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General Introduction 

The seismological model incorporated in the Hazard and Risk Assessment makes use of fundamental 

physics-based models, with pore pressure depletion as the driver for the seismic activity (Ref. 1 to 3).   

Alternative approaches to the forecasting of seismic activity have been explored.  This report describes 

the development of a seismological model for the activity rate in the Groningen field, using the 

geomechanical model developed for the Groningen field (4 to 6).  Both compaction and fault slip based 

seismological models are examined. 
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Executive Summary  
 

Seismic activity forecasts play a significant role in the production plan for the Groningen field. These 

forecasts are based on models that are calibrated to historical seismic activity, and many of these models 

can represent the historical seismicity observations equally well. However, when projected into the 

future, these models can yield very different activity forecasts, so it is important to consider a wide range 

of models when making a forecast and not be locked into one form at the expense of potentially more 

predictive models.  

Activity forecasts are also a critical input to the Probabilistic Seismic Hazard Analysis (PSHA). Since the ML 

3.6 Huizinge event occurred in 2012 the regulator has required that hazard maps be generated and 

submitted for the production scenarios under consideration. To make hazard maps, a map of seismic 

activity is required that quantifies how many events are expected to occur over a given timeframe and 

their spatial distribution. An activity map does not include information about the expected size of events, 

as that information is a separate input into the PSHA. Whether events are dispersed over a large area or 

localized into high activity zones will affect the spatial distribution of Peak Ground Acceleration (PGA) in 

the hazard maps as well as the maximum PGA. For the purposes of this document we examined only PGA-

based hazard maps (10% probability of exceedance in 50 years) without consideration of spectral 

accelerations at various structural periods or other values for probability of exceedance. 

In tectonic settings, where overall seismicity rates are expected to be constant over the time frame of 

interest, the historical catalog is used to generate an activity map. In the case of induced seismicity, a 

constant seismicity rate cannot be assumed. Seismic events are related to gas production so the rate and 

spatial distribution of gas production should affect the activity in any given year. Therefore, a model is 

needed to relate production to seismicity. Production leads to subsurface deformations and changes in 

stress and these stress changes may result in tremors. A geomechanical model is calibrated to historical 

observations to capture the relationship between production and subsurface deformations and then a 

seismological model is created to relate the deformations to the observed seismicity. To make an activity 

forecast the geomechanical model projects subsurface deformations for a given production scenario (pore 

pressure evolution) and this is then fed into the seismological model.  

The geomechanical model is based on the physics of deformation while the seismological model is a 

statistical correlation between the historical geomechanical quantity and the observed seismic activity. 

There are many forms that the seismological model could take and this report documents an exploration 

of those forms, an analysis of which are the best representations of the observed seismicity to date and a 

discussion of which are likely to be the most predictive. One of the options explored is the type of 

geomechanical quantity that is used as an input to the seismological model. Depending on the type of 

geomechanical model in use, the subsurface deformation can be represented by either reservoir 

compaction or the amount of slip that occurs on discrete faults.  

NAM’s Hazard and Risk Assessments for Groningen have historically been based only on activity forecasts 

using compaction as an input to the seismological model. The ExxonMobil Upstream Research (EMURC) 
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geomechanical model captures compaction across the entire field and fault slip over the 70% of the field 

area that is the most seismically active. Both compaction and fault slip based seismological models are 

examined. In the area where the fault slip geomechanical model exists, a fault slip based metric is found 

to yield a significantly better representation of the observed seismicity than a compaction based model. 

The best fault slip based seismological model forecasts lower activity rates over the next 30 years than a 

compaction based model similar to that used by NAM. Compaction and fault based models result in very 

different spatial distributions of seismic activity, but this has a relatively small effect on the resulting 

hazard map due to the fact that the Ground Motion Prediction Equations (GMPEs) act to disperse the 

hazard over a larger domain.  

The faulted geomechanical model does not exist in the entire domain of the field, so currently only 

compaction can be used to develop a field wide activity model. A variety of forms were considered and 

the model currently used by NAM was found to be one of the better models. However, two other 

seismological models represent the historical data better, or nearly as well, but make substantially 

different forecasts about the seismicity rate in the near term. Given the importance of the activity rate 

forecast, and the near equality of the different model fits, at this time it is difficult to strongly favor one 

compaction based model over another. 

