean.dPdT 

Rate of pore 

pressure change 

over time 

The second temporal difference in pressure weighted.mean.d2PdT2 

Field-averaged 

pressure 

Field-wide average reservoir pressure weighted.mean.P.agg 

Field-average 

pressure change 

Field-wide averaged change in pressure weighted.mean.dP.aggdT 

Field-average rate 

of pressure change 

Field-averaged second derivative of pore pressure weighted.mean.d2P.aggdT2 

Produced gas 

volume 

Field-wide total volume of produced gas in a period of 

time (in m3) 

sum.Q.Gas.M3 

Average production 

rate 

Field-wide average production rate over a time period 

(in m3) 

sum.dQdT.Gas.M3 

Variance in 

production rate 

Field-wide variance production rate (m3)  variance.dQdT.Gas.M3 

Change in 

production rate 

The second derivative of field-averaged production sum.d2QdT2.Gas.M3 

Variance in 

production rate 

change 

The variance of the second derivative of field-averaged 

production 

variance.d2QdT2.Gas.M3 
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Compaction  Amount of compaction within a time step (i.e., 

incremental compaction) in meters, using MoReS 

pressure, compressibility and reservoir thickness. 

mean.C  

x coordinate X coordinate (in meters) RD_X_center 

Y coordinate Y coordinate (in meters) RD_Y_center 

 

5.4. Meta-Parameter Choices  

Meta-parameters are parameter settings of the machine learning models and include amongst 
others the exact target definition, feature selection thresholds, and integration choices. A selection 
of several of these parameters related to the forecast target has been discussed in the previous 
section. For many of the meta-parameters, there are potential ranges of values that could be used, 
such as different aggregation periods, for which the optimal value is not known up front. For that 
reason, a factorial approach has been set up to run each ML model with all possible combinations 
of meta-parameter ranges (Limbeck, et al., 2018).  

The meta-parameters for the ML experiments are summarized with a short description for each 
parameter in Table 18. Most of these parameters are identical to those used in the temporal analysis 
(Limbeck et al., 2018), whereas the following additional meta-parameters are added for the spatial 
model extension: 

• Bandwidth (in meters) for the kernel smoothing of spatial features; 
• Resolution (in meters) of the grid cells used for generating x and y coordinate features; 
• A number of spatial blocks to be generated for the x, y coordinates using k-means clustering 

(i.e., the number of blocks the field is divided into). These blocks are used for spatial cross-
validation. 

 

Even though the investigation of extensive ranges of meta-parameters is made possible by means 
of the factorial set-up of the ML experiments, the use of a wide range of parameters in this factorial 
approach rapidly results in hundreds of experiments that need to be run and evaluated. We 
optimize this process by using results from the temporal meta-parameter analysis (Limbeck et al., 
2018) to guide down-sampling of the parameter space in the spatiotemporal analysis. Specifically, 
the following parameters are assigned single values or limited subsets of values instead of full 
ranges, based on earlier findings:  

• No time-shifts are applied, as time-shifts for dynamic variables in the temporal analysis had 
no material effect on the estimated performance of the models, and time shifts are also not 
regarded in the PSHRA model. It could be reasonably argued perhaps, that time shifts 
might be present at specific locations in the reservoir. However, previous results suggest 
that this is not the case at the field aggregated level nor for selected regions. 

• The �!"# threshold, aggregation and time intervals have been studied extensively in other 
works (see discussion in section 4.3), so rather then again exploring all possible 
combinations of �!"# thresholds for different periods, we focus on �!"# of 1.5 from 
1995-2016. 

• Target quantity is the earthquake rate, to allow comparison with the previous temporal 
models and the PSHRA model, which have the same target. 

• No aftershock processing is applied. 
• A feature correlation threshold of 0.8 for feature down-selection is applied, to be consistent 

with the temporal models. 
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• No feature transformations such as principle component analysis are applied. 
• Maximum number of lags is 2 (i.e., models investigate 0, 1 and 2 lag periods). 
• Aggregation periods of 3, 6 and 12 months are used. 
• Two values for the end of the time periods for model training are used: events up to and 

including December 2016 and events up to and including December 2012. Both end 
intervals provide separate holdout validation sets for 2017 and 2018 that are used to assess 
model performance. The 1995 – 2016 interval contains 268 historical events with a 
magnitude of 1.5 or higher, and the 1995 – 2012 interval contains 192 events. 

 

Table 18 Meta-parameters for the experiments, with a brief description, the value range considered 

in the spatiotemporal analysis and the number of values that are used in the factorial approach for 

each parameter. 

Meta parameter  Description Value range  # Val.  

ML Model  
(excl. baselines)  

Type of machine learning model RF, KNN, 
KSVM, 
GLMnet, 
GLM with top 
5 significant 
variables 

5  

Target quantity  Forecast target, e.g., earthquake 
rate, count. 

EQ rate  1  

Gridsize  Resolution of the grid cells for 
spatial gridding to generate x, y, 
feature values. 

1500 m 1 

Time delay Production 
  

Delay (number of time steps) in 
production data versus target 
quantity. 

0 1  

Min Magnitude Lower bound for earthquake 
magnitudes to be used. 

1.5 1 

Time delay Pressure 
 
   

Delay (number of time steps) in 
pressure data. 

0 1 

Number of spatial blocks Number of blocks that the grid 
cells in the field are divided in 
using k-means clustering 

5, 10 2 

Time delay Compaction 
   

Delay (number of time steps) in 
compaction data. 

0 1 

Kernel Smoothing bandwidth Bandwidth in meters of the 
kernel smoothing applied to 
spatial predictor features. 

2000, 2500, 
3000, 3500, 
4000 

5 

Max. nr. Lags  The maximum number of lags to 
be added to the time-series data. 

2  1  

Feature correlation threshold  The threshold above which 
features are defined as highly 
correlated. These features are 
then grouped, and one 
representative feature is used. 

0.8  1  
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Feature transformations Transformations applied to the 
features before use in modelling, 
e.g., principle component 
analysis. 

None  1  

Interval Length Length of the period over which 
features are temporally 
aggregated. 

3, 6, 12 
months 

3 

Feature significance threshold  The minimum threshold for 
features to be significant. 

0.4  1  

Interval Start Start of the time interval for 
model training 

1995-01-01 1 

Interval End End of the time interval for 
model training 

2012-12-31, 
2016-12-31 

2 

Validation Strategy Method for model validation Spacetime 
walk-forward  

1 

Total   300 

 

5.5. Experiment (down)selection  

Based on the results from the event rate report, a subset of five models was identified that 
consistently showed better performance from the larger selection of machine learning models 
initially analysed. The current study is therefore limited to these five models: Random Forests (RF), 
more specifically the Ranger implementation, due its faster computation time while still remaining 
functionally equivalent (Wright and Ziegler, 2015), KSVM, KNN, GLMnet and GLM top, the 
latter being a GLM model (Hastie et al., 2009) that takes only the top five most significant features 
(see Appendix H for a short description of the ML models). In addition, several baselines are used 
for model comparison.  

 

These baselines produce forecasts of the earthquake rate &",< between time Z"43 `�� Z"  for 
location bin z as follows:   
  

1. Depletion thickness based moving average (DepletionThickness MA):  
This baseline assumes that the activity rate at a given location is proportional to change in 
depletion thickness. Concretely, writing a",< for depletion thickness, i.e. pressure times 
reservoir thickness, at time Z" and location z, obtained from the reservoir simulation model 
forecasts, the rate forecast is given as  

&",< =  a",< −  a"43,<a"43,< − a"4S,<   b c[,<
"43

[d"4S  

 
where c[,< is the observed earthquake count between time Z[ and Z[43 in the spatial bin z, 
and ` is the lookback parameter for the moving average. 
 
 
 

2. Strain thickness (compaction) based moving average (StrainThickness MA):  
This baseline assumes that the activity rate at a given location is proportional to change in 
depletion thickness. Concretely, writing e",< for strain thickness, i.e. vertical strain times 
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reservoir thickness, at time Z" and location z, obtained from the reservoir simulation model 
forecasts described in section, the rate forecast is given as  

&",< =  e",< −  e"43,<e"43,< − e"4S,<   b c[,<
"43

[d"4S  

 
where c[,< is the observed earthquake count between time Z[ and Z[43 in the spatial bin z, 
and ` is the lookback parameter for the moving average. 

 

 

The relative performance of the machine learning models and the baselines in terms of MAE, 
RMSLE and Mean Poisson Loss over the explored experimental space indicates that the Strain 
thickness MA baseline is performing better than the depletion thickness baseline (Figure 25 and 
Figure 26). Therefore, this will be the baseline against with the performance of the ML models is 
compared to. A detailed explanation of the error metrics and their application to model evaluation 
can be found in section 6 of this report. 

Among the ML models we see comparable performance amongst most of the models with only 
the GLMnet model relatively underperforming in terms of MAE, RMSLE and Mean Poisson Loss 
with respect to the other ML models. Based on these error metrics, the RF, KSVM are the models 
that we will focus on in the results section. 

 

Figure 25: The RMSLE (left) and MAE (right) error metrics on a cell by cell basis per model. The 

errors are derived by comparing predictions for each cell with the actual earthquake rates in 3 

months. The black bars denote standard error calculated with the Jackknife resampling technique 

as described in section 6.4. 
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Figure 26: Comparative model performance in terms of the Mean Poisson loss aggregated over 

time. The figure is based on 3-month aggregation periods where the number of predicted 

earthquakes is compared with the actual earthquake count. The standard error denoted with the 

black bars is calculated with the Jackknife resampling technique as described in section 6. 

Meta-parameter (down)selection 

Based on the findings from the temporal analysis (Limbeck et al., 2018), a set of meta-parameters 
is used in the experiments. The only remaining parameters for which multiple values are being 
investigated in the experiments are the minimum magnitude limit of events (1.2 vs. 1.5), the 
bandwidth for kernel smoothing (2000 – 4000 m in steps of 500 m, Appendix J) and the aggregation 
period (3, 6 or 12 months).  

For the minimum magnitude threshold, the MAE (mean average error) for experiments with a �!"#= 1.2 is 0.0277 (se=0.005) whereas the MAE for experiments with �!"#= 1.5 is 0.0173 
(se=0.003). Since the MAE values were not normally distributed we proceed to test with a non-
parametric test (Figure 27). According to the Wilcoxon signed-rank test, the errors are significantly 
different between experiments where the minimum magnitude was 1.2 and groups where the 
minimum magnitude was 1.5 (p-value < 2.2e-16). Thus, we chose to further only analyse 
experiments with a minimum magnitude of 1.5.  

There is some indication that higher time-aggregations can lead to better performance when used 
on the reservoir grid where each cell has a dimension of 1.5km. We, therefore, use the shortest 
aggregation period (3 months) to obtain the highest temporal resolution, which is aligned with the 
aggregation period used in Limbeck et al. (2018). 

The experiments with different bandwidths show that the RMSLE for experiments with a kernel 
smoothing bandwidth of 1500 m is significantly larger than the other two bandwidths and that 
there is a smaller difference in RMSLE between smoothing bandwidths of 3500 m and 5000 m. 
This is expected – if the smoothing bandwidth is large, the performance of all models improves 
but the models are less capable of making spatially accurate forecasts. The relatively large error in 
models with a smoothing bandwidth of 1500 m confirms that there is insufficient accuracy of the 
data at the reservoir level to make forecasts at this resolution. Models with a smoothing bandwidth 
of 5000 m have a slightly lower RMSLE on average compared to the 3500 m resolution but using 
models with a smoothing bandwidth of 5000 m decreases the forecasting power of these models, 
in terms of spatial resolution. Therefore, a smoothing bandwidth of 3500 m is used in the main 
experiment. This is also consistent with previous research (Bourne and Oates, 2015).  
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Figure 27: The boxplot illustrates the temporally aggregated median model performance in terms 

of RMSLE (left) and MAE (right) for magnitude 1.2 (red) and 1.5 (blue). Figures are based on 3-

month aggregation periods, with a bandwidth of 3500. The boxplot depicts the performance 

metrics for all models.  
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6. Model Performance Evaluation 

This section will expand on the resampling strategy used in the study, namely: a spatiotemporal 
walk-forward approach and the different metrics and measures used to test and validate the 
performance of the models. This section also covers the model comparison setup for validation 
and assessment of whether any of the machine learning models outperform the selected baseline(s). 

