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General Introduction

The subsurface model of the Groningen field was built and is used to model the first step in the causal
chain from gas production to induced earthquake risk. It models the pressure in the gas bearing
formations in response to the extraction of gas (and water).

The reservoir model of the Groningen field was built in 2011 and 2012 and has a very detailed model of
the fault zone in the field to support studies into induced earthquakes in the field. The model was used
to support Winningsplan 2013 (Ref. 1 to 3) and has since been continuously improved (Ref. 4). This report
describes the improvements since winningsplan 2016 and in particular the effort to obtain the best
possible history match.

The pressure in the field is an important driver for compaction and therefore subsidence. Compaction in
turn affects stress and strain and is therefore of importance for mechanism inducing earthquakes. The
model therefore has an important role in the optimization of the gas withdrawal from the reservoir to
reduce seismicity.

For Winningsplan 2013 and Winningsplan 2016, the model was reviewed by an independent consultant
SGS Horizon. An extensive assurance review (Ref. 5) with opinion letter have been prepared by SGS
Horizon. All references are available at:

www.nam.nl/feiten-en-cijfers/onderzoeksrapporten
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1 Executive summary

This document describes the Groningen field dynamic subsurface V4 model and its main changes with
respect to the V2.5 model. V4 is to be used in the June 2017 update of the Hazard and Risk Assessment.
The model will also be used in the Production Optimisation study to investigate minimisation of tremors

by redistributing the offtake. Furthermore, it will be used for the corporate forecasting (e.g. OP17,
ARPR.31.12.2017).

NAM issued the dynamic model V2.5 of the Groningen field in May 2016 (1), as part of the Winningsplan
2016 submission. The updates introduced in the V4 model are in accordance with the Study and Data
Acquisition Plan (2), which was issued as an addendum to the Winningsplan 2016 submission. Model V4
incorporates the following elements, to which NAM committed in the Study and Data Acquisition Plan:

e  Static geological model with porosity based on inversion of seismic data

e Closed in tubing head pressutes to constrain the model

e The use of rock compressibility based on inversion of subsidence data!

e Gravity survey results

e  Effects of gas in the aquifer were tested for this model based on 3 scenarios
e High permeability area in Central part of the field

e In-situ compaction measurements

A new static geological model, with properties based on inversion of seismic data, was up-scaled and
history-matched until 31 December 2016. The V4 model is matched to the following six historical data

types;

e  Static down-hole pressure measurements (SP(T)G),

e Repeat formation test pressures (RFT),

e C(losed-in tubing-head pressures converted to bottom-hole pressures (CITHP2BHP),
e Interpreted rise in gas-water contact (PNL),

e  Stable subsidence data from 2 levelling surveys (1972 and 2013)

e Time-lapse gravity data

The GIIP of the base-case case model increased from 2924.5 (V2.5) to 2934.8 billion Nm3 (V4). The
overall match to observed data remains good; the average pressure match to SPG is+2.35 bar over the
entire production history.

The following recommendations are made to improve the model further, including implementation of
additional improvement steps as committed to in the Study and Data Acquisition Plan (1);

e Close-the-loop on the seismic inversion to improve the porosity and permeability distribution,

e Investigate the dynamic impact of depleting a gas bearing Carboniferous underneath the main
Rotliegend reservoir,

e The incorporation in the dynamic model and improvement of the understanding of the gas
presence in the aquifer.

These recommended improvements are expected to be included in the dynamic model due in May 2018.

! The methodology for the inversion was already explained in the V2.5 model report (3), but the inversion result had
not yet been used in the V2.5 dynamic model.
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2 Introduction

2.1 Background

Following the 2012 Huizinge earthquake, NAM has initiated numerous technical studies to better
understand the induced seismicity in the Groningen field, its causes, consequences, and possible ways of
mitigation. Within this scope, the Groningen subsurface team finished the Groningen dynamic subsurface
model V2.5 in 2016, linking subsidence to dynamic subsurface behaviour (1). This model has formed the
input to various studies, including the 2016 Hazard and Risk Assessment, and (a modified version of) this
model was used to generate forecasts for the 2016 Operating Plan and the 2016 Annual Review of
Petroleum Resources.

2.2 Study and Data Acquisition Plan

Together with the Winningsplan 2016 submission, an update of the Study and Data Acquisition Plan was
issued (1); outlining future studies into subsurface issues, offtake optimisation, and possible further
improvements to the suite of models, including the dynamic reservoir model. NAM has committed to
complete these studies. Most of the suggested improvements to the subsurface model have been
incorporated into the V4 model update as described in this document. There are three further elements in
the Study and Data Acquisition plan that are planned to be studied as part of the subsequent V5 dynamic
model update. If successful, they will be incorporated in the model update, which is currently scheduled
for August 2017. These remaining elements will be discussed in chapter 8.

2.3  Model objective

The V4 dynamic model will be used for the June 2017 update of the Hazard Assessment. Furthermore, it
will be used for the production optimisation study that is aiming to minimise tremor rate (and risk) by
controlling the field offtake at the cluster level within constraints set by the ministry of economic affairs.
Additionally, the model will be used for production forecasting, supporting the 2017 Operating Plan and
2017 Annual Review of Petroleum Resources.
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3 Updates to the model

This section describes the changes in the V4 model with respect to the V2.5 model. For a full description
of the V2.5 model please refer to the GFR2015 document (1).

3.1 Static model

An updated static model was used, which differs from the V2.5 model in two main aspects:

1. The top reservoir horizon has been updated.
2. The interpolation of porosity between well locations is steered by a first-pass inversion of seismic
data to porosity.

Both the updated top_reservoir horizon and the inversion-derived porosity trends were derived from a
newly reprocessed and reimaged seismic cube (3), showing improved imaging of the Rotliegend reservoir
interval.

In the previous V2.5 model, the 3D distribution of reservoir properties was based on wireline log data
only. This leads to a slight overestimation of the total pore volume in the reservoir, because wells are
typically targeting for the better-quality rock in structurally higher parts of the reservoir. The V4 model
uses porosity trend maps detived from the inversion to interpolate between well locations, thus avoiding
the bias towards slightly higher porosities at the well locations. It should be noted that the differences
between V4 and V2.5 models are small, because of the high density of wells in the field. The north and
north west parts of the field and the aquifer areas outside of the Groningen closure, are affected most,
because reservoir quality tends to be lower in these areas compared to the central crestal part of the field.

Permeability is generated based on the new porosity grid and the existing porosity-permeability
relationship derived from core measurements. This methodology is the same as used for the previous V2.5
static model. The differences in permeability are caused by the change in the underlying porosity.

3.2 Closed-in tubing-head pressures converted to bottom-hole conditions

The primary data used for history matching is a set of roughly 1800 reservoir pressure measurements
obtained from Static Pressure and Temperature Gradient (SPTG) surveys. Until 2014, the offtake from
production clusters was managed in such a way as to keep the reservoir pressure balanced across the field,
resulting in stable pressure decline trends across the field. Consequently, over the last 20 years, the SPTG
survey frequency has been reduced to about 1 survey per 5 years for each production cluster. Following
the production restrictions in the LOPPZ clusters, the offtake distribution and regional flow patterns of
gas have drastically changed (Figure 1). With the reduced offtake in the north and west, a pressure
difference across the field has been established. This pressure difference is currently about 25 bars from
north to south. This differential is causing gas to flow from the north towards the south. The speed and
pattern of this flow is affected by the sealing behaviour of some faults.

To capture the dynamic response of the field to this change in reservoir management, additional sources
for constraining pressure data have been sought. Since 2011, all production wells in Groningen are
equipped with tubing head flow and pressure sensors that are continuously recording data. Empirical
correlations have been developed for all production clusters to convert pressure at surface to reservoir
conditions during periods of no flow. The accuracy of this conversion is typically very good (within 1 bar
of actual downhole SPG measurements). Since most clusters are typically closed in at least a few times
every year (for more than 1 day), this has created an abundant source of additional reservoir pressure data.

This CITHP-CIBHP dataset from 2011 onwards is now included in the history matching process for all
production wells. This addresses the recommendation from the SGS Horizon external review of the V2.5
model, where it was suggested to add more calibration points for reservoir pressure matching at the
clusters for the period from 2010 onwards (4).
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In order to constrain the dynamic model to this new data type, the model resolution has been increased
both temporally and spatially. Simulation time steps were refined from monthly to daily from 2011
onwards to explicitly model relatively short shut-ins that can be in the order of days. Additionally, local
grid refinement (LGR) is applied to production clusters to better capture the pressure build-ups during
these periods and avoid having multiple wells in a single grid block. Daily time steps and local grid
refinement double the simulation time to about 52 hours with respect to the original V2.5 grid and time
step size.