Given that there is no physical basis to prefer one type of compaction based (or fault slip based) 

seismological model over another, multiple models should be carried forward, and weighted 

appropriately in a logic tree, so that an assumption of one form for the seismological model does not 

dominate the result.   
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1.0 Introduction 

1.1   Overview of Groningen seismicity 
The Groningen gas field is located in a tectonically quiet area of little to no historic seismicity. By the 

1980s, some 20 years after first gas production in the area, tremors started to be felt in the vicinity of 

other nearby gas fields. The first seismic event to be detected in association with the Groningen gas field 

was in 1991. By that time, seismicity around the Northern Netherlands gas fields had increased and was 

understood to be a consequence of fault reactivation due to pressure depletion from gas production. 

From that time forward the Groningen seismic activity catalog shows a generally increasing number of 

events per year and an overall trend of increasing peak magnitude of events (Figure 1) up until recently 

when the number of events per year has started to decrease. The yearly production is also shown in Figure 

1. There has been a clear correlation between the produced volumes and number of events since the year 

2000. A large amount of the production prior to 2000 occurred without any seismicity, making any 

correlation with yearly production less clear.  

As of January 1, 2017, 285 events of magnitude 𝑀𝐿 ≥ 1.5 have been observed within and near the 

Groningen field. 12 of those events occurred before April of 1995, when the installation of new surface 

seismic stations established catalog completeness down to 𝑀𝐿  1.5, with local areas of completeness down 

to ~𝑀𝐿  1.2  (van Thienen-Visser et al., 2016). In addition to a surface array of seismometers operated by 

the Royal Meteorological Institute of the Netherlands (KNMI), there are also downhole arrays of 

geophones deployed in the reservoir interval that are operated by NAM (the operator of the field). The 

downhole arrays are able to detect smaller magnitude events than the surface array, but only in the 

immediate vicinity of the boreholes. While small magnitude data exists, it is not spatially and temporally 

complete so this study will focus only on 𝑀𝐿 ≥ 1.5 events recorded by the surface array since that catalog 

covers the full aerial extent of the field.  

 

Figure 1:  Number of events observed per year, categorized by magnitude (reported as local 
magnitude 𝑴𝑳) and yearly production (black line) to year end, 2016. A general correlation 
between production and number of events is apparent since the year 2000. 
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To understand the spatial distribution of seismic activity a map view of the events through the end of 

2015 is provided in Figure 2. The field outline is shown as a maroon line plotted on a depth map of the 

top of the reservoir and the light blue squares are the surface seismic stations. Most of the seismic activity 

has been located in a large cluster towards the central-north end of the field. The two largest magnitude 

events observed to date, the August 2012, 𝑀𝐿  3.6 (𝑀𝑊 3.4) Huizinge event and the 𝑀𝐿 3.5 Westeremden 

event, are located in the northwest of this cluster (red circles). This area with historically larger peak 

magnitudes and more frequent events is called the Loppersum region (named for the nearby town of 

Loppersum). Concerns about the potential hazard and risk in the area led to a large investment by NAM 

into a scientific program to better understand the seismicity and how the gas production plan affects the 

characteristics of the seismicity.  

 

Figure 2: Seismic activity at the Groningen field, through end of 2015. The field is outlined in pink 
and the depth map is the top of the Rotliegend reservoir. Epicenters are circles and 
scaled/colored according to magnitude. Current surface seismic stations are light blue squares 
and the downhole array locations are dark blue circles. Event locations were obtained from the 
Royal Netherlands Meteorological Institute’s website1. Lateral error in the location is estimated 
by KNMI to be ~1 km, while depth is assigned to be 3 km – within the reservoir.  