6.1. Temporal: walk forward testing  

When testing the forecasting power of a model, it is essential that the performance of the model is 
tested on data that has not been used to train the model. Due to overfitting to the given training 
data, model performance is in general better in-sample than for a hold-out set. For this reason, the 
data set needs to be partitioned into training and test sets, where the model performance is only 
estimated on the test sets. If a given data set has sufficiently many data points (the exact number 
will depend on several factors like the complexity of the problem, the complexity of the model and 
the signal to noise ratio in the data), stable estimates of model performance can be obtained using 
only few training and test splits.  
In the case of a sufficiently large data set, the estimated model performance is insensitive to the 
chosen partition. For smaller data set sizes and complex problems, like the case considered in this 
study, the estimated model performance is more uncertain and depends to a certain extent on the 
chosen partition. To minimize the effect of the chosen partition on the computed error metric a 
common approach is to repeat the modelling experiments on many training and test partitions of 
the data to obtain more stable error estimates and to be able to bound the uncertainty introduced 
through the different partitioning schemes. If the forecasting target would be independently and 
identically distributed (i.i.d.) at different moments in time several resampling schemes like k-fold 
cross-validation or several different non-blocked flavours of the bootstrap, would be available, see 
chapter 7 in Hastie et al. (2009) for further details. 
However, since we are dealing with time series data for which the i.i.d assumption, in general, does 
not hold; those techniques bear the risk of overestimating the forecasting performance of the 
models by leaking future information. Additionally, violation of the i.i.d. assumption can result in 
too small estimates of standard errors, which in turn could lead to Type 1 errors in hypothesis 
testing when testing two models for equivalence. The severity of the issues grows with increasing 
violation of i.i.d.-ness. 
Therefore, we use a technique called Walk-Forward Testing, (see p. 548 in Kirkpatrick et al., 2013), 
which is commonly used for back testing algorithms when dealing with time series data as it arises, 
for instance, in the financial industries. Back testing of models is also frequent in other disciplines 
that are concerned with forecasts like meteorology and climatology but are referred to as 
hindcasting. Models are conditioned to historical data available at an initial moment in time where 
data of sufficient quality is available, then a forecast is created over a specific time interval, after 
which the model is reconditioned, and the procedure repeated. The quality of the model is assessed 
over the forecasting periods that have not been used to train the model. Depending on the actual 
application and the availability of the data the forecasting periods after which the models are 
updated can differ from hours (meteorology) to years or even decades (climatology). The 
methodology of walk forward evaluation honours the time series nature of the data, such that no 
data in the test set is younger than any data point in the training set. Note that this would not be 
true for ordinary k-fold cross-validation or conventional bootstrap resampling schemes. 
Let  � > 0 be the number of data points in our data set. We denote the data point at time instance  Y and location z by �"< = (f"< , c"<), where f"< ∈ ℝ! are the m-covariate values that are available 
at time instance Y and location z and c"< is the forecasting target at time instance Y and location z  
(e.g., the earthquake rate or count). Without loss of generality, we assume that all categorical 
variables have been appropriately encoded as real numbers. Let k ≥ 0 be the minimal number of 
samples that are required to train the (machine learning) model. Furthermore, let 1 ≤ l ≤n be the 
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forecast step size, i.e., the number of forecasts generated before the model is updated. Then, the 
Walk-Forward Testing approach works as follows (in pseudo code) for a given model i:  

1. Let Y = _  
2. Let c = number of cells in the grid 
3. Train model i on (�3,…,�"), such that i(f[<) ≈ c[  for 1 ≤ j ≤i for all c 
4. Let &"D3=i(f[D3), …, &"D3Dj = i(f[D3Dj) be the forecast of the model trained in step 

2 for every c.  
5. While  Y ≤ n−1− k  let Y = Y + k  for all c and go to 2.  

 
An illustration of the approach is contained in the figure below. Each �^ block represents the data 
for all grid cells c available at time Y. 
 

 

Figure 28: Diagram showing the step-ahead resampling approach. Each l� block represents the 

data for all grid cells available at time i. 

 
 

After the walk forward algorithm has terminated, we have a vector of forecasts for time instances _ + m to �, namely &^DQ to &#. Those, paired with the true values c^DQ  c# can now be used to 
evaluate the performance of the algorithm i using one of the error metrics. We note that this 
approach implicitly assumes that models that perform better than others on short term (1 to 3 
months) forecasts also do so on longer term forecasts. In theory long term (1 to 5 years) forecasts 
could be used for relative model performance evaluation, however, as uncertainty increases with 
time, longer-term forecasts are in general more difficult to differentiate from each other. Using 
short term relative forecast differences increases the differentiative power.  

    

6.2. Model comparison for hypothesis testing  

Model comparison is a key part of this study as it is at this stage that we strive to statistically quantify 
whether the machine learning models generated can beat the baselines that have been put in place 
as well as potentially comparing competing machine learning models should that be the case. This 
should be done in a way which is both able to rank models in terms of their performance and also 
to identify if one model is significantly better than another. 

 

The error metrics are 

computed out of 

sample on c = (c^D3, … , c#) and & = (&^D3, … , &#) 
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Error metrics and standard error 

In this study, we use several error metrics that allow us to evaluate model performance and compare 
it. The table below shows the three main error metrics which were also used in the event rate 
report. Later in this chapter, we will introduce an additional error metric L(ℳ|r) representing the 
likelihood of model ℳ  given data r for spacetime evaluation and comparison using a likelihood 
ratio approach. In the table below let k be the minimum number of training points. 

 

Table 19: Standard Performance metrics 

Err. Metric Formula Properties 

MAE 

1� − _ b scY,P − &Y,Ps�
Y=_+1  

• The result is in the unit of the 
original data 

• Uniform weighting of differences, 
thus less sensitive to outliers 

RMSLE t 1� − _ b Jlog Jc",< + 1K − log7&",< + 1:K�#
"d^D3  

• If c",< is large, deviations from &" 
have less weight than if c",< is 
small . 

• Commonly used for count data 
• Applicable to &",< ≥ −1 and c",< ≥ −1  

MPL 

(Mean Poisson 

Loss) 

1� − _ b 7&",< − log7&",<: c",< + log7c",<!::#
"d^D3  

• Error metric specific to count data 
• Hard to compute in FP-arithmetic 

for large values of c",< if 
implemented naively 

• Special handling for the case &",< =0 required 

 

The formulas in Table 19, will lead to an error per location (cell) at a given time interval, we then 
take the individual errors per cell and aggregate them temporally to get one average value of the 
error at the given time interval. And further take the average over all time intervals to get one 
value for the average performance of the model. 

Furthermore, only having computed the values of the individual error functions for each 
experiment is not sufficient to assess if one method is significantly better than an alternative 
method with respect to a certain confidence level. For this reason, we also need to estimate the 
standard deviation/standard error that is associated with each error measure. While explicit 
formulas are available for some error measures like the MAE, we chose a general approach, that 
can be applied to most computable error measure to assess the standard error (SE) that is associated 
with it.  To estimate the standard deviation of an error measure m, we make use of a technique 
called Jackknife resampling. The Jackknife estimate of variance is consistent for sample means and 
correlation coefficients, which covers the error metrics mentioned in Table 19, which are used in 
this study. Further details and references are contained for instance in (Efron and Stein, 1981). 

Let c ∈ ℝ# and & ∈ ℝ# again denote the true and forecasted values and let y be an error measure 
that takes the observed and the predicted EQ rate as inputs. Here  y refers to the formulas 
introduced in Table 19. Let us further denote by c4" ∈ ℝ#43 and &4" ∈ ℝ#43, respectively c and & from which the Y-th entry has been removed. I.e. c4" = (c3, c�, … , c"43, c"D3 … , c#) and  &4" (&3, &�, … , &"43, &"D3 … , &#). Furthermore, c and & here represent vectors where the data has 
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been temporally aggregated such that the spatial data is aggregated over each time point or 
alternatively they represent the vector of all space-time observations. And where k is the minimum 
numbers of points after which the forecasts start. Then the standard error that is associated with y (error measure) for a given instance of c and & is defined as ez! which the standard error of 
error measure y(c, &). 

ez! = {� − 1 − _� − _ b |y(c4", &4") − b y7c4[, &4[:� − _#
[d^D3 }�#

"d^D3 . 
In the presence of significant auto-correlation in the series y(c, &) correlation correction needs to 
be applied to avoid underestimating uncertainties. Assuming stationarity, the adjusted formula to 
estimate the standard error is then given by 

ez! = {1 + N 1 − N � − 1 − _� − _ b |y(c4", &4") − b y7c4[, &4[:� − _#
[d^D3 }�#

"d^D3 , 
where N is an estimate of the auto-correlation coefficient obtained for instance via the Praise 
Winsten estimation procedure, see Bence (1995). For mean-based error measures, this corresponds 
to the usual correlation adjustment of the sample error. 
 
The use of the jackknife resampling to estimate the SE of the previously presented error metrics is 
first done at across space and time. The sample size is, therefore, s = b x d observations, where b 
is the number of time points (intervals) and d is the number of XY locations However we recognize 
that this can be problematic since locations are likely not independent from each other. Hence we 
estimate the SE in the case where the data is first temporally aggregated such that the value of 
individual cells are aggregated over the same time interval in which case the sample size is b, this 
is then directly comparable to what was done in the previous report (Limbeck et al., 2018). We 
note that we use and report the SE as calculated in the case where the data has been first temporally 
aggregated which avoids the issue of location points not being independent from each other. 

Likelihood Ratio estimation 

As an extension to the MAE, RMSLE and Mean Poisson Loss metrics we propose a method which 
takes inspiration from the R-test as outlined in Schorlemmer et al. (2007). The basis of this test is 
the widely used likelihood ratio which is defined as, 

 R(ℳj, ℳ�|�)  = L(ℳ"|�)L(ℳ�|�). 
 

Where L(ℳ|�) is the predictive likelihood of a given model ℳ given the target value � ∈ ℝ� and 
where ℳ is a model that makes one step ahead forecasts of the earthquake rate as described in 
section 6.1.  Here L(ℳ|�) can be seen as an additional performance metric together with the 
MAE, RMSLE and Mean Poisson Loss. In our case, we choose to use the Poisson likelihood with 
rate parameter given by the prediction of model ℳ. To ensure models are evaluated on their 
forecasting performance, c contains the recorded count data from a hold-out set as outlined 
previously in the walk-forward forecast scheme. A value of greater than 1 indicates that the 
proposed model, ℳj is performing better than the baseline model, ℳ�. This can equivalently be 
written as a difference of log likelihoods, 
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 �(ℳj , ℳ�|�)  = ℓ(ℳj|�) −  ℓ(ℳ�|�). 
 

For our application the likelihood function we use is the Poisson likelihood such that,  ℓ(ℳj|c) =  b c",< k�OJ&",<(j)K − &",<(j) − k�O7c",<!:",< . 
Where &",<(j) ∈ ℝ# denotes the prediction of c",< given by model ℳj . 
In classical statistics, this ratio is often assumed to have a chi-squared distribution however this 
assumes the models are nested and the number of degrees of freedom is known. These 
assumptions are not applicable to many of the models we are considering. Schorlemmer et al. 
(2007) judge the significance of the ratio by simulating earthquake catalogues from both models 
being considered and recalculating the ratio on this simulated data. This process is repeated many 
times and significance is judged by calculating the proportion of the simulated rations which fall 
below 1 or zero in the case of the log ratio. There has been some criticism of this method (see 
Gerstenberger et al., 2009; Rhoades et al., 2011; Bray and Schoenberg, 2013). Part of this criticism 
centres on the inconsistency of using two different simulation models which can mean a different 
model is favoured if the proposed model and baseline are switched. A further criticism is targeted 
at the underlying assumption that the proposed model is a sensible (essentially a good model) which 
is not necessarily the case. 