GRO_2016_ED_v60.run

GRO_2016_ED_v60.run

1/1/2011
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GRO_2016_ED_v60.run

1/1/2017

Figure 1: Change in flow pattern due to production restrictions (streamlines coloured by arriving producer)

3.3 Compressibility grid

Compaction is thought to be a key driving force for production induced seismicity, and thus of primary
interest for the optimisation work that is aiming to minimise the tremor rate. The matrix compressibility
directly impacts the (calculation of) compaction. Because rock compaction hardly contributes to the
energy balance (Figure 4), its impact on the pressure match is negligible, and it can be treated as an
independent parameter for matching subsidence.

For previous models, a polynomial line-fit through core experiment data was used to generate the matrix
compressibility (Cm) grid as a function of porosity. For GFR2012 and GFR2015, the polynomial fit
through the data was multiplied by a constant factor (0.58), which resulted in an improved history match
to pressure, as explained in the GFR2012 report (5). Compressibility calculated as a function of porosity
for the V2.5 model is shown by the blue line in Figure 2.

The matrix compressibility in the V4 model is a grid resulting from model-based inversion of subsidence
data and calculated reservoir pressure. This inversion method had already been used and assured for the
Winningsplan 2016 subsidence prediction and was used in the dedicated subsidence model maintained by
the NAM geomechanics team, see Reference (6). Because the forward prediction of compaction and
subsidence was not an intended purpose for the V2.5 model, the final compressibility resulting from
inversion had not been included into the V2.5 dynamic model. Using this geomechanical output in the
dynamic reservoir model was, however, identified as an improvement opportunity for the V2.5 model, as
the polynomial-fit does not capture areal trends in the compressibility-porosity relationship (1). Because
the V4 model is intended to be used for tremor rate modelling, accurate areal prediction of compaction
within the dynamic model is of significant importance. Consequently, the NAM geomechanics’ subsidence
inversion has now been applied to the V4 model and the resulting compressibility grid is used in the




Groningen Dynamic Model Updates 2017

dynamic reservoir model instead of the polynomial function. This improves the subsidence match and the
predictive capability of the model for compaction.

The resulting compressibility as a function of porosity is shown in Figure 2 and the areal distribution is
shown in Figure 3.

2.50E-05
2.00E-05

1.50E-05

C,, [1/bar]
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Figure 2 Matrix compressibility as function of porosity, as used in the V4 and the V2.5 dynamic reservoir model

Cm (1/bar)
'9E-6

Figure 3: Areal distribution of compressibility when using a polynomial fit (a) versus direct use of inversion based
compressibility grid (b).
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Figure 4 Drive mechanism of the V4 model overview (left): the drive mechanism is fully dominated by gas
expansion. The zoom in (right) shows that the contribution of reservoir compaction is 2 orders of magnitude
smaller.

3.4 Relative water permeability

Special core analysis on the Zeerijp-3 core was performed by CoreLab Aberdeen between 2016 and eatly
2017. Preliminary results suggest a water end-point relative permeability estimate of about 0.5 (7), which is
significantly higher than the maximum of 0.12 used for the V2.5 model. A ke of 0.4 had already been
reported in the Kooijpolder-2 core analysis report in 1992 (8), but was deemed an outlier and therefore
not used in the uncertainty range (9). With the new study results indicating that the 1992 result was not an
outlier, the upper limit of the uncertainty range for relative water permeability was adjusted from 0.12 for
model V2.5 to 0.4 for model V4. The base case kny value that results in the best match for water influx
against PNL surveys is now 0.4 (this was 0.12 in V2.5). Following finalisation of the core study by
CoreLab and QC by NAM, the endpoint water relative permeability range might be increased further for
the V5 model.

3.5 Lift table consolidation

In previous model updates, including V2.5, all wells in Groningen were represented by dedicated vertical
lift performance (VLP) models. Maintenance of such a large set is a challenge. Starting in V2.5 the flowing
performance (PQ) of production wells are matched to observed tubing head data prior to forecasting (10).
PQ matching combined with the fact that most wells in Groningen are quite similar reduces the need for
specific VLP curves for each well. The original set of about 300 well models has been reduced to 14
generic models (in terms of diameter, completion, deviation etc.) while 20 wells keep their dedicated
model due to being sufficiently unique — mostly outstep wells from a production cluster (11; 12).
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4 History matching methodology

For the V4 model update, a similar history matching method was applied as for the V2.5 model update.
This method is described in detail in the GFR2015 report (1). However, one additional step was
introduced in V4— model maturation using the gradients calculated by the Adjoint method. The
methodology is outlined in the following six steps:

1.

Define local and field-wide mismatch functions. These ate defined as the root mean squared

difference between a data point and model output. The following data are used for the mismatch

functions;

e  Static reservoir pressure measurements (SPG) corrected to datum level,

e Repeat formation tests (RFT),

e Closed-in tubing-head pressure converted to bottom-hole conditions,

e  Gas water contact rise from pulsed neutron log measurements (PNL) interpreted by the
petrophysicist

e Stable subsidence data points averaged over a coarse grid (4X4 km). Stable means that data
points which were impacted by slope instability, solution salt mining, or dyke works are
omitted because they are deemed not representative for subsidence due to Groningen field
compaction.

Use the Adjoint functionality to calculate gradients of permeability and porosity with
respect to the pressure mismatch. The gradients can then be used to identify areas of under
modelling. Under modelling means that variability required to improve a history match is not
available in the variable parameter set-up according to Adjoint results. The results of the Adjoint
calculations can indicate where reduction or increases in porosity and permeability could improve
the match. These results are then translated in a set of variable model parameters, e.g. fault seal
factors or permeability increases, and used in an experimental design workflow aimed to achieve
an acceptable history match solution. This process is called model maturation and is used as a
quick way to check if the set of variable parameters ensures the necessary control to achieve a
history match (13). The process is adapted from the one proposed by T. Matsuura in 2015, Figure
5.

Adpi |
=9 =2 | * Model Maturation

] (addresses “unknown

I ")

Conceptual model

alterations based on |

Model Maturation
exercise

Figure 5 Two-stage AHM where DoE is used for matching global parameters and optimisation methods
(Adjoint in this figure) are used to identify potential under modelling issues [figure and method by T.
Matsuura - 2015]

A positive permeability gradient suggests a lower permeability is required to reduce the mismatch
to pressures. An example of the interpretation of the Adjoint gradient map is a positive
permeability gradient next to certain faults, see Figure 6 — left-hand picture, possibly indicating
that these faults need to be less transmissible to improve the match to pressure. These faults are
therefore added to the set of variable model parameters, see Appendix 2. A negative permeability
gradient indicates where permeability should be increased, see Figure 6 — right-hand picture. More
permeability increase is needed in the south than in the north. The Adjoint indicates a better
history match might be achieved by a set of regional permeability multipliers for V4, contrary to
the single permeability multiplier used for V2.5.
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3. Define a set of variable model parameters. Regional variable model parameters are defined for
Gross Bulk Volume, Permeability, Fault Seal factors, Initial Free Water Level, Relative
Permeability, Aquifer size and Skin (Skin only for those Land Asset wells which have been
hydraulically fractured). The ranges of all parameters are based on measurements and studies —
for details on the ranges see the GFR2015 report (1). The GFR2015 parameter set was expanded
with the parameters identified by the model maturation, as described in step 2.

4. History matching using space filling experimental design. This design varies the identified
variable model parameters within their allocated uniformly distributed ranges for every run in the
ensemble of simulations, in this case, 1000 simulations.

Then, a two-tier approach is followed to use the results of the space filling design to achieve a
history match, identical to the approach used for V2.5:

a) First, the field-wide mismatch functions are used to indicate which combination of variable
model parameters result in the lowest overall mismatch to PNL, Subsidence and
Pressure. The best-matched model is selected using a 3D cloud visualisation in Spotfire,
Figure 7. In the 3D cloud, the history match errors decrease towards the origin. The
models near the origin are therefore on average best matched to the three data types at
field level. However, the space filling design of 1000 simulations will not be able to
model all possible combinations of the variable parameters within their range. At certain
locations, such as observation wells, the match could be further improved using local
parameter variation.

b) Second, local mismatch parameters are used to identify possible local improvements of the
selected model. The purpose of the second step is to prevent the selection of a model
that might have a low overall root mean squared error, but potentially high local
mismatches. For example, the Kolham-1 observation well mismatch to pressure can be
improved by constraining the fault seal factor separating Kolham-1 from the nearby
Eemskanaal cluster to a value between 1022 and 1025, see Figure 8.

PNL_TotalField_RMSE

Sub_Field
SPG_Field

Figure 7 The mismatch to PNL, Subsidence and SPG for 1000 models, where the minimal mismatch to all is in the
origin. An optimal model is indicated.
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Figure 8 Mismatch of Kolham-1 model output to static pressure data for 1000 models for different fault seal settings.
The X-axis gives the root mean squared error of the local pressure mismatch for the Kolham observation well. The Y-
axis gives the fault sealing factor as a power of 10 for the fault separating Kolham from the nearby Eemskanaal cluster.
The optimal setting is between 1022 and 1025,

5.