                                                           

1 http://www.knmi.nl/kennis-en-datacentrum/dataset/aardbevingscatalogus 

http://www.knmi.nl/kennis-en-datacentrum/dataset/aardbevingscatalogus
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1.2   Probabilistic Seismic Hazard Analysis Activity Model 
Since the 2012 Huizinge earthquake, the regulator requires that Probabilistic Seismic Hazard Analysis 

(PSHA) maps be submitted as part of the production plan. One of the three input components of PSHA is 

the forecasted number and spatial distribution of earthquakes (the activity model). The other two 

components are (1) the ground motion prediction equations (how much shaking may occur at a given 

distance from a given magnitude event) and (2) the magnitude frequency distribution specified by the 

Gutenberg-Richter b-value and a maximum magnitude. All of these components are important in the 

PSHA and are the subject of ongoing investigations (E.g., Coppersmith et al., 2016; Bommer et al., 2016). 

The focus of this study is the activity model, which is decoupled from the earthquake magnitude. Activity 

only captures the number of events at or above a threshold magnitude (here 𝑀𝐿  1.5) and their spatial 

distribution.  

PSHA is based on a grid of source locations of spatial coordinates, 𝒙, each with their own activity rate, λ 

𝜆(𝒙) =  
# 𝑒𝑣𝑒𝑛𝑡𝑠

𝐴𝑟𝑒𝑎 ∗  𝑦𝑒𝑎𝑟
 

Activity is strictly a number of events expected per unit area per year. A map of 𝜆 values (an activity map) 

contains information about the total expected number of earthquakes per year, as well as the spatial 

distribution of the sources. An integration over the area of the map results in the total number of expected 

events in a given year.  

In conventional PSHA analysis this rate is not expected to change in time, but due to the non-stationary 

(changing with time) nature of induced seismicity, the rate can also be a function of time, 𝜆 = 𝜆(𝒙, 𝑡). The 

PSHA is performed for a snapshot of activity at a specific point in time, but the time dependence is crucial 

for fitting a seismological model to the observations and projecting an activity rate into the future.  

In order to make an activity map there needs to be an understanding of what is causing the earthquakes. 

The Groningen induced earthquakes are the result of deformation and stress changes in the subsurface 

and these changes are being driven by the gas production. Therefore, different production plans (total 

volume and spatial distribution of withdrawal) should result in different subsurface stress changes and 

seismicity. NAM supplies hazard maps for the different production plans under consideration and this 

requires a methodology to translate production into seismic activity. A geomechanical model is calibrated 

to historical observations and captures the relationship between production and subsurface deformations 

and then a seismological model is created to relate the deformations to the observed seismicity. The 

seismological model is a statistical model (no basis in physical equations) and it translates a geomechanical 

quantity (reservoir compaction or fault slip) into seismic activity.  

1.3   Geomechanical model input to the seismological model 
A geomechanical quantity is a better basis for a seismological model because stress and deformation are 

closer to the true cause of seismicity than production alone. Production causes changes in stress and once 

the stress exceeds the strength of the fault an earthquake occurs. While production is the fundamental 

driver that leads to geomechanical changes, if the production itself is used as the basis of the seismological 
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model then geologic heterogeneities are difficult to account for. Geomechanical models are able to 

account for differences in the material properties throughout the field and the geometry of faults so 

geomechanical quantities are a better basis for a seismological model than production or pore pressure.  

Since 2013 ExxonMobil Upstream Research Company (EMURC) has invested resources into developing a 

geomechanical model of the Groningen field. EMURC has used the commercial finite element program, 

ABAQUS, to develop a quasi-static 3D geomechanical model covering large portions of the field and 

including ~90% of the faults mapped in those areas (Lele et al., 2016). The 3D model imposes pore 

pressure changes in a global model that does not explicitly include faults (reservoir layers are draped 

across faults to approximate the pre-existing geometry) and extends far beyond the boundaries of the 

field. The prescribed pore pressures are taken from the NAM provided reservoir simulation model that is 

history matched to the production and forecasts future pore pressure changes for each production 

scenario. The global model provides a measure of the compaction across the domain of the entire field.  