 

Simulation Model  

We aim to address the issues highlighted previously by introducing a simulation model ℳG. From 
this model, we repeatedly simulate new earthquake counts, �� , and evaluate the log ratio, �(ℳj, ℳ�|��), we then calculate the proportion of these simulations which are less than 0. Clearly 
the choice of ℳG is important as this method will favour models which are most similar to ℳG. 
Ideally ℳG should be the true earthquake generating model, since this is unknown we aim to choose 
a model which closely matches the observed events. We note that when estimating the simulation 
model, we can make use of all available data as we are not interested in evaluating the forecasting 
power of this model. For the same reason, we can allow the model to be unphysical as we will not 
be using it to make any predictions or extrapolations, we simply need it to accurately represent the 
natural variation in earthquake counts. The simulation model we choose is a Poisson process such 
that the simulated count at time point i and location z = (x,y), follows a Poisson distribution with 
rate parameter �",<. This rate is estimated by fitting a GAM of the form,  log(�",<)  =  s3(i)  + s�(z). 
Where s3(i) and  s�(z) are smoothly varying spline functions. We chose this model as it is different 
from any of the proposed machine learning models, and so should not unfairly favour any model 
class. The spline function is also flexible enough to closely match the spatial and temporal 
variations in the observed rate.  

 
This model is fitted using the gam function from the mgcv package in R which uses the following 
algorithm We first define the general log likelihood of the model as, ℓ(�",<, O3,O�, . . . , O�) = log[f(X|�",<, O3,O�, . . . , O�)], 
where �"< are the rate parameters and {O! }, is a set of smooth functions, in our case the spatial 
and temporal spline functions. These functions can in tern be defined by a set of basis functions, �"[(f) and coefficients, β"[ such that, 
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 O"(f) = b β"[�"[(f).[  

The coefficients are estimated by maximising a penalised likelihood function,  

�� = `�Omax� �k(�) − 12 b �!��e!��
! � . 

Here e! is a matrix of fixed coefficients and {�!} is a set of smoothing parameters which control 
the smoothness of the spline function. These parameters are themselves estimated using the 
marginal log likelihood, ν(ω) = log � i(�|�)i�(�)��. 
In practice, this is replaced with a Laplace approximation. Full details of the fitting scheme and 
smoothness estimation can be found in (Wood et al., 2016). 

Figure 29 and Figure 30 show the spatial and temporal forms of this model using 1000 simulated 
catalogues for which the mean count and 95% quantiles are calculated. These are aggregated over 
either time or space. Looking at these plots, we see visually that the model appears to give a close 
match to the spatial and temporal pattern of the earthquake occurrences. In the spatial plot, most 
of the real counts fall within the expected quantiles, although there are a few points higher than 
expected in the temporal plots, most notably February 2013. These points do appear to be 
unexpected outliers as the simulated mean appears to match the changes in the mean of the true 
counts.  
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Figure 29: Spatial plots of earthquake counts aggregated through time. Moving clockwise from the 

top left, the plots show the recorded earthquake counts for M≥1.2, the mean count of 1000 

simulations from 	
, the 97.5% quantile of the simulated counts and the 2.5% quantile of the 

simulated counts. The gradient from white to red depicts the range of 0 – 10.  
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Figure 30: Time series of Earthquake Counts aggregated across the Groningen gas field. The black 

line shows the recorded counts; the solid red line shows the mean count of 1000 simulations from 	
, the dashed red lines show the 97.5% and 2.5% quantiles of the simulated counts. 

 

Using Likelihood Ratio and simulation model for model evaluation  

In general, we would need to perform a simulation to calculate the percentage of log ratios which 
are above zero. In our case, the likelihood function we choose is the Poisson likelihood, as this is 
able to deal effectively with count data especially count data with a mean close to zero. We also 
draw our simulations from a Poisson distribution. Given these choices, we can find an analytical 
formula for the expected value and variance of �(ℳ", ℳ�|��) which allows us to bypass having to 
actually perform the simulations. These are given by, 

 E[�(ℳj , ℳ�|c¡)]  =  b ¢�",< £k�OJ&",<(j) −  &",<(�)K¤ − &",<(j) + &",<(�)¥"< . 
var[�(ℳj, ℳ�|c¡)] = b ¨�",< £k�OJ&",<(j) −  &",<(�)K¤�© .",<  

Where �"< is the rate parameter used for the simulation model and &"<(j) and &"<(�) are the rates 
predicted by models ℳj and ℳ�. A derivation of these results can be found in Appendix I. If we 
then assume that, due to the central limit theorem, �(ℳj , ℳ�|c¡) is Normally distributed we can 
directly calculate the proportion of simulated log rations which are below zero as, 

 p = 1 − Φ ¬ E[�(ℳj, ℳ�|�¡)]­var[�(ℳj , ℳ�|�¡)]®. 
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Where Φ(. ) is the standard Normal CDF. We feel this assumption is valid as we are dealing with 
a large number of grid points and so the sum in the expression for �(ℳj , ℳ�|c¡)  will contain a 
large number of terms. We then interpret this value as the p-value for the hypothesis test with the 
following null and alternative hypotheses, 

• H0: The model performance is identical, E[�(ℳj , ℳ�|�)] = 0. 
• H1: Model ℳ" is performing better than the baseline, E[�(ℳj , ℳ�|�)] > 0. 

 

A value of < 0 would indicate that the model ℳj   is not performing better than the model ℳ� 
(the baseline). 

 

6.3. Forecast uncertainty quantification  

By default, our forecasts are one-time interval ahead. Consequently, the uncertainty estimates in 
the form of standard errors are by default only applicable for one-time interval ahead – i.e., not 
multiple time intervals ahead as required for long term seismicity forecasting. Given the non-
parametric nature of most of our algorithms there is no analytical derivation from which we can 
obtain longer term uncertainty estimates, so we proceed to obtain such estimates using an empirical 
approach. 

It is important to note that currently, we constrain the uncertainty quantification to be the 
aggregated uncertainty over all spatial points over a given time interval. This effectively means that 
currently, we do not estimate uncertainty at each spatial location but instead only at the level of the 
whole Groningen reservoir by aggregating the individual location cell values. A critical outcome of 
this is that the spatial variation that is present in the cells will be inherently encoded in the temporal 
aggregation at the reservoir level, making the confidence bands ostensibly larger than the ones 
presented in the temporal report. The difference with the previous approach being that we first 
estimate the errors at the cell level and then we aggregate these values in time rather than 
aggregating first and then estimating the error. We believe that in this way we are accounting for 
the spatial variability that is present in the forecasts while still being able to make use of the same 
code functionality as in Limbeck et al. (2018). 

Let ℎ > 0 be the number of time intervals points the historical data set, let k ≥ 1 be the forecast 
step size (i.e., the number of forecasts that are generated before the model is retrained) and let _ 
be the minimum number time interval points used for training the model. Furthermore, we denote 

the forecasts of a walk forward run with forecast step size k by &"(j) where the forecast has been 
temporally aggregated over all locations at given time interval Y for values of Y ∈ {_ + 1, … , ℎ}. 

The associated forecasting errors are denoted by °"(j) = y7c", &"j: for a pointwise error measure y and c" the true value at time interval Y aggregated over all locations at given time interval Y for 
values of Y ∈ {_ + 1, … , ℎ}. Since these estimates are all highly dependent on Y, we are stabilizing 
the results by estimating the forecast uncertainty � time intervals ahead °̅(>) as the 10th/90th 

percentiles of the set of all °"(j) for which the time interval between (re)-training the model and the 

actual forecast is equal to �. To obtain the required °"(j) the calculations are performed in a block-
wise fashion for increasing forecast window sizes.  

To quantify, e.g., the uncertainty °"(²) of forecasting five steps ahead: 

• We generate walk-forward runs calculating iteratively: 

o Five steps forward °"(²) for values of Y ∈ {6, … , ℎ}; 



 - 60 -  

 

o Six steps forward °"(³) for values of  Y ∈ {7, … , ℎ}; 

o Seven steps forward °"(µ) for values of Y ∈ {8, … , ℎ}; 
o etc. 

• From these runs we select: 

o °^D²(²) , °^D3�(²) , °^D3²(²) , … 

o °^D²(³) , °^D33(³) , °^D3µ(³) , … 

o °^D²(µ) , °^D3�(µ) , °^D3¶(µ) , … 
o etc. 

• The 10th/90th percentiles of the elements listed above are used to obtain °̅(²). 
An illustrative example with °̅(·)  is contained in Figure 31. 

 

Figure 31: Illustrative example of how the uncertainty estimate for forecasting three (3) steps ahead �̧(�) is derived from the 10th/90th percentiles of the set of all three step ahead forecasts.  

 

Due to the variance of the estimation for the forecast errors, the empirical estimates can violate 
our theoretical assertion of a smooth, monotonically increasing error function with time. In view 
of that, we implemented an isotonic regression to ensure a monotonically increasing error. The 
lower confidence interval is bounded by 0 since we only consider non-negative forecasting targets. 
An alternative approach that could be considered in a future iteration would be to use the estimated 
standard errors instead of the bootstrapped percentiles which potentially exhibit high variance 
proportional to 1 (&¹�m¹�ZYk¹_�¹�XYZ�)�⁄ . Due to the large number of experiments that are 
necessary we also note that obtaining empirical uncertainty estimates as described above is 
computationally demanding. The computational demand is also one of the reasons why we provide 
these confidence bands for the temporally aggregated case rather than for the individual grid cells, 
however and as mentioned above we do attempt to encode the additional source of variability 
brought forward by space by estimating the error metric m on a cell by cell basis and then 
aggregating these values per time interval. We do note however and highlight this in the limitations 
of this study that a more refined method might be necessary to estimate confidence bands in this 
way given the new spacetime setup. Moreover, having a longer time aggregation could help by 
stabilizing the confidence band estimation and reducing spatially induced variability.  
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7. Evaluation of Machine Learning-based Spatiotemporal Seismicity 
Forecasts  

Model performance in space and time is qualitatively and quantitatively analysed in this section, for 
a model with experiment parameters as defined in Table 20, comparing the machine learning 
models against the developed baselines using an alternative version of the R test (see section 6.2) 
and a simulation model. These models include the same extensions, i.e., convex hull analysis, 
ultimate state constraining and hold-out period training, as the temporal models described in 
section 2, and show approximately zero seismicity after the Groningen field has been shut in 
(Figure 32 and Table 21). The models are developed for four production forecasts which are based 
on different development scenarios: 

• Reference Case model, from the Winningsplan 2016 (Nederlandse Aardolie Maatschappij, 
2016c); 

• The average production scenario announced by the Ministry of Economic Affairs and Climate 
in March 2018 (Ministry of Economic Affairs and Climate Policy, 2018); 

• The production scenario for a warm winter, with lower than average production rates (Ministry 
of Economic Affairs and Climate Policy, 2018); 

• The production scenario for a cold winter, with higher than average production rates (Ministry 
of Economic Affairs and Climate Policy, 2018). 

Table 20: Experimental input parameters of selected experiments. 

Parameter Value 

Seismicity data used for period: 01-01-1995 – 31-12-2016 

01-01-1995 – 31-12-2012 

Aggregation period length 3 months 

Minimum magnitude 1.5 

Bandwidth of spatial smoothing  3500 m 

Time shifts None 

Ultimate states Yes 

Number of ultimate states repetitions  20 

 

 

Figure 32: Illustrative examples of the impact of constraining spatiotemporal models using 

ultimate states for the RF models forecasting from 2013 (left) and 2017 (right) to 2040. Note that 

the seismicity rate approximately approaches zero towards 2040, though it is not exactly zero. 
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Table 21: MAE error metrics for the RF and KSVM experiments without (left) and with (right) 

constraining of the models to an ultimate post-shut-in state. 