Improve the definition of variable model parameters. The set of parameters is improved
where an insufficient match was achieved in the field wide matching exercise. Some history
matches result in inconsistent solutions. For example, an improvement in the match for a cluster
might reduce the match for a nearby observation well. Another issue occurs when a variable
parameter range has not been set wide enough in step 3. For example, in order to match a
pressure lag observed in the data, a fault needs to be more sealing than is initially allowed for in
the parameter range. To further improve the history match, the set of variable model parameters
is updated. The updated definition of variable parameters, where most changes relate to fault
sealing uncertainty, is subsequently checked with the geoscience team. With the new set-up, steps
4a and 4b are repeated until an acceptable match to all data, at all locations, is achieved.

Geomechanical update. When an acceptable history match is achieved, the associated model
pressures and porosities are used by the NAM Geomechanics team for a subsidence inversion.
This inversion step adjusts the compressibility grid in order to improve the subsidence match.
The adjusted compressibility grid is then loaded back into the dynamic reservoir model. Since
rock compressibility is a relatively modest energy source in the reservoir, the global pressure
match is not significantly impacted by this step, see section 3.3. Only a repeat of the local match
described in step 4b is required to obtain the final history match.

Note that the importance of this compressibility iteration step is a result of the increased scope of
the dynamic model. The model is envisaged to be used for optimisation of the regional
distribution of field-offtake in order to minimise seismicity and/or seismic risk, and seismicity is
believed to be a function of reservoir compaction. Although compaction itself is hard to measure,
it is reflected at the surface as subsidence which is routinely monitored. Hence the subsidence
inversion offers a way to reflect potential areal trends in the porosity-compressibility distribution,
which the polynomial function (the prior to the inversion) did not capture.

13
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5 Results

The main history match results from the best-matched V4 model are given in Appendix 1.

5.1 Permeability multipliers

History matching the dynamic model required a relatively consistent upward adjustment of the static
model permeabilities by a factor of 2-3 throughout the field. This is within the uncertainty ranges from
core data. However, in the “Central area” a larger increase in permeability was required (factor of 4). This
requirement for relatively large permeability values in the Central has been consistent throughout the
recent modelling updates, including GFR2012, and was investigated further.

Geologically the Central area is situated in a transition from conglomerates in the south (relatively lower
permeability) to more sandy facies in the north. One hypothesis is that at this transition local high
permeability streaks could provide a highly conductive connection from the Central area to the rest of the
field. Such streaks would increase the lateral connectivity and could provide the pressure support during
early field life which was matched in the dynamic model by the high permeability multipliers. Thin high-
permeability streak in the fine-scale static model were smoothed away during the vertical upscaling
process.

A detailed pressure transient analysis study was performed on a flowing build-up survey in the
Zuiderpolder-12A well, within the Central area (Appendix 5). This study revealed that it is likely that
permeabilities in the Central area are indeed affected by high permeability streaks.
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Figure 9: Permeability multipliers as applied in the final V4 model
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5.2 InPlace Volumes

The static GIIP of the upscaled V4 geological model is 2868.2 billion Nm3. The lower static GIIP volume
of the V4 static model compared to the static model used for the V2.5 dynamic model can be attributed to
the slightly lower average porosity, resulting from the implementation of seismic inversion results. History
matching resulted in a dynamic GIIP of 2934.8 billion Nm3 (+2.3%). Within the Groningen closure,
dedicated GBV multipliers were used for 9 regions (in alignment with the initialisation regions), varying
between 1.005 and 1.024 for the main regions, see Figure 10.

The Harkstede fault block to the south-west is a special case (GBV multiplier 2.42). Based on history
matching of the Harkstede-2A observation well and the Eemskanaal-13 production well, the dynamic
GIIP was found to be 23.7 billion Nm3. This compares to a value of 16.9 billion Nm3 for the V2.5
dynamic model and 12.2 billion Nm3 for the V4 static model. The fault behaviour between this block and
the main Eemskanaal region is complex, with a significant pressure lag observed. However, the final
pressure match for the region is still good, as evident from Figure 11.
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Figure 10 Regional gross bulk volume increases as applied in the final V4 model
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Figure 11: Pressure history match for well Emskanaal-13 and Harkstede-2A. Lines are model predictions (red EKL-13,
blue HRS-2A), red and blue points are SPG measurements, while brown points are CITHP values converted to bottom
hole conditions for EKL-13.

5.3 Reservoir pressure

The modelled reservoir pressure around the various production clusters is shown in Figure 12. The effect
of the (LOPPZ) production caps on reservoir pressure is clearly evident, with a clear pressure lag
developing towards the north of the field.
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Figure 12: Modelled reservoir pressure around the various production clusters.

Overall, the V4 dynamic model properties have been constrained to more data types, and the pressure
match in late field life is now constrained by additional pressure data from the high-resolution THP
measurements. With the addition of the THP dataset from 2011 onwards, the focus on the late life
pressure match has increased. The root mean squared error of the closed-in tubing-head pressure for the
period 2011-2017 is =1.41 bar. The root mean squatred error of the overall field-wide pressure match to
SPG data increased from £2.17 bar for V2.5 to £2.35 bar for V4. In their 2016 review of the V2.5 model,
SGS Horizon classified a pressure mismatches less than 5 bar as “good” (4).

Figure 13 shows the development of the SPG pressure mismatch over time, and Figure 14 shows the
annual production volumes over time. It is clear the main pressure mismatch occurs during the early years
of field production. During these eatly years, the shut-in times prior to measurement, which directly
impacts the bottom-hole pressure, were not recorded. Potentially short shut-in times combined with high
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production rates will inevitably result in pressure mismatches since the build-up is pootly resolved in the
model, this is graphically explained in Figure 15.

For the period 2011-2017 the match to pressures is shown to be diverging, although still relatively stable,
for both SPG and THP pressures, this is shown in Figure 16. The divergence is mostly caused by the
changes in the field off-take policy imposed by the ministry of economic affairs, which started early 2014.

Because of the switch from monthly to daily time-steps, after 2011 the model explicitly calculates short
build-ups. This causes the calculated averaged pressures around each well (used to compare to SPG data)
to overestimate the measured SPG pressure by roughly 1 bar, see Appendix 4. This means that for the
last six years the difference between model and SPG data, shown in Figure 13 and Figure 16, is roughly 1
bar larger than it should be.

Note that the minor deterioration of the pressure match is also a consequence of the updated static model
which is based on the first-pass inversion results (section 3.1). Especially in the North-East of the
reservoir there is a need to close-the-loop between the inversion and the dynamic modelling work, see
section 8.1
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Figure 15: Schematic plot of the average pressure in a 3-day inflow range during a build-up. The potential error caused
by assuming a 3-day shut-in for a 1-day shut-in occurs is illustrated to explain the large errors in Figure 13.
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Figure 16 Difference between closed-in tubing head pressure and model output compared to the difference between
SPG data and model output (a positive value means the model is under-predicting pressure).

5.4 Subsidence match

Subsidence is the surface imprint of reservoir compaction, which in turn is caused by pressure depletion
due to gas production. Compaction is also believed to be the driving energy source for the seismicity
observed in Groningen and therefore of special interest for this model update. Since direct measurements
of compaction are sparse, only available from 5 wells in the reservoir, the compaction dataset is
insufficient to constrain the full reservoir model. Subsidence data is, however, readily available from
levelling and satellite surveys and can thus be used to constrain pressure depletion.

In model V2.5 subsidence data was first included in the history matching process. NAM’s official
subsidence predictions are made by the Geomechanics department using a high-fidelity model, which is an
involved process. In order to include subsidence in the dynamic reservoir model history matching process
(which involves hundreds of simulation runs), a proxy was setup in the dynamic reservoir model to
calculate subsidence directly based on simplified overburden assumptions. Modelled subsidence is mainly
the result of compressibility and pressure depletion. At well locations the pressure depletion is constrained
relatively well by pressure measurements, and subsidence data mainly constrains the compressibility in the
model. Away from well control, the subsidence can be used to constrain the reservoir pressure (if there is
no subsidence, there is also no compaction, hence there should not be any depletion). As described in
section 3.3, the best matched dynamic model realisation was used by the Geomechanics team for a
subsidence inversion to fine-tune the compressibility grid in their high-fidelity model, in order to minimise
the subsidence mismatch. The resulting compressibility grid was loaded back into the dynamic model.
Figure 2 shows the prior and posterior matrix compressibility values as a function of porosity, and Figure
3 shows the associated compressibility grids. The comparison of the subsidence match in the dynamic
model, when using the prior versus the posterior is shown in Figure 17. It can be observed that the
modelled subsidence is significantly controlled by the compressibility; the subsidence match has changed
in shape and magnitude.
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Figure 17 Subsidence match achieved by V4 model for two types of compressibility, the initial polynomial function and
the final inversion based grid. The figures show the model output, the measurement and the delta. In the delta figure,
warm colours indicate too much subsidence, cold colours indicate too little subsidence and a good match is green.