The deformations calculated in the global model are then applied as boundary conditions to three 

overlapping submodels that explicitly include the faults and cover domains smaller than the field. The 

faults are modeled as contact surfaces that are able to slide past one another. The complex fault geometry 

(e.g. surface roughness) cannot be fully captured in these submodels, but the spatially variable average 

strike and dip of the fault are well represented. Both the global model and the submodels have porosity 

(and thus location) dependent elastic moduli. The porosity variation throughout the field is prescribed by 

the geologic model and the elastic moduli dependence on the porosity is constrained by lab data. Figure 

3 shows an example of the slip magnitude that accumulates on the modeled faults in one of the 

submodels. 

 

Figure 3 Oblique view of one of three geomechanical submodels. Contoured value is the 
magnitude of slip for a friction value of 𝝁 = 𝟎. 𝟑𝟎 on the fault.   

The geomechanical models first developed in 2013 (Sanz et al., 2015) have undergone substantial 

upgrades and modifications during 2015. Both the 2013 and 2015 models have the same global model but 
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the 2015 submodels are substantially different from the 2013 submodels. In the present day subsurface, 

pre-existing slip on the faults has resulted in offsets of the layers across the faults. These offsets are 

captured in the 2015 submodels but not in the 2013 models (see Lele et al., 2016 for a complete 

description of the geomechanical model). Additionally, in the 2013 version there were 2 submodels and 

the 2015 model has 3 submodels so more of the field is represented (submodel 3 is outlined in green in 

Figure 4a). The 2015 submodel changes have resulted in a different model behavior than what was 

observed in the 2013 submodels. These changes have partially motivated the recent focus on developing 

a geomechanical based activity model, as opposed to a strain partitioning model approach, which will be 

discussed in more detail in the next section. 

     

Figure 4: (a) Location of submodel domains in relation to the field outline. Blue – submodel 1; 
Red – submodel 2; Green – submodel 3 (only in 2015 study). Black lines are the faults included 
in the submodels. (b) Due to the overlap of the submodels, only some data is taken from each 
submodel to prevent data duplication in the merged dataset. The boundaries used to merge the 
data are shown here. 

While the geomechanical models are quite complex, there are a limited number of outputs that can be 

used as a basis for a seismological model. Reservoir volume change and fault slip are the candidate output 

fields. A measure of reservoir volume change due to depletion is obtained from the global model that 

does not contain faults. Under uniaxial strain boundary conditions (no lateral deformation) volume change 

is expressed strictly as a change in reservoir thickness (a map of compaction). If the geomechanical model 

contains faults then slip can evolve on these faults over time in response to the specific reservoir 

conditions and fault orientation at that point in space. The submodels overlap each other in space so when 

combining the submodel results only some data is taken from each submodel to prevent data duplication. 

The boundaries used to merge the data are shown in Figure 4b. Once a fault slips, either the seismic 

moment (slip*area*shear modulus) or the dissipated fault energy (slip*shear stress) can be used as a 

geomechanical input. Qualitatively there is little difference between the moment and energy metrics 

a) b) 
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because they are both based on the fault slip and are very well correlated over time. Therefore, only fault 

moment is considered in this study with the knowledge that results based on dissipated energy are nearly 

identical.  

Both compaction and fault moment based seismological models are examined here. Each has advantages 

and disadvantages but the resulting seismic hazard maps (in terms of Peak Ground Acceleration, PGA, 

with a 10% probability of exceedance in 50 years) are not drastically different. Currently, NAM implements 

a compaction based approach (Bourne and Oates, 2015a,b) so while EMURC does not have the same 

compaction model as NAM, a compaction based fit allows for more direct comparison with  the Bourne 

and Oates (2015a,b) results. Geomechanically modeled fault slip is more similar to earthquake motion 

than compaction, so there are theoretical benefits to using a fault moment based seismological model. It 

should be noted that submodels do not cover the entire extent of the field so the fault slip metric is 

difficult to implement for a complete field wide forecast.  