Without constraining With constraining 

RF (1995-2012) 0.0147 (±0.0015) RF (1995-2012)  0.0157 (±0.0018) 

SVM (1995-2012)  0.0161 (±0.0019) SVM (1995-2012) 0.0174 (±0.0019) 

 

7.1. Quantitative Evaluation using Likelihood Ratio: Forecast Performance  

The Log-Likelihood Ratio test as described in section 6.2 is used to compare the spatiotemporal 
performance of the ML models against the selected vertical strain thickness Moving Average (MA) 
baseline and against the simulation model described in section 6.2. The latter comparison is made 
for illustrative purposes to show which models best approach the simulation model although 
evidently, none of the models will beat the simulation model. However, their relative ranking 
against it might still provide useful information. The ultimate conditions mentioned in the previous 
section are implemented for all experiments discussed in the following sections. 

Comparison of ML models versus baseline  

The Random Forest and KSVM perform significantly better when space and time are considered 
than the selected baseline for the period 1995-2016 while only the Random Forest model performs 
significantly better than the vertical strain thickness MA on the 1995-2012 period. The other 
baseline, (Depletion Thickness MA) does not perform as well as the selected baseline which 
confirms that the comparison is made against the best of the two considered baselines. The “R 
VAL” indicates the value of the ratio, calculated using the observed earthquake counts, where 
higher positive numbers indicate better performance with respect to the baseline while negative 
values indicate that the performance is not as good as that of the baselines. The highest ratio values 
are for the Random Forest and KSVM 

 

Table 22: Model test results for period 1995-2017, “R VAL” shows the ratio value calculated using 

the observed counts. The columns “E[R]”, “VAR[R]” and “P-VALUE” are the expected value, 

variance, and p-value calculated using the formulas in Section 6.2. A higher positive R VAL in 

combination with a significant p-value represent models that perform better than the baseline 

model.  

MODEL R VAL E[R] VAR[R] P-VALUE 
Better 
then 

baseline? 

RF 110.8 97.5 282.0 3.2E-09 Y 

KSVM 32.1 38.4 254.0 8.1E-3 Y 

KNN -179. 7 -154.8 1489.1 1 N 

GLM Net -136.1 -126.1 377.0 1 N 

GLM Top -57.7 -57.7 141.4 1 N 

Depletion 
Thickness MA -44.1 -41.8 13.5 1 N 
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Table 23: Model test results for the time period 1995-2012, “R VAL” shows the ratio value A higher 

positive R VAL in combination with a significant p-value represent models that perform better than 

the baseline model 

MODEL R VAL E[R] VAR[R] P-VALUE 
Better 
then 

baseline? 

RF 90.5 71.0 237.4 2.0E-06 Y 

KSVM 16.7 10.8 212.9 2.3E-01 N 

KNN -152.1 -132.2 1208.2 1 N 

GLM Net -113.4 -103.3 311.3 1 N 

GLM Top -35.7 -40.9 108.7 1 N 

Depletion 
Thickness MA -32.1 -28.9 9.6 1 N 

 

Comparison of ML models versus simulation model 

As outlined in section 6, we have developed a single simulation model from which catalogues can 
be generated. This model uses all information to approximate the true earthquake generation model 
as closely as possible. The idea of using multiple catalogues is taken from the L-Test (CSEP, 2018) 
which is meant to account for the potential spatial uncertainty in the earthquake detection network 
as well as inherent uncertainty in the process itself. 

Table 24 and Table 25 show the results of the likelihood ratio comparison between the ML models 
and the described simulation model. Based on the likelihood ratio values in this table, none of the 
models perform better than the simulation model. This is naturally expected since to be better than 
the simulation model one would need to be able to (almost) perfectly forecast seismicity. However, 
one valuable take away is that the relative performance ranking of the ML models is consistent 
with previous results in the sense that the Random Forest is the best performing followed by the 
KSVM.  

 

Table 24: Model test results for the time period 1995-2016 for comparison with the simulation 

model. The “R VAL” shows the ratio value calculated using the observed counts, a negative value 

indicates that the model does not perform better than the simulation model, a value of 0 would 

mean that both perform equally well. “E[R]” is the expected value of the ratio and “VAR[R]” is 

the variance in the ratio. These are calculated using the formulas from Section 6.2. 

MODEL R VAL E[R] VAR[R] P-VALUE 
RF -74.9 -91.3 231.1 1 

KSVM -153.6 -150.5 430.4 1 
KNN -365.4 -343.6 1718.3 1 

GLM Net -321. 9 -315.0 1118.8 1 
GLM Top -243.5 -246.5 731.3 1 
Depletion 

Thickness MA -229.8 -230.6 568.6 1 
Strain Thickness 

MA -185.8 -188.8 462.5 1 
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Table 25: Model test results for the time period 1995-2012 for comparison with the simulation 

model. The “R VAL” shows the ratio value calculated using the observed counts; a negative value 

indicates that the model does not perform better than the simulation model, a value of 0 would 

mean that both perform equally well. “E[R]” is the expected value of the ratio and “VAR[R]” is 

the variance in the ratio. These are calculated using the formulas from Section 6.2. 

MODEL R VAL E[R] VAR[R] P-VALUE 
RF -54.9 -62.4 160.7 1 

KSVM -128.7 -122.5 366.5 1 
KNN -297.5 -265.5 1397.1 1 

GLM Net -258.8 -236.6 868.9 1 
GLM Top -181.1 -174.3 528.6 1 

Depletion Start -177.5 -162.2 429.3 1 
Depletion MA -145.4 -133.4 350.8 1 

 

Performance on the validation period 2013-2017 

We have also evaluated the period between 2013 and 2017 using the likelihood ratio test introduced 
in the previous section by comparing the performance of the ML models against the vertical strain 
thickness MA baseline. The Random Forest and KSVM beat this baseline over this validation 
period, but we do note that the ratio value is much lower than the ratio value for the periods 1995-
2017 (Table 22) or 1995-2012 (Table 23). This perhaps highlights that this particular time interval 
(2013-2017) is one where the ML models forecast accuracy is penalized by the change in trend as 
it has already been hypothesized in the event rate report (Limbeck et al., 2018). 

 

Table 26: Model test results for the validation period 2013-2017 for comparison with the Strain 

Thickness MA baseline. The “R VAL” shows the ratio value calculated using the observed counts; 

a positive value indicates that the model performs better than the baseline, a value of 0 would mean 

that both perform equally well. “E[R]” is the expected value of the ratio and “VAR[R]” is the 

variance in the ratio. These are calculated using the formulas from Section 6.2. 

MODEL R VAL E[R] VAR[R] P-VALUE 
Better 
then 

baseline? 

RF 19.0 27.7 43.0 1.18E-05 Y 

KSVM 15.3 27.4 41.7 1.07E-05 Y 

KNN -27.6 -22.6 280.9 0.911 N 

GLM Net -22.7 -22.9 65.7 0.998 N 

GLM Top -15.9 -16.9 30.4 0.999 N 

Depletion 
Thickness 

MA 
-12.0 -12.9 3.9 1 N 
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Error Metric Comparison 

As can be seen from Table 27, the RF and KSVM models achieve the lowest errors across all error 
metrics. However, the RF model does not have a significantly lower mean Poisson loss error 
compared with the Strain Thickness model.  

It is worthwhile to note that the scale of the error metrics here differs from what has been 
previously shown, in that the values in the table below represent the metrics estimated on a cell-
by-cell basis and then averaged. The values in Table 9 in chapter 2 of this report, for example, show 
the error metrics calculated over the whole study region (temporally aggregated), and hence the 
value of the MAE is nominally larger and is therefore on a different scale. 

In order to make a direct comparison between Table 27 and Table 9 one would need to either 
divide the values of Table 9 by the number of grid cells (556 in our case with a 1500 m resolution 
grid) or multiply the values in Table 27 below by the number of grid cells (556) to bring the MAE 
to the value of the whole reservoir. 

 

Table 27: Mean Average Error (MAE), Root Mean Squared Logarithmic Error (RMSLE) and Mean 

Poisson loss error metrics on a cell by cell basis for each model together with the respective 

standard deviations for the period 1995-2017. The standard errors are calculated based on the 

Jackknife resampling method, as described in section 6. 

  MAE MAE SE RMSLE 
RMSLE 

SE 
Mean 

Poisson loss 
Mean Poisson 

loss SE 

RF 5.1E-05 4.0E-07 10.7E-05  4.0E-07 2.48E-02 1.4E-03 

KSVM 5.1E-05 4.1E-07 11.0E-05  4.1E-07 2.63E-02 1.5E-03 

KNN 5.5E-05 4.7E-07 12.4E-05 4.7E-07 3.41E-02 2.3E-03 

GLM Net 5.5E-05 4.7E-07 12.3E-05  4.77E-07 2.93E-02 1.8E-03 

GLM Top 5.8E-05 4.4E-07 11.8E-05  4.4E-07 2.79E-02 1.6E-03 
Depletion 

Thick 
6.4E-05 4.1E-07 11.6E-05  4.1E-07 2.76E-02 1.5E-03 

Strain 
Thick 

6.1E-05 4.1E-07 11.3E-05 4.1E-07 2.68E-02 1.4E-03 

 

7.2. Evaluation of Event Rate Forecasts 

Aggregated temporal performance training and testing period 

Spatial aggregation of the spatiotemporal model forecasts yields an earthquake rate that is similar 
to the temporal-only model on the historical step-forward training and testing period, as illustrated 
for the post-March 2018 Average production scenario for the KSVM model (Figure 33). The 
spatiotemporal model shows a declining trend in earthquake rate for the future period up to 2025.  
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Figure 33: Illustrative example of a qualitative comparison of the temporal-only model forecasts 

(orange) with the spatially aggregated spatiotemporal model forecasts (red) and the historical data 

(dotted blue). The vertical dotted-dashed line is on December 31st, 2016, marking the end of the 

dataset used for training and testing the models. Left of the vertical line the algorithm is retrained 

after every forecast, right of the vertical line no retraining is done. The forecasts shown are for the 

post-March 2018 production scenario for the KSVM model with MoReS-based constraints based 

on 3-month aggregation periods with a 3500 m bandwidth for spatial smoothing over a 1500 m 

resolution grid.  

 

Based on the variable importance of the spatiotemporal experiments, the similarity between the 
temporal-only models and the spatially aggregated spatiotemporal models is to be expected as the 
importance of the temporal features is consistently higher than that of the spatial features (Figure 
34). Furthermore, the spatially aggregated performance of individual cells aggregated to the entire 
field should be comparable to the overall earthquake rates for the entire field.  

The small differences we do observe are likely related to differences in the temporal feature 
selection between the temporal and spatiotemporal models: The spatiotemporal models consider 
pressure and compaction-related features for the individual cells, with only field-wide average 
production rates, whereas the temporal models consider additional features such as production, 
subsidence, and hydrocarbon column thickness.  
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Figure 34: Variable importance for the spatiotemporal model shows that the relative importance of 

all dynamic features is higher than that of the spatial features.  

 

Performance on the validation period 2013-2016 

To assess long-term (1-5 years) model performance, we compare the forecasts against a fully hold-
out set of events. These are events that have not been used for either training or testing during 
model development. to the hold-out set comprises events from the period between 1 January 2013 
and 31 December 2016, which yields four years of recorded events against which forecasts can be 
compared. This period saw a stark change in production which lead to a decrease in seismicity, 
hence one further objective is to investigate whether the models can effectively capture this change 
in the seismic trend. 

 

As shown in Figure 35, the KSVM model captures a downward trend over the 2013-2017 period. 
Furthermore, in terms of total (cumulative) seismicity forecasted over this period, the models 
forecast values that are within one standard deviation of the true value. Over the 2013-2017 period 
76 earthquakes of magnitude 1.5 or higher where recorded. the KSVM (shown) forecasts 66 events 
(±100%).  
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Figure 35: Illustrative example of a qualitative comparison of the temporal-only model forecasts 

(light orange) with the spatially aggregated spatiotemporal model forecasts (red) and the historical 

data (dotted blue). The validation period 2013-2016 is indicated by the blue box.   

 

Performance of the models is comparable with only minor deviations. This is a further 
demonstration that machine learning models work best when they can be updated as new 
information comes in. The fact that the ML model can pick up on the change in trend - despite 
the fact that during the entire training period seismicity had an upward trend - offers support to 
the idea that the model is able to capture information about the underlying process. 