5.5 Compaction

In section 3.3 was explained how the Cn values in the V4 reservoir model are provided by the
Geomechanics department, governing alignment of the calculated compaction between the dynamic
reservoir model and the Geomechanics department. As a further QC step, the compaction as calculated
by the reservoir model was compared to in-situ measurements.

In-situ measurements of compaction are routinely done in a selected set of observation wells throughout
the field. Gamma ray markers bullets have been placed in those wells, at regular depth intervals. Periodic
monitoring of the (change in the) distance between markers over time gives a measure for the compaction

19



Groningen Dynamic Model update v4

at locations along the wellbore (Figure 18). The markers were originally installed in eleven wells across the
Groningen field, seven of which are still accessible for surveying. The marker interval data have been
recorded over several decades. In the mid-nineties it was agreed with the regulator that three wells are to
be logged regularly (HND-1, ROT-1A, SDM-1). Due to integrity issues, HND-1 was changed out with
TBR-4. Note from Figure 18 that there are some duplications and trend breaks in the processed
surveillance data, as a result of differences in surveillance contractors, inconsistencies in reporting and
time-lapse comparison benchmarks. These issues will be addressed as per the “Compaction data
integration” study that is outlined in the Study and Data Acquisition Plan, Reference (14). Meanwhile,
Table 1 gives the interim estimate of compaction values for the time window 1972-2013, compared to the
model results. As expected, there is generally a close comparison.
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Figure 18: Estimated compaction since reference year, from surveillance of gamma ray marker bullets

Table 1: Comparison of V4 modelled compaction to the measurements (best estimate value)

Well Compaction (cm)
1972.6 - 2013.3
Measurement V4 model
De Hond-1 18 18
Delfzijl-1 21 21
Schildmeer-1 21 19
Roode Til-1A 15 13
Uithuizermeedem-1 21 21
Stedum-1 36 29
Ten Boer-4 29 26

20



Groningen Dynamic Model update v4

6 Time-lapse gravity data
Time-lapse gravity measurements can detect mass changes in the field that are caused by density and
saturation changes related to gas extraction (production) and aquifer influx.

6.1 Data availability

Four gravity surveys were acquired over the Groningen field in the past, first in 1978, then in 1984, 1988
and last in 1996. The number of observation points varied from 21 (1978) to 26 (1996), mostly at NAM
sites.

In 2015 another gravity survey was done, covering a total of 98 stations, see Figure 19. Data was acquired
at 21 pre-existing survey locations (4D points) and at 77 new locations. The survey was of excellent data
quality.

Quad Geometrics (the survey contractor) re-processed and thoroughly evaluated the historical gravity
data, including drift fitting, scale factor re-estimation, and improved tidal corrections, Reference (15). The
quality of the historical gravity data slightly improved: the average station uncertainty reduced from 4-7
pnGal down to 3-5 pGal. Some survey issues were detected for the 1984 and 1988 surveys, which are likely
related to scale factor uncertainty. Because of the reduced confidence in these datasets, they were excluded
from time-lapse analysis.

In Reference (16) additional sources of time-lapse signal uncertainties were analyzed, including
groundwater variations, salt mining, and gas production from neighboring gas fields. These sources were
found not to significantly affect an interpretation of historical data with respect to the reservoir induced
signal. Due to the length of the time-span in between the surveys (and hence the change in cumulative gas
production), the analyzed signals are much larger than the potential noise.

There is a relatively higher uncertainty for the time-lapse signal of the older surveys with respect to 2015:

e Some measurement sites were refurbished as part of the 1998-2009 Groningen Long Term
project. The older surveys did not have good geodetic data, which makes it difficult to account
for any potential changes in the vertical measurement height (e.g. new tarmac)

e Some new 2015 stations were established at close proximity to the original locations. The original
gravity measurements were transferred to the new station locations with dedicated gradient
measurements.

e Some stations were affected by significant near surface changes potentially leading to gravity
changes and were judged unsuitable for interpretation.

Consequently, the 2015 survey mainly serves as a new baseline for future time-lapse surveys, only a limited
number of points can be used for a time-lapse signal with the previous surveys.

The analysis is focused on 1996-1978 gravity signal because then no gravity stations were affected by any
infrastructure changes. 2015-1978 gravity data is mainly analyzed for those stations which condition was
not altered significantly.

Measured gravity changes range from approximately -50 uGal to 8 pGal for 1996-1978 and from -84 nGal
to 13 uGal for 2015-1978 period. The average time-lapse signal uncertainty is estimated at approximately
10 pGal. The observed gravity changes are consistent with gas water contact (GWC) rise measurements,
observed at certain wells for which saturation changes, interpreted from pulsed neutron logging (PNL)
measurements, are available. The mismatch between the measured and modeled gravity shows certain
patterns leading to scenario testing with using PNL measurements as additional constraints. The results
show that observed gravity changes support more water influx than currently modelled in the North-East
of the field nearby the Bierum cluster of producing wells. The opposite holds for the Stedum area, where
gravity supports less water influx than currently modelled. Additional gas depletion in the South of the
tield in the Carboniferous formation, which is absent in the dynamic model, could also bring modeled
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gravity closer to the measured changes, however, not all of the mismatch could be explained with tested

scenarios.
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Figure 19: 2015 gravity survey stations, repeat locations in red

6.2 Model implementation

The Groningen dynamic reservoir model was upgraded to include calculation of gravity change at survey
locations. The gravitational attraction is calculated from a point mass approximation: the mass change for a
grid cell is represented as a point mass at the centre node. For each surface station the vertical component
of the change in gravity can be calculated from a summation of the changes in the point mass at each grid
block node as a function of its trigonometric reference to each respective grid block node (e.g. vertical
distance, lateral distance, angle). A detailed derivation is given in the report by M. Glegola (17) and a detailed
description of the implementation in the dynamic model explains the history matching approach (18).

6.3 Data interpretation
The total reservoir induced gravity change is the combined effect of gas extraction and (lateral) aquifer
influx:

AMiotal = AMgas + AMyater

The gas production signal is generally dominating the total gravity change. From static and dynamic
reservoir modelling, there is a fairly good handle on the initial gas column weight (product of reservoir
thickness, net-to-gross, porosity, gas saturation, gas density), and on the depletion of the gas column in
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time (governed by reservoir pressure decline, which is constrained by over 1800 SPG measurements and
well matched). Therefore, time-lapse gravity measurements can help in constraining the uncertainty on
water influx into the field.

Two examples are given for observations from the time-lapse gravity change. These examples compare
dynamic model output to the measured gravity change signal and its respective uncertainty range. This

time-lapse signal uncertainty does not account for large infrastructural changes, such as those occurred
during the Groningen Long Term cluster renovation project.

6.3.1 Station 19

Station 19 is a stable measurement location (near a church) in the north-west of the field, near the
Uiterhuizen-1 well. In Figure 20 the measured and modelled gravity change is given for 1996 and 2015
with respect to 1978. In 2015 the modelled gravity reduction is larger than what has been measured, and
outside the uncertainty band of the measured signal. Given the high confidence in the model
representation of the gas extraction (reservoir pressure match), the mismatch is thought to be driven by
the modelled response of the aquifer. In the model the gas-water-contact is stable, however, no recent
calibration measurements (PNL) are available. This mismatch in gravity data suggests that there is a net
aquifer influx near station 19.
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Figure 20 left: change in gravity at station 19 comparing the measurement and its uncertainty range to the model
output. right: map showing the location of station 19

6.3.2 Station 504

Station 504 is located in the south of the field, near the Tussenklappen production cluster. This location
has been altered between 1996 and 2015 for the Groningen Long Term project and the gravity station had
to be transferred to the new, nearby location in 2015. The time-lapse gravity changes incorporating 2015
survey carry therefore high uncertainty, related to possible height changes (note that that the uncertainty
band in Figure 20 reflects signal uncertainty but that it does not reflect these infrastructure changes). The
pressure match for the Tussenklappen cluster is good and the density of the gas in the Slochteren is
therefore expected to be captured well by the model at this location. However, the modelled gravity
change is much smaller than the measured change in gravity. The Carboniferous basement underlying the
Slochteren reservoir at the Tussenklappen location is gas bearing, and pressure measurements have
demonstrated locally depletion of the Carboniferous (19). Potentially the depletion of the Carboniferous is
more global in nature (e.g. by gas migrating upwards into the Rotliegend), and as such may present
sufficient additional mass reduction of the system to explain the observed mismatch in the gravity data.

An alternative scenario was tested, whereby solution salt mining south of this station would cause the
mismatch. However, the modelling results based on Nedmag salt production data (16), show that it is of
an insignificant magnitude to explain the mismatch at this station.
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Figure 21 left: change in gravity at station 504 comparing the measurement and its uncertainty range to the model
output. right: map showing the locatioOn of station 504

6.4 Conclusion

The proposed methodology of calculating gravity changes for the Groningen field dynamic model allows
for a comparison of model output to time-lapse gravity changes, obtained from the 1978,1996 and 2015

surveys.