1.4   Activity vs. strain partitioning models 
Once a geomechanical model input quantity has been determined the seismological model needs to 

correlate that quantity with observed seismicity. The quantity can either be correlated with the number 

of events or the size of the events. A correlation with the number of events provides the activity map that 

is needed for the PSHA and is the focus here. An alternative relationship would derive a coefficient of 

proportionality between the modeled quantity and the observed energy/moment release. This type of 

model is called a strain partitioning model. To derive an activity map from a strain partitioning model 

would require assuming an average moment release per event (via the Gutenberg-Richter relationship) 

to translate moment release per year into events per year.  

In 2013 a strain partitioning methodology was used to relate the EMURC geomechanical output to the 

observed seismicity (Sanz et al, 2015). The modeled dissipated fault energy was compared to the observed 

seismic energy release in the two submodel domains. The motivation behind this approach is the idea 

that where the model predicts abundant slip, abundant slip should be observed. In 2013 this approach 

worked well as the same partitioning coefficient could be used for both submodel 1 and 2 to relate the 

observed seismic energy release to the model energy dissipated by fault slip. However, this uniform 

partitioning coefficient no longer holds for the 2015 submodels. A comparison of columns 4 and 5 in Table 

1 shows that 89% of the observed seismic moment release was in the submodel 1 domain but only 44% 

of the modeled moment was in submodel 1. (The percentages do not differ by more than 1% if Table 1 is 

presented as energy rather than moment).  
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Table 1: Comparison of earthquake observations and model results in each of the three 
geomechanical model submodel domains as of Jan 1, 2016. The 2015 model shows a poor 
correlation between observed and modeled moment. The model results are presented as the 
moment that has accumulated after some reference point in time, specified by the year. SM 
refers to submodel number. 

  Observations Model Results 

 
 

# of Events Moment of 
Events 

Moment of 
Model (1990) 

Moment of 
Model (1967) 

Absolute 
Values 

SM1 171 1.357e15 1.016e16 1.942e16 

SM2 47 9.486e13 6.623e15 1.241e16 

SM3 27 8.165e13 6.240e15 1.200e16 

Percentages SM1 70% 89% 44% 44% 

SM2 19% 6% 29% 28% 

SM3 11% 5% 27% 28% 

 

The spatial distribution of modeled and observed moment is shown in Figure 5. Model and observations 

are presented as heat maps with a spatial smoothing applied to the model and observations (the method 

used to spatially smooth the data is discussed in section 2.2). Both model and observation have the most 

moment release in the submodel 1 domain (blue box outline) but if submodel 1 is simply divided into 4 

quadrants, the equality of ranking of the quadrants breaks down.  
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Figure 5: Comparison of (a) modeled moment release and (b) observed seismic moment release. 
A 3 km kernel is used to distribute the modeled and observed moment over a spatial domain. 
Observed moment release is of all observed earthquakes and model moment release is all fault 
slip moment since Jan 1 of 1990. Blue, green and red boxes are the submodel 1, 2 and 3 domains 
respectively. Maroon line is the field outline. Gray circles are all observed events of ML ≥ 1.5 as 
of January 1, 2017, and their size is proportional to magnitude. Color shading is moment release 
per 250 m x 250 m gridpoint.  

The poor spatial correlation between modeled and observed moment release illustrates that the quasi-

static geomechanical model cannot capture the true heterogeneity or the processes that take place during 

an earthquake. Since several components of the physics of earthquakes cannot be included in the quasi-

static model it is not reasonable to expect the model to fully capture the time release of energy in the 

subsurface (i.e. predict location and magnitude of earthquakes). However, the model well represents 

a) 

b) 
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where faults are being stressed. The amount of slip that evolves on the fault indicates if a fault is being 

stressed a lot or a little and if it is over a long duration or a short duration. An earthquake is more likely to 

nucleate in an area that is highly stressed so the geomechanical model could be a good proxy for the 

availability of earthquake nucleation sites. Where the model predicts fault slip we should expect to see 

more events. The physics of the rupture process determines how big the earthquake is, and the quasi-

static geomechanical model cannot capture these effects. For these reasons the quasi-static modeled fault 

slip/energy is compared to the observed number of events rather than the observed moment.  