Temporal forecasts for various production scenarios 

Comparing the forecasts of different production scenarios for the forecasting period up to 2025, 
the post-March 2018 Average production scenario shows a declining seismicity event rate whereas 
the Winningsplan 2016 scenario shows a relatively steady rate (Figure 36). The relatively constant 
pressure decline of the Winningsplan 2016 scenario is consistent with the constant decrease in 
pressure over time for that scenario, compared to a decrease in depletion rate for the post-March 
2018 scenario (Figure 37). 
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Figure 36: Illustrative example of seismicity event rate forecasts for the post-March 2018 Average 

(top) and the Winningsplan 2016 default (bottom) production scenario. Forecasts shown are for the 

same experimental setup as in Figure 33. 
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Figure 37: Average reservoir pressure in the entire Groningen field as a function of time for the 

post-March 2018 and Winningsplan 2016 scenarios shows a constant pressure decrease for the 

Winningsplan scenario versus a decreasing pressure decrease in the post-March 2018 scenario.  

 

7.3. Evaluation of Spatiotemporal Performance 

Here we show the results for the full spatiotemporal evolution of seismicity, first for the training 
and testing period, then for the validation period and subsequently for the two different production 
scenarios. 

Spatiotemporal performance training and testing period 

In general, the spatial distribution of forecasted earthquake rates shows a pattern similar to the true 
distribution of earthquakes. Figure 38 compares the forecasts of different models to the actual 
(spatially smoothed) events. Appendix D illustrates the number of earthquakes in each cell before 
smoothing, while Appendix E shows the number of earthquakes in each cell after smoothing. 
Qualitatively, the Random Forest and KSVM models make spatially more accurate forecasts 
compared to the depletion thickness MA and vertical strain thickness MA models by capturing the 
general area of activity more closely.  
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Figure 38: Model predictions (right) compared with the observed event rates(left) for the post 

March 2018 scenario. The colour range represents the cumulative earthquake rate per year. The 

full table including forecasts for all models between 2007 – 2016 is in Appendix F. 

Illustrative example 



 - 72 -  

 

 

 

Figure 39:  Example of forecasts of the spatial distribution of the daily earthquake rate (post March 

2018 scenario, KSVM model) per 3-month time interval, from 1st of January 2013 (top left) to 31 

December 2025 (bottom right). 

 

Figure 39 above shows an illustrative example of the spatial density plots over time representing 
the forecasts for the KSVM model for the period 2013-2025. The model visually shows a decline 
in seismic density across the field over time, which matches the aggregated temporal performance 
plot in Figure 33 in terms of a declining rate over time for the post March 2018 scenario.  

Moreover, to investigate some of the high level spatial differences between models, k-means 
clustering was used to divide the forecasts into five blocks based on grid coordinates (Figure 40). 
Although this division does not have a physics-based rationale, it can help to analyse performance 
differences between different parts of the field. The cumulative seismicity forecasts for various ML 
models and Depletion MA baselines are shown in Figure 41.  

 

 

Illustrative example 
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Figure 40 Spatial locations of blocks which are used to compare models' performance in different 

regions of the Groningen field. 

 

Figure 41: Cumulative number of earthquakes as predicted by the models (red line) and as in 

historical data (blue line). Numbers on the right side of the plot illustrate the number of blocks. 

Inset on the right shows the spatial distribution of the blocks 1-5. 

 

We discuss in more detail the results of blocks in Centre West and South East, as the cumulative 
errors in these blocks are relatively large compared to the other blocks. As can be seen from Table 
28, the Centre West block has had the most earthquakes throughout 1995 – 2016. In this block, all 
models underestimate the number of earthquakes, but the Random Forest model is closest to 
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forecasting the actual number of earthquakes (88 out of 104 earthquakes; Table 28). However, all 
the evaluated models systematically underestimate the actual number of earthquakes in this block. 
The South East block has had the least earthquakes throughout 1995-2016. Furthermore, the 
underestimation of seismicity rate in the Centre West block and overestimation in the South East 
block might be the effect of patterns learned over the whole reservoir that do not translate 
appropriately to the discussed spatial area due to lack of spatial differentiation. New spatially 
dependent features that further differentiate spatial areas of the reservoir could be the key to 
improved spatial accuracy.  

 

Table 28: Number of cumulative forecasted earthquakes for each model and per block. See 

Appendix G for additional results and a bar chart showing the number of earthquakes in each block 

for every year. 

Region Observed RF KSVM 
GLM 
Top 

Depletion 
Thick 

Strain 
Thick 

North 31 35 31 41 56 44  
Centre West 104 88 60 40 60 61  
Centre East 51 48 34 33 54 57  
South East 8 9 15 21 31 35  
South West 58 50 37 34 55 60 

All 252 230 177 168 257 257 

 

The table above shows that the number of events per block is significantly different, especially 
between the Centre West and Centre East blocks since the Central West block has more than 10 
times the number of events than the Central East block. All models predict the highest number of 
earthquakes in the Centre West block and the lowest number of earthquakes in the Centre East 
block. However, as also can be seen from Figure 41, the RF model predicts the number of 
earthquakes most accurately in both blocks.  

 

Spatiotemporal performance validation period 

Figure 42 and Figure 43 show the model forecasts for the 2013-2017 period during training and 
testing and during the 5-year forecasts in the hold-out set. From a qualitative point of view, there 
are few differences between forecasts for the 2013-2017 period during training and testing and 
during the 5-year forecasts in the hold-out set. For the KSVM model, most importantly, it can 
capture the decline in seismicity rate over this period both when training and testing on short term 
forecasts (3 months) as well as when forecasting on the long term (5 years). Interestingly, even 
though RF, KSVM (only KSVM shown in this case) and the baselines (Depletion and Strain 
thickness MA) capture the decline in seismicity over this period, they do show spatial differences 
in their forecasted seismic rate. The KSVM model forecasts declining seismicity with activity mainly 
in the north-centre of the reservoir, moving slightly south over time while the baselines forecast 
seismicity mainly in the centre and moving towards the south of the reservoir. 
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Figure 42: The KSVM model short term (3 months) forecast for the training/testing period 2013-

2017 (Right) versus forecasts between 2013-2017 at 3-month intervals for the 5-year hold-out set 

forecast for the KSVM model trained/tested up to 2013 (Left) 

 

 
 

 

Figure 43: The Depletion Thickness (above) and Strain thickness (below) MA models short term 

(3-month) forecast for the training/testing period 2013-2017 (Right) versus 5-year hold-out set 

forecasts between 2013-2017 at 3-month intervals (Left)  

 

Illustrative example 

Illustrative example 
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Spatiotemporal forecasts for various production scenarios 

The KSVM forecasts a declining trend in seismic activity for the post-March 2018 (Figure 44). This 
is in line with expectations since production under this scenario is scheduled to decline up to 2030 
when the field will be shut-in. In sharp contrast is the forecast for the Winningsplan 2016 which 
assumed sustained production and for which the model density plots show a slightly higher density 
in seismic activity over time.  

The qualitative assessment above indicates that the selected ML model can capture differences 
between these two production scenarios and produce forecasts that are broadly in agreement with 
expectations, i.e., a scenario with declining production such as the post-March-2018 seismicity is 
expected to decline while a sustained production scenario such as the Winningsplan 2016 seismicity 
is expected to continue at a similar rate. 

 

 

Figure 44: post March 2018 scenario forecasts (Left) versus Winningsplan 2016 scenario forecasts 

(right) for the KSVM model for min magnitude 1.5 for the period 2017-2025. 

 

Illustrative example 
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8. Conclusions & Recommendations 

8.1. Conclusions 

The aims of this study are to address the recommendations derived from the findings of Limbeck 
et al. (2018) and to extend their temporal analysis to a spatiotemporal machine learning approach 
that forecasts for each location in the field the seismicity rate.  

The recommendations from Limbeck et al. (2018) relate predominantly to addressing a lack of 
strongly decreasing seismicity after the Groningen reservoir has been shut-in. We address this by 
constraining the models to a post shut-in steady state with zero seismicity rate, where all first and 
second derivatives of time-dependent input features are set to zero and where a range of absolute 
reservoir pressures is derived from multiple scenarios of the reservoir engineering flow model. As 
these pressure values are model-driven and not calibrated to data, we performed a sensitivity 
analysis on the pressure values showing that the ML models are insensitive to pressure values 
within the investigated pressure range. The information provided by the ultimate state data leads 
to forecasts that converge to an approximately zero seismicity event rate after the field has been 
long shut in. With these additions, the model performance, expressed in MAE, RMSLE and Mean 
Poisson Loss error metrics and Wilcoxon significance tests on the out-of-sample test set, has not 
changed significantly, based on our error metrics, when compared to the temporal models from 
Limbeck et al. (2018) that had not been taught the model-based post shut-in steady state constrains.  

Second, the revised temporal model has been extended to a spatiotemporal model. The temporally 
aggregated performance of these spatiotemporal models is comparable to the performance of 
purely temporal models in the event rate report (Limbeck et al., 2018), which indicates that the 
addition of spatial dimension to the forecasts can be done without significant loss of temporal 
performance. Time-dependent features, such as reservoir pressure and compaction, continue to 
mostly drive model performance. The most significant spatial features appear to be the topographic 
gradient of the reservoir, reservoir thickness variations along the major faults and compressibility, 
which are features that from the view of the physical Coulomb strain model are likely to impact 
seismicity.  

The spatiotemporal ML models are observed to capture spatial information to some degree, i.e., 
the models forecast the highest seismicity in the Loppersum area and the lowest seismicity in the 
south and towards the edges of the field, specifically in the southeast corner of the field. However, 
although there is a relative match in trends, the models systematically underestimate seismicity, 
meaning that extreme values in seismicity rates are not easily captured given the information and 
models available at this moment. This can be in part attributed to the ML model tendency to 
forecast towards to mean in the absence of clearly differentiated patterns and considerable 
uncertainty as is the case in this study. Note that similar under/over estimation patterns were 
already present in the previous event rate study. 

Based on the analysed error metrics and especially on the results of the likelihood ratio comparison, 
the Random Forest model shows the best performance among the tested models, followed by 
KSVM. These two ML models significantly outperform the selected baselines which are based on 
a moving average of the depletion thickness and vertical strain thickness, for the study period 1995-
2016. 

Moreover, the results in section 7 of this report regarding the comparison between the post March 
2018 and the Winningsplan 2016 scenario show that the ML models behave in both the temporal 
and spacetime setting according to physical expectations, meaning that the models forecast 
declining seismicity for the post March 2018 scenario under declining production conditions and 
a stable (slightly increasing) seismicity rate for the Winningsplan 2016 scenario which does not 
incorporate significant production cuts. 
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Finally, the ML models can capture the change in seismicity trend in the period 2013-2016 by 
forecasting a decrease in rate when compared against the hold-out set. However, we do 
acknowledge that the models struggle to capture the vertical spread and systematically 
underestimate the seismicity rate both in training and forecasting. These effects are similar in both 
the temporal and spatiotemporal models.  

 

8.2. Limitations  

These conclusions are subject to the following main limitations and potential improvement 
opportunities of the current methodology: 

• The model accuracy and forecasting power remain limited by the small training dataset. 
The limitations of the small dataset are amplified in the out-of-sample-validation tests, 
which only have 192 events compared to the 268 events in the period up to 2016. This 
limitation can be addressed by extending the hold-out set to include data beyond 2016.  

• Given a different production scenario where the ultimate pressure does not fall within the 
pressure range used in this study, the pipeline needs to be adjusted.  

• Part of the spatiotemporal input data and the ultimate state points to which the ML models 
are constrained are themselves based on reservoir flow history matches and forecasts. 
Consequently, these points and thereby the long-term convergence of many ML models is 
only as accurate as the ultimate points themselves. 