Significant mismatches between model output and measurements can be interpreted to reflect areas that

require improvements in modelled mass changes.

e Shortages in the modelled mass reduction may indicate over-estimation of the aquifer influx, or a
shortage in modelled mass extraction (e.g. depletion of the Carboniferous, which is not included
in the current setup of the dynamic model).

e Opver-estimation of the modelled mass change can be interpreted to be the result an under-

estimation of aquifer influx.

In the V4 model examples, the measurements of the gravity change are interpreted as to indicate there
could be more aquifer influx into the northern section of the model, and in the southern part of the model
there should be more mass depletion (pressure measurements in the Carboniferous support this), Figure
22. For future modelling exercises the aquifer influx in the north is expected to increase with the
introduction of gas below the contact (further explained in section 7.2). In the following models the gas
bearing fraction of the Carboniferous underlying the Groningen field will be added to the dynamic model
to incorporate its potential dynamical impacts.

Station 504 Station 19

VA

' gas bearing
Carboniferous

South

Figure 22: Reservoir cross-section indicating potential dynamic responses as suggested by the time-lapse gravity data
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7 Gasin the aquifer

7.1 Indicators for gas in the aquifer
From the ongoing reservoir modelling work, various indications were found that suggest the possibility of
gas saturation below the free water level (1):

e No Direct Hydrocarbon Indicator is observed from seismic. The static reservoir model is fairly
well calibrated from 300-odd well penetrations in a layer-cake type reservoir. The static model was
used to generate synthetic seismic. Only by introducing a gas saturation below the free water level
was it possible to remove the DHI from the synthetic seismic and match the recorded seismic.

e Petrophysical interpretations indicate gas saturations below the Groningen free water levels.
There are numerous measurements from Open Hole logs (which have a high uncertainty below
the gas water contact), and there was a conclusive measurement of gas below the contact from a

Cased Hole PNX log at Uithuizen-1 in April 2017.

More circumstantial indicators include:

e From RFT logging of infill wells the pore pressure depletion below the free water level has been
observed to consistently lag with respect to the overlying gas column.

e  Subsidence data suggests very limited depletion of the lateral aquifer to the north-west of the field

e The observed rise of the gas-water-contact in the north of the field (PNL data, gravity data) is
difficult to match in the dynamic model. This impact on water rise is shown by an example in
section 7.4.

7.2 Expected dynamic behaviour of gas in the aquifer
A potential presence of gas in the aquifer is expected to cause two distinct changes in the dynamic
response of the aquifer.

Firstly, there is a massive increase in the compressibility of the (combined) pore fluid. As a result, the
aquifer becomes a more significant factor in the overall drive mechanism, as compared to Figure 4. In
those parts of the reservoir with bottom water, a potent energy source is introduced directly below the gas
column. Figure 23 gives a schematic overview of the expected behavoir:

e In the initial situation prior to production, gas is trapped as individual bubbles within the pores.
Gas is the non-continuous phase, and cannot travel through the pore throats.

e When the pressure in the aquifer starts to decrease through production of the gas reservoir, the
gas bubbles expand. Depending on the initial saturation, at first it is expected that the expanding
gas will push water up into the depleting gas reservoir.

e  When the expanding gas exceeds the critical gas saturation, gas will become mobile and can
migrate upwards (20).

From the compressibility equation:

_1lov

 Vap
it follows that for a small pressure reduction (without big change in the compressibility):
AV ~cApV

Hence a significant increase in the aquifer compressibility (due to the presence of gas) will enable a
relatively small aquifer to provide a pressure response comparable to a much larger aquifer (without gas).
The energy in such a “gas charged aquifer” is however in closer proximity to the depleting gas column,
making the aquifer response more rapid.
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As a second dynamic effect, the presence of gas changes the aquifer from a single-phase system to a two-
phase system. The associated relative permeability effect will distinctly suppress the water permeability (at
least down to the endpoint permeability at Sgr). The effective permeability reduction caused by the gas
saturation in the aquifer will act as a pressure baffle, slowing down the depletion of the aquifer lateral to,

and deeper below the field.

: X

Initial situation: Pressure depletion: Ongoing depletion
trapped gas in the aquifer Gas expands, pushing out Gas exceeds critical gas
water saturation, gas can migrate

Figure 23 schematic of gas expansion in the aquifer due to pressure depletion.

7.3 Measurements

Conventional interpretation of saturation is done on the basis of Open Hole logs, interpreted with a focus
on the gas column. Results are obtained using Waxman-Smit parameters that are calibrated to the gas
bearing section of the field, and as such not necessarily representative for the water leg. Reassessment of
these parameters for the water leg is required to obtain proper estimates for gas saturations below the free
water level.

Only a limited number of wells in the Groningen field have significant penetration into the aquifer. None
of the Groningen wells have a bare-foot completion (i.e. Open Hole). All existing wells have Cased Hole,
ot have been completed with uncemented liners. Schlumberger’s PNXTM tool is a recent development in
Cased Hole reservoir surveillance technology. It provides a novel type of measurement that can be
interpreted to an actual saturation value. The Uithuizen-1 well (UHZ-1) was selected as a suitable
candidate for PNX data acquisition, to complement the historic suite of Open Hole logs that were
acquired when drilling the wells. UHZ-1 is an observation well located in the North of the field close to
the earthquake-prone Loppersum area. Historically, the well has been periodically used to measure
reservoir pressure and potential water encroachment. The presence of gas below the contact was already
observed from the initial open hole log evaluation, however, gas saturation values were within the
saturation measurement uncertainty.

In April 2017 PNX logging was carried out on UHZ-1. The survey conclusively confirmed the presence
of gas in the aquifer (21). However, the interpretation of the measurements differs significantly with
respect to the Open Hole analyses:

e The gas saturations interpreted from the PNX survey appeared to be significantly lower than
those estimated based on Open Hole saturations. The interpreted results below the free water
level show a maximum gas saturation of 10%. This is significantly lower than the 23 % gas
saturation from the Open Hole interpretation at UHZ-1, although it should be realised that the
Open Hole log gas saturation values in the water leg are uncalibrated. PNX measurements also
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require further calibration with detailed mineralogical data. A calibration project using core data
and PNX measurements from the ZRP-3A well is scheduled for Q4 2017.

e The gas saturations interpreted from the PNX survey at UHZ-1 results appear to be limited to a
depth of roughly 50 m below the current free water level, where the open-hole saturations
appeared to be present throughout the entire logged Slochteren interval and there is no indication
of a maximum depth to the open-hole interpreted saturations.

Further measurements are required to properly assess the uncertainty of these results. The PNX
measurements suggest that the interpretation results are highly sensitive to the mineralogical content of
the rock. A method is being established to incorporate knowledge of the reservoir mineralogy into the
interpretation of the Open Hole logs, but this will need additional calibration to reduce associated
uncertainties, Reference (21).

7.4 Scenario analysis of gas in the aquifer

The dynamic impact of gas in the aquifer on the pressure response and ultimately the subsidence match,
was tested with the dynamic reservoir simulation model. These scenario analyses were carried out on the
base case V4 model described in this report with the following two adjustments:

e No grid block volume multipliers were enabled, in other words the values shown in Figure 10 are
all set to 1. This change to the V4 model was made because the aquifer gas has the potential to
add energy and additional gas to the gas field. In the V4 model additional energy was added to the
static volumes by increasing the grid block volumes.

e The compressibility grid as derived from the inversion of subsidence data (which compensates for
areal trends in the compressibility) was not used. Instead the polynomial function of matrix
compressibility to porosity was used, see Figure 2. This change was made because the
compressibility grid resulting from subsidence data inversion, does not account for pressure
lagging in the aquifer due to gas below the free water level. Not taking this pressure lag into
account will result in a relatively low rock compressibility to achieve the same calculated
subsidence as a model in which the aquifer is not lagging in pressure.

The two different interpretations, continuous and relatively high gas saturations based on open-hole
measurements versus a lower gas saturation limited to a certain depth based on the PNX measurements
are tested as scenarios on the adjusted V4 dynamic model. Three scenarios were used to test the sensitivity
of gas below the free water level, varying only in the gas saturation below the free water level at the
initialisation of the model (Figure 24)For all three scenarios, the full production history was simulated up
to 31/12/2016. Due to :

Scenario 1 without gas in the aquifer

Scenario 2 10% gas saturation down to 50 m below the free water level (field wide),
based on the UHZ-1 PNX interpretation

Scenario 3 gas throughout the entire aquifer,
gas saturation values based on (uncalibrated) Open Hole logs, saturation field kriged
between the wells.