2.0   Methods 

2.1   Compaction data 
Depletion of the Groningen reservoir results in a decrease in pore pressure, and this causes the reservoir 

rock to compact over time. The amount of compaction depends on the magnitude of pore pressure 

reduction and the porosity dependent elastic moduli at a given position in the reservoir. The reservoir 

does not have infinite lateral extent so there will be lateral movement in response to the depletion, but 

the horizontal displacements are small compared to the vertical displacements that are solely considered 

here. The top and bottom of the reservoir are defined layers in the global geomechanical model so the 

displacement of every point can be evaluated at any year. The top of the reservoir will move down due to 

depletion and the bottom of the reservoir may also move in response to the depletion. The compaction, 

𝑐(𝒙, 𝑡), at spatial positions x, and time t, are evaluated by 𝑐(𝒙, 𝑡) = Δ𝑢𝑧
𝑏𝑜𝑡𝑡𝑜𝑚(𝒙, 𝑡) − Δ𝑢𝑧

𝑡𝑜𝑝
(𝒙, 𝑡), where 

𝑢𝑧 are the vertical displacements and the resulting compaction is a positive quantity.  

The displacements are only calculated by the geomechanical model for January 1 of each calendar year. 

Therefore, the 2015 compaction is simply the compaction from January 1, 2015, and the 2015 compaction 

derivative is the difference between the January 1, 2016 and the January 1, 2015 compaction values. The 

activity for the year, 2015, is calculated from those 2015 values. The choice could also be made that the 

compaction derivative for the year 2015 is the difference between the January 1, 2015 and the January 1, 

2014 compaction values. In that case only past production (and not current or future production), 

influences the seismicity. 

In addition to bulk values that represent the entire year, the compaction and compaction derivative values 

at specific dates throughout the year are needed to estimate the parameters of the seismological model. 

To determine the compaction at a point in space during the year, a linear interpolation between January 

1 values, at the specific point in space, is performed. This linear interpolation neglects the seasonal swing 

in production that has occurred historically due to the high production of gas during the cold winter 

months, but this effect will be small and is not expected to significantly change the results. The derivative 

of compaction for July 1 is estimated by centered difference between the compaction values of the next 

January 1 and the previous January 1. The compaction derivative at any other date is then computed by 

linear interpolation of these July 1 estimates. The choice of a centered difference was made to maximize 

accuracy.   
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Figure 6a shows how the total reservoir volume has changed in the global geomechanical model and is 

expected to change over time for a given production scenario (here the 27 bcm case is shown). In 2017, 

~2/3 of the total expected compaction has occurred. Seismic activity started in the mid 80’s and picked 

up in the mid 90’s, after ~1/3 of the compaction had occurred.  The derivative of this curve, the rate of 

volume change, is shown as the red line in Figure 6b. The onset of seismicity did not correspond to the 

time of highest compaction rate (blue circles - note that the few events in the 80’s and early 90’s were 

not well recorded and are not included in the catalog shown). Figure 6c shows the cumulative number of 

events in each year vs. the total volume change. Each year is shown as one point and the last point is for 

2017, so there is no increase in earthquakes because the 2017 catalog is not included. A clear relationship 

exists that could be fit with a variety of functional forms.  

 

 

Figure 6:  Features of the field wide change in reservoir volume. (a) Total reservoir volume 
change increases monotonically with time. (b) Derivative of volume change (red line) is not 
monotonic. Blue circles are the number of ML ≥ 1.5 events observed per year. (c) Cumulative 
number of ML ≥ 1.5 events vs. total volume change suggests a non-linear relationship between 
compaction and activity. 

It is clear from Figure 6b that a large amount of volume change occurred before the onset of seismicity. 

This suggests that a threshold was reached and compaction past this threshold may result in seismicity, 

but compaction less than this threshold may not. The threshold can either be specified as a time or a 

compaction value. Figure 7 shows the compaction at the point in space and time of each observed 

earthquake. The size and shading of each circle is proportional to the magnitude of the observed event 

and the gray line is the maximum compaction value at any point in the model domain. Most events occur 

in areas where 𝑐 ≥ 0.18 m and after 1990 so either could be used as a threshold.  

a) b) c) 
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Figure 7: Compaction at each point in space and time that an earthquake was observed within 
the field outline. Shading and size of circle is proportional to the magnitude of the observed 
event. Gray line is the maximum compaction value at any point in the model within the filed 
outline. Model is referenced to the beginning of production, 1965.  