• Given the non-parametric nature of most of the ML algorithms, there is no analytical 
derivation from which to obtain longer-term uncertainty quantification. The conservative 
empirical approach from Limbeck et al. (2018) might be computationally too intensive and 
subjected to large variations in a spacetime setting. Especially if the assessment is done at 
the individual cell level, variations from one cell to another can be much larger than 
variations from one aggregated time period to the next which could make the confidence 
bands too large to be of any real use. Therefore, the temporal confidence band calculation 
method was not applied to the spatiotemporal approach. 

 

8.3. Recommendations 

• Investigate the alternative of forecasting cumulative counts instead of earthquake rate. This 
could help mitigate the perception that a steady pressure value would also lead to a steady 
seismicity rate. 

• Include shear strain thickness, derived from topographic gradients, as a baseline instead of 
compaction, as shear strain thickness shows a better correlation to seismicity.  

• Additional smoothing methods (e.g., anisotropic kernel smoothers) could be investigated 
further, as different smoothing methods may improve model performance. 

• A more refined uncertainty quantification approach in both space and time is required. 
One solution could perhaps be to increase the time aggregation from 3 months to 1 year 
or more. 

• We recommend doing an assessment of model performance by running without the XY 
coordinates as features. The location information might already mostly be encoded in the 
spatial features themselves. Conversely, it also makes sense to run using only XY as spatial 
features since this would tell us if the spatial maps contain more information than just 
spatial information. 
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A. Definition of non-extrapolating or extrapolating models used in this study 

 

As introduced in section 1.3 and Limbeck et al. (2018), the ML models used in this study are divided 
into extrapolating and non-extrapolating groups. In our context, non-extrapolating models cannot 
forecast outside their target range of calibration, whereas extrapolating models theoretically are 
able to. That said, it is not trivial to access the quality of the forecasts done by models which are 
able to create plausible extrapolative forecasts. Hence, extrapolation outside of the training target 
range will likely diminish the quality of any model forecast, but this effect is likely to be amplified 
for models that are bounded to their training target range, e.g., RF and KNN. Therefore, in this 
study, we consider the following models as non-extrapolating: RF, KNN, and a Moving Average 
(the latter being a baseline forecasting the mean over an optimized fixed window found using our 
sample walk-forward validation). Given that KSVM, GLM Top (a generalized linear model trained 
using the 5 most significant features obtained from the variable significance analysis – see section 
7 of Limbeck et al. (2018)) and the Depletion MA (a baseline that assumes that activity rate scales 
with depletion) are able to extrapolate - given the right internal parameter configuration - we call 
them extrapolating. We highlight that the results and conclusions drawn in this report are 
independent of this class division. This division in our context serves solely to differentiate models 
which were – in the Event Rate report by Limbeck et al. (2018) – able to forecast some decline in 
seismicity given previously unseen physical conditions (e.g., lower weighted mean pressure). 
Models which can forecast outside of their training target range forecasted a modest decline, 
though the default PSHRA event rate forecasts decline substantially faster after 2021. Models 
which cannot forecast outside of their training target range had difficulty with this future scenario 
as they forecasted unphysical behaviours, such as a stable or even increasing event rate with 
decreasing pressure.  
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B. Spatiotemporal data sources 

For each data source from which features for the ML models were extracted, a summary of the 
data source origin and main uncertainties is given.  

 

Seismic data 

To capture the geometry and rock properties of the reservoir and overburden in 3-D, seismic 
reflection data is used. Seismic data provides a 3-D view of the geometry of the subsurface and the 
distribution of time-invariant rock properties, including reservoir depth, thickness and the 
distribution of faults.  

The geometrical features are generally manually interpreted from seismic reflection data and serve 
as a basis for the geometry of the static and dynamic reservoir models, but as the manual 
interpretation and model construction introduce potential biases and errors, we opt to include 
features that are directly extracted from the seismic data as proxies for spatial trends in the 
reservoir. These features are referred to as attributes. Attributes are properties calculated from the 
3-D seismic cube, e.g., maximum amplitude, that act as proxies for geological features, e.g., faults 
(Chopra and Marfurt, 2007). The choice for which attributes to consider from an extensive and 
ever-increasing collection of known attributes is driven by the aim to accurately quantify two of 
the main physical drivers in the Hazard and Risk Assessment models (Bourne and Oates, 2017): 

1. Structural heterogeneities (faults, fracture corridors) in the reservoir that can create local 
pressure differences (i.e., the throw-thickness distribution); 

2. Spatial variations in the overburden that may contribute to heterogeneities in the 
overburden stress, which is the principal stress component in the reservoir, and as such 
impacts the normal and shear stress acting on faults in the reservoir (i.e., the Coulomb 
stress distribution, see Dieterich, 2007; Zoback, 2007; Bourne and Oates, 2017). 

We focus on attributes that are derived directly from the seismic data with minimal additional 
processing steps and with no or few subjective processing decisions.  

The available seismic data is a 3-D seismic cube for the Groningen field that was created by NAM 
in 2015 (Wervelman, 2015). There is no individual single seismic survey that covers the entire 
Groningen field, but instead, there is a collection of legacy surveys that have been reprocessed and 
integrated into a dataset by CGG, referred to as “GreaterGroningen R-3089” (Figure 45). This 
dataset consists of 23 seismic surveys, that were mostly acquired in the late ’80s and early ’90s.  
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Figure 45: Northeast region of the Groningen province (coastline/border with Germany in blue). 

The colour-filled areas indicate coverage of the ‘GreaterGroningen’ seismic dataset. The different 

colours represent different legacy seismic datasets, and the colour intensity shows the data density 

of these datasets, where cold colours represent low density and warm colours high density. The 

thin black lines are field outlines. The Groningen Pre-SDM dataset is indicated by the blue 

rectangle (Wervelman, 2015).  

A dedicated dataset for the Groningen field was extracted from the Greater Groningen data, which 
includes 13 of the legacy surveys. This dataset is referred to as “Groningen Pre-SDM” (Pre-Stack 
Depth Migrated7). Full details on the processing of this dataset are given in (Wervelman, 2015), but 
below follows a brief summary focusing only on what is relevant for our application: 

- The inline/crossline spacing, i.e., spatial data resolution, of all surveys is 25 meters.  
- The seismic data was depth-converted using an interval velocity model, where average 

horizontal and vertical seismic velocities are used for each of the overburden formations. The 
depth-conversion and velocity model were calibrated with seismic-to-well ties.  

- The final refined reservoir horizon interpretations were made on the pre-SDM stacked data: 
o The top Rotliegend reflector is easy to identify and map (i.e., low uncertainty). All 

attributes are mapped to this horizon. 
o The base reservoir reflector is more challenging to interpret and is guided by the 

assumption that the large faults displace top and base reservoir equally and that the 
reservoir thickness does not change significantly over short distances.  

                                                 

7 Pre-SDM refers to the processing method. Seismic data in its raw form represents the subsurface travel times of acoustic waves 

from source to receiver, which are both located at the surface, and are typically some distance apart. The acoustic waves travel not 

only vertically but also laterally from source to receiver, creating an uncertainty in the exact location of the subsurface reflector. 

Through use of migration algorithms, source and receiver locations are ‘mapped’ to one location, increasing the accuracy of the 

geometrical constraints on the subsurface reflector. Migration can be done in time and depth, in different stages of the processing, 

where pre-stack depth migration is the most computationally intensive but also the most accurate. 
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o The Top Zechstein Fm. is difficult to map, and as a result, uncertainties in the 
thickness of the Zechstein are relatively large. There are no uncertainty quantifications 
available for this deterministic interpretation, but to address the uncertainty, the 
interval velocity of the Zechstein Fm., which carries less uncertainty, is included as a 
second proxy for the Zechstein formation. 

- The dominant wavelength is approximately 78 m, based on 50 Hz dominant frequency and 
velocity in the reservoir interval of 3900 m/s (Yilmaz, 2001; Romijn, 2017). Reservoir 
thickness varies between 100 m in the southeast and 300 m in the northeast, i.e., between 
approximately one and four wavelengths. The vertical resolution is a quarter of the dominant 
wavelength, i.e., 20 m. This resolution limit implies that to recognize faults on seismic, 
horizons need to be offset by at least 20 m. 

 

The key uncertainties and limitations that need to be considered for the use of seismic attributes 
are: 

- The horizontal resolution is limited to the spacing of the inlines and crosslines in the 3-D 
cubes, i.e., 25 x 25 m. The uncertainty in the horizontal resolution of the seismic data is 
negligible, as the pre-SDM process minimizes migration errors. 

- The vertical resolution limit is approximately 20 m. Faults with an offset of less than 20 m 
cannot be detected, and faults with offsets close to this limit are likely undersampled. 

- The uncertainties in the horizon interpretations are in general low, because of the complete 
coverage of the field by 3-D seismic, calibrated to a large dataset of wells. There are, however, 
relative differences in the quality of the interpretation of different horizons (Figure 46): 

o The top reservoir reflector is a bright easy-to-interpret reflector, i.e., minimal 
uncertainties. 

o The base reservoir reflector is less distinct. Interpretation of this reflector is guided by 
the assumption that the reservoir units are conformable. The base reservoir is not used 
directly, but only marks the lower boundary for the RMS and mean amplitude 
attributes. 

o The top Zechstein Fm. the reflector is not easily interpreted, because of the irregular 
geometry of the top of the salt, and the relatively small density contrast between top 
Zechstein and overlying formations. If we assume that the error margin is limited to 
the interpreter picking an underlying or overlying reflector as top Zechstein rather than 
the true top, the uncertainty in Zechstein thickness is +/- 90 m, based on the 
wavelength in the Zechstein Fm. (Vp in halite is 4400 m, with an approximate 
frequency of 50 Hz).  

- Visual comparison and correlation analysis of the amplitude maps compared to the Zechstein 
thickness map indicate that part of the amplitude signal in the reservoir may be caused by 
variations in the overlying Zechstein instead of discontinuities within the reservoir. 
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Figure 46: Arbitrary cross-section (in depth, with exaggerated vertical scale) showing the 

interpreted reflectors of the top reservoir (pink) and base reservoir (blue). The base reservoir 

reflector is difficult to interpret and therefore guided by the assumption that the reservoir thickness 

is conformable. 

 

Regretted seismic attributes 

Two additional seismic attributes were investigated as potential features for the ML models but 
were not further pursued based on a lack of correlation with seismicity.   

RMS Amplitude 

The RMS (Root Mean Square) amplitude is used as a proxy for heterogeneities within the reservoir. 
The RMS is calculated over the amplitudes within a vertical window, which is, in this case, the 
reservoir interval: 

fRMS = t∑ f"�#�  

The RMS amplitude map for the Groningen reservoir clearly shows lineaments representing faults 
in the reservoir, as well as patches of higher RMS amplitude values (Figure 47). These patches may 
represent trends in reservoir rock properties, e.g., porosity, though it should be emphasized that 
by definition, RMS gives relatively noisy results by taking the square of each amplitude value. For 
this reason, mean amplitude was preferred over RMS amplitude. 



 - 85 -  

 

 

Figure 47: RMS amplitude over the reservoir interval, projected onto the top reservoir. 

 

Ant tracking 

Ant-Tracking is a proprietary algorithm in Schlumberger Petrel aimed at identifying faults. It is an 
edge detection method that is guided by settings for threshold (separating features from noise), 
and orientation, as often the dominant orientations of the faults are known. Ant-tracking is typically 
preceded by several pre-processing steps to reduce the amount of noise in the data (Kortekaas and 
Jaarsma, 2017): 

1. Structurally oriented smoothing filter for random noise attenuation and discontinuity 
enhancement. 

2. Variance (edge) detection applied to the smoothed cube. 
3. Petrel Ant Tracking. 

The Ant-Tracked result is a seismic volume attribute containing the ant-tracked traces. A section 
through this volume at the top reservoir level shows the lineaments that were identified by Ant-
Tracking (Figure 48). The Ant-Track dataset has been used by EBN to re-interpret the faults in the 
Loppersum area, where they found that the location of Ant-Tracked faults was in better agreement 
with the calculated epicentre of the Huizinge tremor than the manually interpreted faults 
(Kortekaas and Jaarsma, 2017). However, a more exhaustive analysis of the location of Ant-
Tracked faults versus all mapped seismic events has not been made in that study. 