For all three scenarios, the full production history was simulated up to 31 /12/2016. Due to the relative
permeability effect, the presence of gas results dampens the pressure depletion in the aquifer, Figure 25.
Additionally, mobilisation of the gas beyond the critical gas saturation will result in an addition to the gas
in the reservoir, resulting in a slower pressure decline for the same cumulative production, this is shown in
the gas cap pressure difference between scenario 1 (~120 bar) and scenario 3 (~130 bar) in Figure 25.
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gas in aquifer (50m)
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Figure 24: Initial gas saturation (1/1/1955) for a cross-section near the UHZ-1 well for three model realizations
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Figure 25: Reservoir pressure (31/12/2016), along cross-section at well UHZ-1.
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Figure 26 shows the water rise at the Bierum-6 production well located in the north-east of the field. It is
found that there is indeed a significant increase in the gas-water-contact rise. Note that Scenatio 2 shows

more water rise than Scenario 3. In Scenario 2 the gas saturation stays below the residual gas saturation in

the model, which effectively acts as the critical gas saturation. In Scenario 3 the gas mobilises. The gas

saturation in Scenario 3 has expanded to the residual gas saturation. In Scenario 3 the gas becomes mobile,
for example for a porosity of 19%, at the residual gas saturation of 27% gas saturation (1), see Figure 27.
Relatively higher saturations of gas in the water will result in a reduction in the relative permeability of

watetr.

Scenario 1 Scenario 2 Scenario 3
no gas in aquifer gas in aquifer (50m) gas in aquifer (full column)
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Figure 26: Modelled water influx (line) compared to interpreted water height from open-hole (dots).
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Figure 27: Gas (kr2-red) and water (krl-blue) relative permeability curves for 19% porosity shown as a function of water
saturation

Pressure depletion is directly related to compaction, which in turn is related to subsidence. The
introduction of aquifer gas in the model results in less pressure depletion and also in less subsidence,
which is shown for the respective scenarios in Figure 28, Figure 29 and Figure 30. In these figures the
right-hand plot show the delta subsidence, which represents the mismatch between modelled and
measured subsidence. In these figures green represents a good match, warm colours represent too much
subsidence and cold colours represent too little subsidence.

Introducing gas in the aquifer dampens compaction caused by the depleting aquifer. An aquifer without
gas saturation predicts too much (+8 cm) of subsidence in the north of the field. Increasing the gas
saturation in the aquifer improves the match of modelled subsidence to data, reducing the error
significantly (+3 cm).
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Figure 28: Scenario 1 — Subsidence proxy calculation for a model without gas in the aquifer
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Figure 29: Scenario 2 — Subsidence proxy calculation for a model with 10% gas in the aquifer down to a depth of 50 m
below the free water level
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Figure 30: Scenario 3 —Subsidence proxy calculation for a model with average gas saturations below the free water
level distributed based on open-hole measurements

7.5 Conclusion based on the sensitivity of gas in the aquifer
The following conclusions drawn from the modelling results.

e  Gas in the aquifer results in a lower effective permeability due to a relative permeability effect,
which results in a lower pressure depletion in the water leg caused by the pressure depletion in the
gas cap, significantly dampening depletion, compared to an aquifer without gas. Thus, gas in the
aquifer reduces compaction in the aquifer and consequently subsidence.

e Gas in the aquifer can increase the rise in gas-water-contact with respect to a model that does not
have gas in the aquifer.

Gas in the aquifer has the potential to deliver additional energy. Once the critical gas saturation is
exceeded, the gas can migrate into the reservoir.

7.6 Gasin the aquifer: recommendations for future work

Currently the saturation and distribution of gas in the aquifer is uncertain. Furthermore, the
interpretations of the open-hole and the PNX measurements show differences that are to be further
reconciled.

It is recommended as a first step to investigate whether the presence of gas either extends to greater depth
(as is suggested by the current open-hole interpretation), or is limited to a certain depth (50 m below the
FWL as interpreted for UHZ-1 from the PNX). If the gas saturation depth is limited it is recommended to
find out if it is at a same depth throughout the field, or showing significant variation from one location to
the other. Hypothetically, a fixed maximum depth could represent a paleo-contact, suggesting thatover
geological time the free water level moved upward to a shallower level. Alternatively, any gas saturation
present throughout the logged interval and potentially extending to greater depths within the aquifer,
could suggest that gas remained trapped in the pores when gas migration and charge was stopped.

From a geological perspective, a description of the origin of the gas in the aquifer is required to steer the
modelling of the gas distribution in the aquifer away from the wells. If the distribution of gas in the
aquifer is found, based on additional petrophysical work, to extend down to greater depths in the aquifer,
this may be explained by migration of gas from a deep source underneath the Rotliegend reservoir.that got
trapped on its way up to the reservoir. Available basin modelling studies (22) do report early gas charge
from such a deep source rock, but also a second charge phase from a source located northwest of the
Groningen field in the Lauwerszee Trough area.

From a reservoir engineering perspective, if additional petrophysical work confirms the presence of a
paleo contact, it is recommended to investigate the critical gas saturation and whether the potential paleo
gas can be described by a capillary pressure model. A hypothesis for a paleo-contact in Groningen could
be a change in the reservoir temperature over geological time, after the field was charged. The temperature
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in the Groningen field is variable, with higher measured temperatures in the north than in the south (1).
The temperature could have changed from a higher temperature to a lower temperature after the field was
charged. Such a hypothetical reduction in temperature could have caused the gas to shrink and
consequently in a rise of the free water level.
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8 Recommendations for future work
Based on the V4 modelling exercise and the Study and Data Acquisition Plan, a number of

recommendations can be made that are expected to further improve the workflow and the resulting

model.

8.1 Seismic inversion to static properties
It is recommended to improve the process of property modelling in the static domain by considering the

dynamic behaviour of the V4 model (model maturation). This recommendation is aimed at improving two
issues identified in the dynamic model — a dynamic model with the same gas initially in place as the static

model will decline faster in pressure than what was historically measured, in other words the model is

lacking in energy, furthermore, the connectivity of certain wells should be improved.

1.

The main sources for more energy are either additional gas or additional aquifer support. Aquifer
support is largely constrained by the PNL measurements. The sources of additional gas can be
several; additional gross volume, shorter gas-water transition zone, increased porosity or higher
net to gross ratio. In the V4 dynamic model, these potential sources are all lumped into one
variable model parameter per region: a Grid Block Volume (GBV) multiplier for each region.
Based on several iterations, the seismic inversion to static properties (porosity) is not likely close
the gap between static and dynamic GIIP, 2868 vs. 2935 BCM. Although this difference from
static to dynamic GIIP is relatively modest (+2.3%), it is likely that better alignment between the
static and dynamic domain can be achieved. One area of particular interest is the Harkstede block.
Additional energy may originate from liberated gas from the aquifer or from gas
extracted/released from the Carboniferous. The latter may well occur in the south of the field
where part of the Carboniferous extends above the gas-water contact.

The up-scaled model, prior to history matching, has an inconsistency in the north of the field.

In the northern part of the model, the initial set of permeability values (based on the inversion-
derived porosity grid) is causing the observation wells to be lagging in pressure with respect to the
nearby production clusters. An example of this is the connection between observation well De-
Hond-1 and the nearby Bierum production cluster. Without any alteration, De-Hond-1 is lagging
in pressure with respect to the Bierum cluster, see the left plot in Figure 31. However, no such
pressure lag is actually measured by historical SPG surveys, see Figure 32. This means that De
Hond-1 is not sufficiently connected in the model to the Bierum cluster or to other production
clusters. A match was achieved by regionally increasing the permeability, see the right plot in
Figure 31.

After upscaling, the model permeability has been compared to available permeability
interpretations from build-up tests, see Appendix 3. The well-test results suggest a reduction of
permeability around the northern clusters. For instance, the build-up tests for Bierum cluster
indicate that the local permeability in the model should be lower. This is inconsistent with the
regional increase in connectivity required to achieve a pressure match in the northern observation
wells. With the current modelling set-up a match in Bierum is mutually exclusive to a match in the
northern observation wells.

It is therefore recommended to improve the permeability distribution in the model, which is a
direct function of the porosity in the north of the field. At a regional scale (e.g. north-east region)
the permeability should be increased. Local features, e.g. imprints of floaters in the Zechstein,
distort the seismic signal which translates into too low porosities and consequently too low
permeability. These local features are not necessarily representative of the actual reservoir quality.
At a well scale, the permeability should match with the permeability range derived from build-up
interpretations. It is recommended to use information on Zechstein imprints to locally adjust the
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permeability distribution, such that a match in connectivity for both the observation wells and the
production clusters in the north of the field becomes possible.
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Figure 31 Both figures show the model output for BIR-6 and HND-1, without permeability increase in the north (left) and
with permeability increase in the north (right).
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Figure 32 SPG data at datum depth 2875 m TVD NAP for all Bierum production wells and the nearby HND observation
well, there is no pressure lag.

8.2 Carboniferous

It is recommended to explore the dynamic effect of a gas bearing Carboniferous formation in the south of
the field, using the dynamic reservoir simulation model. The subsidence match in the south of the field
indicates that the model is not subsiding as much as is observed. This could be caused by underestimation
of the matrix compressibility or by a depleting gas bearing section of the Carboniferous. Although
generally very low in permeability (23), the Carboniferous in the south of the field is gas bearing, and it is
measured to be lagging only 50 bars behind the main field at the HGL-1 well. The Carboniferous top
structure has been recently reinterpreted (24).To incorporate the gas bearing Carboniferous into the
dynamic model a mechanism of depletion needs to be investigated. Available data (e.g. reservoir
properties (23), pressure measurements in the Carboniferous (19)) can be used to populate and constrain
this section of the model. Gas migration from the Carboniferous into the main reservoir can also explain
some of the difference between static and dynamic GIIP and the difference between modelled and
measured gravity change.