Once a threshold is specified, all compaction values are in reference to that threshold value. If the 

threshold is specified as a year (e.g. 1990) then the January 1, 1990 compaction value at each point in 

space is subtracted from all subsequent years (the model is referenced to 1990 values). When a forward 

derivate is used, the derivative value in 1989 and all previous years is set to zero while the derivative for 

1990 and later is unchanged. If a threshold value is specified (e.g. 0.18 m) then that value is subtracted 

from the compaction at every point in space and time. Negative referenced compaction values are set to 

zero and then the derivative is calculated. Note that this process can result in earthquakes occurring at 

locations with compaction values of zero, which results in difficulties when performing the fits (discussed 

in more detail later). 
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Figure 8: Comparison of (a) modeled reservoir compaction since January 1 of 1990 and (b) 
observed seismic activity. A 3 km kernel is used to distribute the observed activity over a spatial 
domain. Blue, green and red boxes are the submodel 1, 2 and 3 domains respectively. Maroon 
line is the field outline. Gray circles are all observed events as of January 1, 2017, and their size 
is proportional to magnitude. Color shading is compaction (m) in (a) and events per 250 m x 250 
m grid in (b).  

Figure 8a shows the January 1, 2017 compaction value referenced to 1990 and Figure 8b shows the spatial 

distribution of seismic activity. The compaction is distributed over a large spatial area but seismic activity 

is highly localized in the Northwest, an area of generally high compaction. The activity heat map was 

generated using a 3 km Gaussian kernel to distribute the activity over a spatial area (described in more 

detail in section 2.2).  

On the northern edge of the western boundary of the map in Figure 8a there are three areas of very high 

compaction. These large amounts of compaction are due to large pore pressure reductions in the reservoir 

model in those areas. These are present in the 2015 reservoir model but they were not present in some 

of the previous versions of the reservoir model and are thought to be spurious. Hence these areas are 

ignored in the calculations going forward by fitting the seismological model only within the outline of the 

field or within the domain of the three submodels. This choice trims away the anomalously high 

compaction areas so they do not affect the calculation.   

The map of compaction shown here is different from the compaction model used by Bourne and Oates 

(2015a,b). While this paper presents a forward modeling approach, Bourne and Oates (2015a,b) perform 

an inversion of surface subsidence measurements to determine the spatial distribution of compaction. 

Because the surface subsidence approximates to a 3 km low-pass filtered response to subsidence at the 

reservoir, Bourne and Oates (2015a,b) investigates the effect of smoothing the compaction model. The 

a) b) 
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geomechanical model presented here provides a higher resolution and smoother dataset so additional 

smoothing of the compaction model is not examined. 

2.2   Fault moment data 
Figure 5 and Figure 9 illustrate the differences in the spatial distribution of modeled seismic moment and 

the observed seismic moment and activity. The modeled seismic moment is distributed spatially using a 

Gaussian of specified spread where the kernel size (3 km in Figure 5 and Figure 9) refers to the radius of 

the 3 sigma distance in the distribution. The distribution linearly tapers to zero from the 3 sigma distance 

to the 4 sigma distance to prevent moment from spreading outside of the near field area, making it 

pseudo-Gaussian. The moment release at every node on a fault surface is moved to the nearest point on 

a 250m x 250 m grid and then the sum of the moment release at that point is distributed over the nearby 

region with the pseudo-Gaussian. All values are scaled appropriately to ensure that the volume under the 

pseudo-Gaussian equals the total moment release. This same process of spatial distribution is used for 

observations of moment released via earthquakes or for activity. In the case of observed moment, each 

earthquake has its own Gaussian and the volume under the Gaussian is the seismic moment. In the case 

of the activity map, all earthquakes are weighted equally and the volume under each Gaussian is one.  