Ant-tracking has been considered as a proxy for faults that is less prone to interpretation artefacts 
compared to the Petrel fault model, but this feature has been regretted in favour of the variance 
attribute as ant-tracking tries to visualize individual faults, which results in a relatively scattered 
distribution without clear trends in orientation or density. The resulting map shows no correlation 
with seismicity, whereas the variance cube does highlight zones of increased fault density and an 
apparent organization of fault orientations, which correlate to some extent with seismicity.  
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Figure 48: Ant-Track cube attribute results extracted for the top reservoir surface (Kortekaas and 
Jaarsma, 2017). 

Overburden (Zechstein) data 

Variations in overburden density are predominantly associated with the Zechstein Fm. From a 
geological point of view, the bulk of the Zechstein Fm. is made up of halite with variable thickness 
and a basal anhydrite layer directly above the reservoir, with a constant thickness of 50 m. The 
halite is the source of heterogeneity for both geometry and rock properties: 

1. Geometry: the salt ‘creeps’, i.e., over geological timescales it behaves as a fluid. The base is 
spatially relatively consistent, thanks to the basal anhydrite, but the top Zechstein is highly 
variable and difficult to map on seismic (Figure 49). 

2. Rock properties: The halite contains high-density anhydrite/carbonate floaters (Romijn, 
2017), which are heterogeneously distributed in the halite: they can be absent, present as 
discontinuously present or continuously present. Floater thickness varies throughout the 
region. Generally, the floaters can be identified on seismic (Figure 50). 
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Figure 49: Arbitrary cross-section through the Groningen field, showing the variable thickness of 

the Zechstein Fm. (the part of the section that is not coloured). Image from Kettermann et al. 

(2017).  

 

Figure 50: Seismic cross-sections of the Zechstein (top Zechstein in pink, base in green) with 

examples of the different floater geometries that are encountered (Romijn, 2017). 
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The anhydrite floaters in the Zechstein Fm. have been mapped as a separate internal unit, with 
zero thickness where the floaters are absent (Romijn, 2017). The anhydrite has a higher density and 
velocity than the halite. The combination of density contrast and variable presence of the floaters 
results in a spatially variable velocity and density model throughout the Zechstein. 

 

Static reservoir model 

The static model describes the reservoir geometry and the time-independent rock properties of the 
reservoir. The geometry is based on the depth-converted structural interpretation of seismic data 
and constrained by wells, and the rock properties are calculated from well data and interpolated 
between wells to generate a 3-D property distribution (Nederlandse Aardolie Maatschappij, 2016d). 
Although the static model carries more uncertainties compared to the data it is based on, the use 
of the model for feature generation has two main advantages:  

- The model provides discrete, absolute measures of deterministic features, such as fault offset 
in meters or fault orientation in degrees, whereas seismic attributes only provide dimensionless 
proxies. 

- The model provides an interpolation of rock properties measured from sparse well data, which 
is partly constrained by using the modelled properties in history-matched flow simulations.  

The static model has been generated by NAM using the modelling software platform Petrel 
(Schlumberger) (Nederlandse Aardolie Maatschappij, 2016d). The lateral resolution of the model 
is 100 x 100 meters, with a variable vertical resolution down to 1 m thick cells.  

The rock property model is based on interpolation between wells and upscaling of well data. Well 
log data used to calculate porosity typically has a resolution of 20 cm, whereas the vertical grid cell 
resolution in the model is at least 1 meter. The upscaling of logs to grid cells is done using arithmetic 
averaging, potentially averaging out porosity peaks. The Groningen reservoir has a relatively 
homogeneous geology with thick units of reservoir rock, so the effect of averaging on porosity is 
negligible. 

The interpolation of well data between wells to populate a 3-D porosity model is driven by the 
acoustic impedance, which has a spatial resolution of 25 m (seismic resolution). Porosity data of 
each well is correlated to seismic velocity measurements at the well location (e.g., checkshot data), 
and using regression, a linear trend is derived from the crossplot. The same process is used for 
shale content and water saturation. The uncertainties associated with this process are small 
compared to porosity interpolation based on geological concepts, which was used in earlier models 
of the reservoir. Uncertainties in porosity are lowest at the well locations and increase with 
increasing distance from wells, but overall uncertainties are sufficiently low for the NAM to use 
only a single porosity model, instead of a distribution of models.  

The gas saturation property in the carboniferous underlying the Rotliegendes reservoir carries a 
larger uncertainty, particularly in the northern part of the field, as it is based on interpolation of 
data from 25 wells using kriging rather than quantitative seismic interpretation.  

The fault model is a deterministic interpretation made by geologists based on the identification of 
horizon discontinuities in seismic sections (pers. comm. A. Wood, 2018). Faults are not visible as 
discrete features on seismic but are only recognized by an offset in horizon reflectors. As the 
vertical resolution limit of seismic is typically between 20-30 meters, it follows that faults can only 
be reliably observed if there is at least 30 m vertical displacement along the fault, resulting in an 
undersampling of smaller faults (Figure 51).  
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Figure 51: Cumulative distribution of fault offsets extracted from the geological reservoir model 

(points) and the vertical resolution limit of the seismic (line). Data from the reservoir geological 

model (NAM), processed by P. van den Bogert. The offsets are calculated from the displacement 

of modelled reservoir grid cells across faults, where each datapoint represents the offset of a fault 

in a single grid cell. These displacements approach zero towards the termination point of faults, 

explaining the sub-meter scale offsets. 

A second limitation of deterministic fault interpretation is that faults are interpreted as discrete 
surfaces, whereas seismic sections do not show faults as discrete features but as deformation zones 
(Figure 52). The exact geometry of the fault, especially the dip angle, is uncertain, resulting in a 
potential error of several degrees in dip and in the order of 100 m in spatial position, but the 
geologist makes a discrete interpretation without quantification of these uncertainties.   

 

Figure 52: Arbitrary depth-converted cross-section through the seismic volume of the Groningen 

reservoir, showing several of the mapped faults (black lines) as well as the calculated epicentre of 

the Huizinge tremor (red). Note the exaggerated vertical scale. The shaded blue sub-vertical 

features indicate structural deformations based on the ant-tracking algorithm, and a fault 

interpretation driven by this attribute would yield an interpretation significantly different from the 

existing one (Kortekaas and Jaarsma, 2017). 
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The fault attributes, therefore, carry relatively large uncertainties associated with the deterministic, 
subjective interpretation of an intrinsically uncertain dataset, as the fault geometry (trajectory in 2-
D) and throw are obtained from the deterministic reservoir geological model. 

Geomechanical model 

The geomechanical model from which the overburden stress used in this study is obtained is a 
Finite Element model that provides the 3-D stress distribution prior to and during production. We 
obtain the pre-production overburden stress from a geomechanical model constructed using the 
multiphysics solver COMSOL (pers. comm. R Wentinck, 2018). The model geometry meshes 
directly from the seismic interpretations of the reservoir and overburden horizons, and mechanical 
rock properties are assigned per geological formation. The rock property data is obtained from 
well logs. The overburden stress distribution is qualitatively calibrated to initial pressures from the 
reservoir flow model. The resolution of the model is variable, based on the curvature of the surfaces 
and the complexity of fault surfaces, but the resolution is typically higher than the geological model 
resolution. The overburden stress distribution is extracted from the geomechanical model for the 
top reservoir surface.  
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C. Complete feature crosscorrelation analysis 

The features listed below are all features derived from a range of spatial and dynamic data sources, 
prior to any feature down-selection being applied.  

 

 

Figure 53: Feature correlation analysis for spatial and spatiotemporal features. 
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D. Earthquakes in 1997 – 2016 

 

Figure 54 shows the number of earthquakes recorded in each cell. The figure illustrates the number 
of earthquakes before smoothing.  

 

 

Figure 54: Number of recorded earthquakes with a magnitude of at least 1.5 between 1997 - 2016. 
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E. Smoothed earthquakes in 1997 – 2016 

 

Figure 55 shows the number of earthquakes recorded in each cell. The figure illustrates the number 
of earthquakes after smoothing. A section of this chart is set to represent the number of observed 
earthquakes in Figure 38.  

 

Figure 55: Number of earthquakes in each cell after smoothing. 
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F. Spatiotemporal seismicity forecasts 

 

1997 – 2006 

 

Figure 56: Predictions of the KSVM, GLM Top, Depletion MA, and RF models for 1998 - 2006. 
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2008 – 2016 

 

Figure 57: Predictions of the KSVM, GLM Top, Depletion MA and RF models 

for 2007 - 2016. 
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G. Number of forecasted earthquakes per block for each model 

 

Table 29: Number of observed and smoothed earthquakes in each block together with the number 

of earthquakes forecasted by each model. 

Region Observed RF KSVM KKNN 
GLM 
Net 

Training 
Mean 

GLM 
Top 

Depletion 
Thick 

Strain 
Thick 

North 31 35 31 30 23 17 41 56 44  
Center West 104 88 60 85 23 16 40 60 61  
Center East 51 48 34 47 23 18 33 54 57  
South East 8 9 15 8 18 17 21 31 35  
South West 58 50 37 45 23 17 34 55 60 

All 252 230 177 215 111 85 168 257 257 
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H. Machine learning models 

Given the comparative scarcity of research using datasets of the type we have in this study, we did 
not commit to a specific algorithm or algorithm family a priori. We opt to empirically test and rank 
several types of algorithms to determine which model families work well in the given context 
through a benchmarking study. The candidate algorithms are loosely based on the work of 
(Delgado, 2014), who have tested 179 different algorithms on datasets from the UCI Machine 
Learning repository (Bache & Lichman, 2013). 
  

 
Figure: Overview showing model rank on multiple datasets,  

reproduced from (Delgado M.F, 2014) 

 
It is important to clarify however that the (Delgado, 2014) study focused on the use of algorithms 
for classification which differs from the setup of the seismicity study described in these pages. A 
more recent study by Makridakis (2018) focused on benchmarking machine learning models against 
classic statistical methods for the task of forecasting, which is in line with the usage of machine 
learning in this study. We have expanded and elaborated on the benchmarking study in a number 
of ways both in how the validation of the algorithms is concerned and in comparison with statistical 
baselines. 
 
Generalized Linear Models 
 
Generalized Linear Models (GLM) are an extension of “classical” ordinary least squares regression 
(OLS) (Nelder & Wedderburn, 1972). OLS tries to fit the parameter weights for the linear 
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relationship between the features and the target. GLMs extend on this concept by allowing the 
target to exhibit error distributions that are not normally distributed. In this study, we use GLMS 
and two GLM variants: (i) GLMnet, a GLM with elastic net regularization and (ii) GLMtop, a GLM 
model that has been trained using the top 5 most significant features. 
 

The GLMnet (elastic net) algorithm deals with the multicollinearity problem in the original feature 
space by applying dimensionality reduction. As the ratio between the number of fitted coefficients 
and number of observations increases, the estimates for the coefficients incur more variance. By 
applying the bias-variance trade-off, we can choose to introduce a controlled bias in our algorithm, 
to drastically reduce the variance of the estimates. We can do this by applying a technique called 
regularization (Friedman, Hastie, & Tibshiranie, 2010). Simply put, we can regularize the coefficients 
of the GLMs by applying a penalty for large components. Whereas a traditional GLM would seek 
to find the component weights such that a loss-function is minimized, regularized GLM allows for 
the optimization with regards to a loss function that is a weighted version of the sum of the absolute 
values of the coefficient weights (L1 norm), or the sum of the squared values of the coefficient 
weights (L2 norm). The latter technique is called ridge regression, while the former is referred to as 
LASSO. Elastic net regularization effectively combines both L1 and L2 types by using an additional 
alpha parameter to gauge the degree to which either should be implemented. 
 
A GLM Top model with default hyperparameters has been trained only using a selection of the 
top 5 features. This model might have as an advantage that its performance is not potentially 
degraded by less well performing features. No regularization has been implemented in this case. 
 