8.3 Gravity data

Upon implementation of a gas-bearing Carboniferous in the dynamic reservoir model, include gravity data
as a field-wide matching function in the history matching methodology (17).
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Appendix 1 — V4 best match

SPG match
RFT match
CITHP2BHP match
PNL match
oTe
Subsidence match Figure 17 (bottom)
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Appendix 2 — Variable model parameter range and optimal V4 setting

V4 Minimum Maximum
Gross bulk volume ranges
NorthEast_gbv_Mult 1.019 1.015 1.025
NorthWest_gbv_Mult 1.0242 1.015 1.025
East_gbv_Mult 1.0185 1.015 1.025
Central_gbv_Mult 1.0155 1.015 1.025
SouthWest_gbv_Mult 1.0239 1.015 1.025
SouthEast_gbv_Mult 1.0152 1.015 1.025
Eemskanaal_gbv_Mult 1.005 1 1.02
Kolham_gbv_mult 1.06 1.01 1.1
Harkstede_gbv_mult 2.42 1.01 2.5
usQ_gbv_mult 1.26 1.2 1.5
OPK4_gbv_mult 1.05 0.95 1.1
BDM_gbv_mult 0.93 0.84 1
KWR_gbv_mult 1.05 1 1.1
FWD_gbv_mult 0.3 0.3 0.6
WRF_gbv_mult 1 0.99 1.01
ANV_gbv_mult 0.1 0.1 0.5
Permeability ranges 10*
NorthEast_k_Mult 0.631 0.45 0.65
NorthWest_k_Mult 0.498 0.45 0.65
East_k_Mult 0.479 0.45 0.65
Central_k_Mult 0.591 0.45 0.65
SouthWest_k_Mult 0.47 0.4 0.5
SouthEast_k_Mult 0.43 0.4 0.5
Eemskanaal_k_Mult 0.46 0.4 0.5
Ameland_k_Mult -1.1 -3 0
Zeerijp_k_Mult 0.35 0 0.5
KWRLog_k_Mult 1 0 1
Feerwerd_k_Mult -0.08 -1 1
Warffum_k_Mult 0.2 -1 1
OPK4_k_Mult -1.27 -2 0
Fault transmissibility ranges 10*
LogFaultSeal_UsQ -2 -2 -1.5
LogFaultSeal_USQgas -2.15 -3 -1
LogFaultSeal_ODP -1.95 -2.1 -1.7
LogFaultSeal_BRH -1.5 -3 0
LogFaultSeal_RDW -0.4 -0.5 -0.3
LogFaultSeal_RDWN -0.14 -0.3 0
LogFaultSeal_ZWD 0 -2 0
LogFaultSeal_ANV -6 -6 0
LogFaultSeal_ANV_N 0 -1 0
LogFaultSeal _NE -2.33 -4 -1
LogFaultSeal_NE_UHM 0 -0.5 0
LogFaultSeal_NE_UHZ -1.7 2 0
LogFaultSeal_NE_ZND -1 -2 0
LogFaultSeal_ZRP -1 -4 0
LogFaultSeal_BIRSouth -0.4 -1 0
LogFaultSeal_BIR13 -0.4 -1 0
LogFaultSeal_RysAqf -1.2 -2 -1
LogFaultSeal_RysAgfNorth -2 -2 -1
LogFaultSeal_BRW5 -1.8 -3 -1
LogFaultSeal_AMR_LRM -0.03 -1 0
LogFaultSeal_PopUps 0 -0.5 0
LogFaultSeal_TBR -1.65 -2 -1
LogFaultSeal_TBR_ew -2 -6 0
LogFaultSeal_TBR_ns -2 -6 0
LogFaultSeal_SDBtoSZWtoEKR 0 -1 0
LogFaultSeal_SPHWest -0.6 -1 -0.5
LogFaultSeal_KHMTrough -1.85 -2 -1.3
LogFaultSeal_Harkstede -1.25 -2 -1
LogFaultSeal_HarkstedeN -0.3 -4 0
LogFaultSeal_HarkstedeNE -4 -4 -1
LogFaultSeal_HRS_AQF -0.4 -2 0
LogFaultSeal_LAU 0 -3.5 0
LogFaultSeal_HGZ 0 -0.1 0
LogFaultSeal_SAP15A -0.25 -0.5 0
LogFaultSeal_PosPauTjm -0.35 -0.4 0
LogFaultSeal_SDM -2 -4 0
LogFaultSeal_OPK4 -0.08 0 0
LogFaultSeal_MLA 0 -2.4 0
LogFaultSeal_BDM -7.5 -10 -5
LogFaultSeal_BDM3 -2.35 -2.6 -2
LogFaultSeal_BDM4 -1.2 -2 -1
LogFaultSeal_BDM5 0 -0.5 0
LogFaultSeal_RNM1 -1.9 -2 -1
LogFaultSeal_WRF1 -0.8 -2 0

Negative skin uncertainty (hydraulic fractures)
Skin_KWR1A -3 -4 -2
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Skin_SSM2A -3
Skin_SSM4 -3
Aquifer length uncertainty
AgfLength_AnnerveenVeendam 0
AgfLength_Lauwerseel 0
AgfLength_Lauwersee2 1000
AgfLength_Lauwersee3 3000
AgfLength_Lauwerseed 3000
AgfLength_Moewensteert 4505
AgfLength_Rodewolt 8800
AgfLength_Rysum 15321
AgfLength_Usquert 49000
AqfVsc 1.1
Relative permeability uncertainty
Sw_unc 0.05
density_gas 197
density_water 1172
Srg_slope 0
Krw_at_Srg 0.4
Krg_at_Swc 0.89
Nw 3
Ng 1.4
PhiMin 0.04
Min_Wat_Sat 0.45
Free water level uncertainty
FWL_Groningen_Central 2992
FWL_Groningen_E 2972
FWL_Groningen_NE 2978
FWL_Groningen_NW 2984
FWL_Groningen_SE 3006
FWL_Groningen_SW 2995
FWL_Gron_Eemskanaal 2996
FWL_Gron_Ellerhuizen 2997
FWL_Gron_Harkstede 3016
FWL_Gron_Hoogezand 3030
FWL_Gron_Oldorp 2967
FWL_Gron_Zuidwending 3017
Compressibility and subsidence uncertainty
Compress_rock_mult 1
PoissonRatio 0.25
TimeDecay 0.01

nWooooooooo

o

.
= o
© o
GG

1171

0.03
0.83
2.7

0.02
0.26

2972
2970
2970
2982
3003
2984
2993
2970
3014
3016
2966
3006

0.9
0.24
0.01

6460
30397
10721
31384
15898
37570
35715
15321
56757

1.5

0.05
199
1173
0.7
0.4
0.89

0.08
0.6

3012
2972
2982
2984
3015
3006
2997
3040
3018
3030
2988
3028

11
0.26

38



Groningen Dynamic Model update v4

Appendix 3: Model audit trail

Software

Dynamo version 2016.1 was used for all dynamic modelling work. The static Petrel model was up-scaled
using flow-based upscaling in Reduce++. MoReS was used for running the numerical 3D simulation.
Multirun was used as the parent for the experimental space filling design.

Location
The model is stored in the following location:

europe.shell.com\ tes\ams\ui.nam\ field\epe re 08\groningen\GFR Model 2015\20 HM\04 Experi
mentalDesign AHM\60 GRO 2016 ED Version 60

Include files (historical data, PVT, Saturation functions etc.) used by the model can be found here:

\\europe.shell.com\tes\ams\ui.nam\field\epe re 08\groningen\GFR Model 2015\Include\
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Appendix 4: Permeability comparison of reservoir model versus build-up tests
After upscaling the static model, the permeability in the dynamic model was compared to the permeability
obtained from build-up test interpretations. In 2003 an overview of all available build-up test analyses
results was published (25), the distribution of permeability per cluster/location is given in Figure 33.

The mean permeability from Figure 33 is compared to the average permeability in a 3-day inflow range
(ref. Appendix 4) in the dynamic model, Figure 34. Where the build-up test permeability is higher shows
as a green circle, where it is lower in red. This comparison needs to be interpreted with some caution.
Some differences between the model and build-up test permeabilities could be attributed to other dynamic
effects, such as well bore impairment at ‘t-Zand cluster, close proximity to faults in the Zuiderveen pop-
up structure or high perm streaks in the central region in the field.