K-Nearest Neighbours 
 
K-Nearest Neighbours (KNN) (Hu, Huang, Ke, & Tsai, 2016) is a simple, yet effective, machine 
learning algorithm that makes use of the distance (by some chosen metric) between different 
observations in the dataset. Intuitively, observations that are more similar to each other regarding 
a subset of the features (the predictors) are increasingly likely to be more similar regarding another 
subset of the features (the target variable). This idea is formalised in the KNN algorithm, where 
classifications or predictions for a new (unseen) instance are based on a committee or aggregation 
of k most similar examples. 

 

 
Figure: Example of KNN used for regression, showing the KNN predictions (red), the actual 

measurements (black dots). Adapted from (Kim, Kim, & Namkoong, 2016) 
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Random Forests 
 
Random Forests (Breiman, Random Forests, 2001) have been used to outstanding results across a 
wide variety of tasks. Random Forests, at their core, represent an extension of decision tree 
algorithms using ensembles. Ensembles refer to a modelling technique where a decision or 
prediction is not produced by a single algorithm, but rather by a collection of them (Schapire, 
1990). The use of this meta-modelling technique is not explicitly limited to Random Forests, but 
can be applied to any base algorithm, or even collection of diverse algorithms. 
The units within a Random Forest are known as Decision trees (Breiman, Friedman, Olshen, & 
Stone, 1984), renowned for their simplicity, clarity, and speed. These trees perform a recursive 
partitioning of the data space with the objective of making the data partitions as homogeneous as 
possible. In this study, we use binary trees though other partitions are possible. 
Decision trees do suffer from high variance. It is for this reason that we aim to decrease the variance 
of the solution by creating an ensemble of trees (Breiman, Friedman, Olshen, & Stone, 1984), 
rather than look at a single tree. Random Forests achieve this decorrelation in two ways: bootstrap 
sampling and restricting the set of candidates features to split on. 

 

 
Figure: Illustrative example of how regression predictions of individual trees combine in a 
random forest through averaging of the prediction results of individual trees. 

 
SVR/KSVM 
 
SVR’s are non-probabilistic algorithms which can be considered extensions and generalizations of 
optimal separating hyperplanes that get defined by the data points closest to the decision boundary, 
which are referred to as support vectors (Cortes & Vapnik, 1995). SVR’s extend on the concept of 
optimal separating hyperplanes in two ways: 

• By accommodating the case of overlapping classes. 
• By allowing nonlinear decision boundaries in the original feature space by employing the 
kernel trick. 
 

In SVR’s, the input is implicitly mapped onto an m-dimensional (where m can, in fact, be infinite, 
and in those cases not computable) feature space using some fixed (nonlinear) mapping (kernel 
trick), and then a linear model is constructed in this feature space (Friedman, Tibshirani, & Hastie, 
2009). The main motivation is to seek and optimize the generalization bounds given for the 
regression. These bounds rely on defining the loss function that ignores errors situated within a 
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certain distance of the true value. In other words, the goal is to find a function whose prediction 
deviates from the target value by an amount no more than ε. 

 
  

Figure: Example of KSVM regression. Points within the pink band, where the prediction error < 
epsilon, don’t contribute to the total loss of the function. Outside of this band are the support points 
that determine the parameters of the functions. 
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I. Derivation of Expected Value and Variance for Log Likelihood Ratio 

In this section, we detail the derivation of the equations given in Section 6 which relate to the 
expected value and variance of the log of the likelihood ratio. This ratio is calculated using 
realisations from the simulation model, ℳG. Under this model, we simulate a vector of counts, �� , 
which contains values for each spacetime location. The elements of ��  are sampled independently 
from Poisson distributions such that, c¼�½~¿À�

À�(�"<). Therefore EÁc¼�½Â = �"< and varÁc¼"<Â =�"<. The likelihood we are using is also the Poisson likelihood such that, ℓ7ℳjs��: = b c¼�½ k�OJ&"<(j)K − &"<(j) − k�O7c¼"<!:�½ . 
Therefore, the log of the likelihood ratio is, �7ℳ" , ℳ�s��: =  ℓ7ℳjs��: − ℓ7ℳ�s��:, = b ¢c¼�½ k�OJ&"<(j)K − &"<(j) − c¼"< k�OJ&"<(�)K + &"<(�)¥ ,�½  

= b ¢c¼�½ £k�OJ&"<(j)K − k�OJ&"<(�)K¤ − &"<(j) + &"<(�)¥�½ . 
We first consider the expected value of the log ratio,  zÁ�7ℳ" , ℳ�s��:Â = b ¢ÃÁc¼"<Â £k�OJ&"<(j)K − k�OJ&"<(�)K¤ − &"<(j) + &"<(�)¥�½  

=  b ¢�"< £k�OJ&"<(j) −  &"<(�)K¤ − &"<(j) + &"<(�)¥ ."<  

We can then consider the variance of the log ratio. Here we make use of the fact that the 
elements of ��  are independent.  

varÁ�7ℳ" , ℳ�s��:Â = var Äb ¢c¼"< £k�OJ&"<(j)K − k�OJ&"<(�)K¤ − &"<(j) + &"<(�)¥�½ Å, 
= b ¨varÁc¼�½Â £k�OJ&"<(j) −  &"<(�)K¤�© ,"<  

= b ¨�"< £k�OJ&"<(j) −  &"<(�)K¤�© ."<  
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J. Varying bandwidth between 2000m – 4000m.  

 

Figure 58 Change in MAE (right) and RMSLE (left) when varying predictor feature bandwidth 

between 2000m - 4000m in steps of 500 m. 
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Glossary  

 

Physical quantities are denoted by the following variables: 

• �  Pressure in the reservoir (bar); 
• e  Subsidence (m); 
• �  Compaction (m); 
• ��  Hydrocarbon Column Thickness (m); 
• ��� Hydrocarbon Column Mass (kg) 

 

Machine learning concepts used: 

• Target: the (pre-processed) variable we like to predict. For example, the target used 
throughout this study is the rate of earthquakes per day of � ≥ 1.5 per grid cell over a 
time interval.  

• Feature: a (pre-processed) source data variable which might be a predictor for the target. 
Note that one source data variable might give rise to multiple features or the other way 
around. For example, in this study features are: the mean pressure in a cell per month, the 
mean pressure decreases in a cell per month, etc. Confusingly, sometimes features are also 
called covariates or plainly variables.  

• Covariates: see features. 
• Machine Learning model: a formula or association rule associating feature values to 

target values. Usually, machine learning models are complex and do not provide intuitive 
insights. 

• Hold-out set: a portion of the data which is not used for training or testing of the ML 
models. Throughout the report, the period 2013-2016 is used as a hold-out set. 

 

Special terminology relating to this study: 

• Non-extrapolating models: These are models such as Random Forest (RF) or K-nearest 
neighbours (KNN). That will not be able to forecast a value for the Target variable that is 
outside of the range of values that have been observed for the Target during the training 
period. E.g., if the range for the number of earthquakes observed during training falls 
within 1 and 10, these models will only be able to forecast values for the Target within 1 
and 10. 

• Extrapolating models: These are models such as Support Vector Regression (KSVM) or 
generalized linear models (GLM) that could forecast a value for the Target variable that is 
outside of the range of values that have been observed for the Target during the training 
period. E.g., if the range for the number of earthquakes observed during training falls 
within 1 and 10, these models could, given the right input and choice of kernel/link 
function, forecast a value outside of this range such as 13 or 0. 

• Ultimate-state constrains: These are additional values given as training features that 
relate to the definite state of the field as calculated by MoReS. E.g., in 2100, after 
production has long stopped, and the field has reached an ultimate state (leaving aside 
processes that operate on geological time scales), the expected weighted average pressure 
across the field will range between 94 bar (if production stops in 2019) and 37 bar (if 
production continues until maximum depletion). These extreme values act as definite states 
of the field. 

• Earthquake rate: Number of earthquakes that take place within a period of 3 months 
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Mathematical notations and definitions used unless otherwise specified: 

• ℕ denotes the set of natural numbers; 
• ℝ denotes the set of real numbers; 
• [`, �] is the interval between ` and �, including boundary values; 
• (`, �) is the interval between ` and �, excluding boundary values; 
• y is the number of features/variables/covariates in a model; 
• � is the number of data points that are available for each features/variables/covariate 
• f" ∈ ℝ! is the vector of features/variables/covariates of a model at time interval Y; 
• Z" is the target value at time interval Y; 
• �" = (f", Z") denotes a data point � at time interval Y, consisting of the y 

features/variables/covariates and the target; 
• i denotes a model or association rule 
• &" = i(f") is the prediction of model i based on features f" ∈ ℝ! on time Y 

 

Geospatial coordinate systems mentioned: 

• RD: the Netherlands triangulation system [Rijksdriehoekstelsel] is a coordinate system used 
at the national level in the European part of the Netherlands. It has two perpendicular 
coordinates f and �. For details and transformations to other coordinate systems see 
(Kadaster, 2018). The transformations to and from the Latitude/Longitude and the RD 
coordinate systems have been done using the “proj4” and “sp” R packages which have 
special functionalities for the transformation and application of different cartographic 
projections. For more details see the package descriptions (Urbanek, 2015). 

 

Key abbreviations used throughout the text: 

• CV  Cross validation; 
• GFO Groningen field Outline; 
• GLM Generalized Linear Model, a machine learning model; 
• ICE  Individual Conditional Expectations; 
• I.i.d. Independently and Identically Distributed; 
• KNN K-Nearest Neighbours, a machine learning model; 
• MAE Mean Absolute Error, an error metric; 
• ML  Machine Learning; 
• �Q  Magnitude of Completeness; 
• �!"# Minimum Magnitude; 
• MMP Model and Meta Parameter combination; 
• MoReS Dynamic Reservoir Model; 
• PSHRA Probabilistic Seismic Hazard and Risk Assessment; 
• R  Statistical Computing Environment; 
• RF  Random Forest, a machine learning model; 
• RMSLE Root Mean Square Logarithmic Error, an error metric; 
• SE  Standard Error; 
• (K)SVM Support Vector Model, a machine learning model; 
• SVR Support Vector Regression, a KSVM used for regression. 
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Tooling  

In order to facilitate the setup of the forecasting experiments, we make use of the R package MLR 
which is described in more detail in (Bischl et al., 2016). By using the MLR package as our general 
framework for the benchmarking experiments, we avoid duplication of code and potential bugs in 
critical parts of the code related to estimating model performance. The MLR package provides a 
modular interface to the following common tasks in the context of machine learning workflows 
and benchmarking experiments:  
 

• Common pre-processing routines as removal of constant or duplicated columns, and 
normalization of the covariate columns. MLR implements common scaling techniques like 
standardization but also provides access to more advanced pre-processing routines like 
those exposed through a wrapper for the pre-processing routines offered by the Caret 
package (Kuhn M., 2017). Those include Box-Cox transformations, Yeo-Johnson 
transformations and also a set of different imputation techniques.  

• Feature selection, based on different criteria (e.g. correlation, RF variable importance, …).  
• Definition of a sub-sampling strategy for the hold-out set prediction experiments. For 
instance, cross-validation and different versions of the bootstrap. Note that the walk forward 
resampling strategy is not implemented in MLR  
≤2.11, which is why we had to implement it manually.  
• Definition of several common error measures like MAE, RMSE, Kendall-Tau and  
R2 
• A convenient interface to around 80 machine learning algorithms for both regression and 
classification. Those include (regularized) linear models, Support Vector Regression, tree-based 
methods and different flavours of neural networks.  
• Support for automated parameter tuning of those algorithms using different tuning 
strategies like basic grid searches bot also more advanced gradient-based techniques.  
• Setup and results reporting of benchmarking experiments for several techniques.  

 

For feature selection and for the purpose of detecting “significant” features with respect to the 
selected prediction target, we make use of the Boruta package (Kursa, 2010). This record of 
significant and potentially significant variables is stored for every prediction experiment. It is a 
heuristic procedure that uses the variable importance measure calculated by implementations of 
the random forest algorithm. As such, non-linear effects and interactions between parameters are 
taken into account. In order to counter effects related to the multiplicity of noise variables, the 
algorithm is iterative in nature. 
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