This table has been used as an early check and was not used to constrain the posterior model permeability,
which was constrained by pressure and PNL matches. As discussed in 8.1, permeability reduction in for
instance the northern clusters might be requited to match the model permeability to build-up permeability.
However, this reduction might be in conflict with a history match to pressure data, for instance, a
permeability increase is required to improve the connectivity of northern clusters to northern observation
wells. This conflict is the main item addressed in the second seismic inversion by the geoscientists.

[Cluster Lognomal Distribution k [mO] Nomnal Distribution k [mD]  [Mo. Of tests
Mean | P(15) [ P(s5) | Exp | Wean | P15 | P85 [ Exp
BV 102 83 151 107 109 T 147 109 2
BIR 20 55 118 a4 85 50 120 85 4
DFL a
EKL 18 11 P} 18 18 k] a0 18 5
EFKR T £l 124 a5 a5 39 121 a5 3
FRB 853 853 1
HMD a
HRS a
K HM a
KPD 65 2 182 a0 = ar 145 = 13
LR 134 115 158 136 136 114 187 136 T
VDM a
WD 173 138 218 i} 17 141 2 17 8
MBR = 292 455 385 383 287 479 383 2
MNWS 138 1 158 139 139 122 187 139 8
JOVS a
[OWG Bz Bz 1
PAL 349 210 59 I 284 211 558 84 5
POS 185 52 2497 185 180 20 Zr 180 2
SAP 54 54 137 k=] 100 85 135 100 18
SCH 188 109 268 1 178 108 28 178 3
508 241 241 1
SO 43 45 1
SLD 200 200 1
SP 194 194 1
S2N 121 82 180 127 129 20 177 129 5
TBR a
TN 27 250 Zr4 287 27 250 Zra 287 2
TUS 28 81 153 a8 g7 | 143 g7 3
UTB 330 222 431 245 350 239 452 350 g
|ZBR a
7D ™ A7 133 88 a8 A8 127 a8 T
[ZPD a2 82 1
|2 a2 11 o] 44 52 1] 108 53 9

Figure 33 Average permeability from build-up tests per cluster/location directly copied from an overview report [EP
200301001671]
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Figure 34 Areal overview of permeability mismatch between static model and permeability derived from build-up tests.

Where the build-up test permeability is higher shows as a green circle, where it is lower in red. The permeability
scaling factors are given as a power of 10 (e.g. -0.26 refers to 1026 = 0.55)
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Appendix 5: Pressure matching

The evaluation of a history match on reservoir pressure is not entirely straightforward, because spot
measurements of a continuous signal (reservoir pressure at a well location from an SPG measurement) are
compared to the outcome of a discretized model (average pressure over a gridblock and over a simulator
timestep). Prior to 2011, the V4 model is using monthly time steps (section 3.2). The shut-in of a
production well and the associated pressure build-up is not reflected by the simulator if the shut-in is
shorter than a calendar month. The calculated wellbore bottomhole pressure during that particular
monthly timestep reflects the conditions of a flowing well.

To circumvent this issue, a resetvoit pressure measurement is compared to the average pressure in a range
of gridblocks around the well. The areal extent of the range is determined such that the average pressure
in the range corresponds to the equivalent of the wellbore bottom hole pressure after 3 days of shut-in.
Average pressures are calculated in this way for each well, for each timestep, to allow for a direct
comparisson to the measurements without having to explicitly model each (short) buildup, which would
require an impracticle number of simulation time-steps to capture all 1800 pressure measurements.

After 2011 the model takes daily timesteps (section 3.2) which, in combination with Local Gridblock
Refinement, allows for explicit modeling of the shut-ins: the wellbore bottomhole pressure should match
the SPG measurement directly. To check whether the approach based on the gridblock ranges is still valid,
the difference between the bottom hole pressure and the average range pressure is determined. In Figure
35 the average pressure in the range is compared to the bottom hole pressure at the time an SPG
measurement was taken (across all wells). This comparison shows that the output of the reservoir model
to which SPG measurements are compared is roughly 1 bar higher than it should be for the period 2011-
2017.

‘ * S ‘ Table Name: CITHPvsSPGPressureTable
Plot Name: plot_3
Time=2.016997e+03 [YEAR]

10

PressureDiff
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+ T* A .5
o ﬂ ‘e & * 2 - .“’ b 4

2011 2012 2012 2013 2013 2014 2015 2015 2016 2016 2017
Time [YEAR]

Figure 35 difference between model output for SPG and converted closed-in tubing head pressure (a positive value
means the modelled SPG pressure is higher than the modelled closed-in tubing head pressure).

42



Groningen Dynamic Model update v4

Appendix 6: Investigation of high permeabilities in the Central area

Opver the period 1970-1980, the Zuiderpolder area exhibited a different pressutre decline behaviour from
the rest of the field, showing a slower decline in pressure than the nearby more southern clusters, see
Figure 36. This behaviour was identified during GFR 2012, when Adjoint calculations indicated that the
dynamic model needed higher permeability in the Groningen central area, see Figure 37. During the GFR
2015 work, again an increase in the central region permeability was required. To obtain a pressure match
in the V4 model, the upscaled model permeability for this central area was increased 4-fold in the dynamic
model, see Figure 38. This section describes the analysis of a well test performed in the Zuiderpolder
(ZPD) production cluster located in the Central region, to support these modelling choices. The full
analysis is documented in Reference (26).

330
320
310

300 n

P_OVER_Z
N
[ |
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1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
TIME_FULL

Figure 36 p/z over time for the Zuiderpolder cluster (red), the more southern Eeker cluster (blue) and the more northern
Siddeburen (yellow) and Amsweer (green) clusters.
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Permeability gradient [J] ~
inimise J
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. Permeability gradient after single forward and backward run from Adjoint indicating an increase in permeabilityin central area. Both RMS pressured
Fig33 difference (red) and average pressure difference (blue) between simulated and measured data (bottom left) indicate a lack of energy in early life *
Groningen Field Review 2012 Document no.: EP201202215894 |  February 2012
Dynamic Modelling and History Matching Results NAM

Figure 37 Permeability gradient resulting from Adjoint run on GFR 2012 Groningen MoReS model (top). The Central

area clearly stands out (high permeability multipliers in red), with the ZPD location marked by the yellow circle.

el

Figure 38 Permeability multipliers on the horizontal permeability from O(yellow) to 5 (red), showing a 4 times increase

in the central region compared to a 2.5-3 times increase in the nearby regions. ZPD cluster is indicated with a yellow

circle.

Geologically the Central area is situated in a transition from conglomerates in the south (relatively lower

permeability) to more sandy facies in the north but with increasing clay content and finer grain size. One

hypothesis is that at this transition local high permeability streaks could provide a highly conductive

connection from the Central area to the rest of the field. Such streaks would increase the lateral
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connectivity and could provide the pressure support during early field life which was matched in the
dynamic model by the high permeability multipliers.

Due to upscaling steps in the static and dynamic model, these high permeability streaks may not get
sufficiently captured in the model. The upscaling step in the static domain is illustrated in Figure 39, which
shows a gamma ray and porosity log for ZPD-12A (left hand side) and for ZPD-10 (right hand side),
along with the permeability layers in the static model. Actual core measurements are superimposed as
white dots. Note that several intervals show core permeability around 1000 mD, where the permeability in
the static model is around 100 mD. This implies that the permeability in the static model is locally
underestimating the permeability measured in core samples. Figure 39 also shows that these high
permeability intervals occur around the same stratigraphic depth in both ZPD-10 and ZPD-12A,
suggesting lateral continuity.
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Figure 39: Well log of ZPD-12A and ZPD-10 showing both permeabilities as in the static model (colored bars in the
rightmost logs) and core measurements (white dots in the rightmost logs).

In August 2014, a Flowing Build-Up (FBU) test was carried out on the Zuiderpolder-12A well. A
downhole gauge was placed in the well for 61 days, covering a main build-up of 54 days. This well test was
analysed with the use of dedicated well-testing software that relies on model based inversion. A variety of
models is tested and when a model can reproduce the measured pressure it is considered, if it is
geologically sound, to be representative of the subsurface.

Several hypotheses were tested with dedicated well test models, including high permeability streaks, a
connected Carboniferous basement and conductive fractures. An acceptable match was obtained with a
numerical model that has a single high permeability streak connected to the ZPD-12A well, as depicted in
Figure 40. The late time mismatch is the result of the limited size of the numerical model, an extended
model including additional faults could capture the pressure at the end of the test better. In this model,
several faults surrounding the ZPD cluster needed to be partially sealed, see Figure 41. The connected
Carboniferous basement and the conductive fracture models did not achieve acceptable matches.
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Maoddal = Mii-Layer. Mumerica

U9343s pue

Figure 40: Numerical simulation with 1 high permeability streak in connection with the Sand Screen and a kv/kh of 0.1
and reservoir permeability of 100 mD. The fault model is depicted in Figure 41.

ZPD detadled struciune map

Figure 41: Fault representation around ZPD-12A in a high permeability streak model. The green line indicates a fully
open fault (leak factor of 1.0), the red lines indicate a leak factor of 0.01 and the red dot marks the ZPD-12A well.
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