The use of the Gaussian for the earthquake observations allows for easier visualization of the data. For 

the geomechanical model data, the spatial distribution serves a functional role as well. Distribution of the 

moment in this manner makes visualization of the model results easier but more importantly 

compensates for a number of uncertainties and makes it possible to fit a statistical model. The reasons 

for applying a spatial distribution are as follows: 

1. Not all faults are captured in the geomechanical model because not all faults can be imaged in 

the seismic data. Additionally, there is a limit to the amount of detail that can be included in the 

geomechanical model. Slip could be occurring on a parallel fault strand not included in the model 

so distributing the moment release over an area is one way to capture this uncertainty.     

2. In the process of fitting the seismological model each earthquake epicenter is used to determine 

the moment release at the point in space and time of the event. However, there is a large amount 

of error in the earthquake locations (± 500m-1km) so earthquake epicenters rarely locate onto 

mapped faults. This results in an estimated moment release of zero at almost every observed 

earthquake epicenter, which would make it impossible to fit a statistical model. Distributing the 

modeled slip over a spatial area greatly reduces the number of locations that will have no modeled 

moment release.  

3. Due to the large number of faults in the field there are often multiple faults within the error ellipse 

of a given observed event location. In reality the observed event could have occurred on any 

number of faults so the best proxy for how much modeled moment release occurred at a location 

is an average of the nearby modeled moment release on multiple faults where the average is 

weighted by distance from the observed earthquake epicenter. The method implemented here, 

distributing the modeled moment release and querying the result at a point, achieves the same 

end result as querying a number of points around an observation location. 
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As discussed in section 1.3, there is a poor correlation between the spatial distribution of modeled seismic 

moment release and the moment of observed earthquake events (Figure 5). In contrast, Figure 9 

illustrates a good spatial correlation between modeled moment and observed activity. For example, the 

geomechanical model captures the diffuse nature of the seismicity observed in submodel 1 (blue box 

outline) and it also captures the secondary lineament of seismicity observed in submodel 2 (green box 

outline). However, there are a few places where the geomechanical model predicts some amount of 

seismicity but none has been observed (southern end of submodel 3, red outline). This mis-match does 

not mean that the fault moment data should not be used as a predictor of seismicity because the other 

potential input data, compaction, also would forecast activity in the seismically quiet area to the south.    

 

Figure 9: Comparison of (a) geomechanical model moment release and (b) observed seismic 
activity. A 3 km kernel is used to distribute the modeled moment and observed activity over a 
spatial domain. Observed activity is of all observed earthquakes and model moment release is 
all moment since Jan 1 of 1990. Blue, green and red boxes are the submodel 1, 2 and 3 domains 
respectively. Maroon line is the field outline. Gray circles are all observed events as of January 
1, 2017, and their size is proportional to magnitude. Color shading is moment release per 250 m 
x 250 m grid point or events per 250 m x 250 m grid point.  

Similar to the compaction data, a reference time or reference value is used to analyze the modeled 

moment release data. Slip initiates soon after the start of production in the geomechanical model, but 

earthquakes are not observed until many years later. To help determine a relevant threshold Figure 10 

shows the moment release at each point in space and time that an earthquake was observed (similar to 

Figure 7 except for moment rather than compaction).  

Modeled fault moment is evaluated at January 1 of each year. Similar to compaction, moment and 

moment derivatives are linearly interpolated to evaluate quantities throughout the year. The activity for 

a given year is based on the January 1 moment release value and the derivative of moment release over 

the year (difference between the January 1 value and the January 1 value of the following year).  

a) b) 
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Similar to compaction, if the threshold is specified as a year (e.g. 1990) then the January 1, 1990 slip value 

at each node in the geomechanical model is subtracted from all subsequent years and the spatial 

distribution of moment is recalculated. Additionally all derivatives for prior years are set to zero. If a 

threshold amount of slip is specified, then that amount of slip is subtracted from the time history of every 

fault node. All slip values less than zero are then ignored (set to zero) and the spatial distribution of 

moment release is calculated as well as the derivatives of moment release.  

 

Figure 10:  Modeled moment release at each point in space and time of observed earthquakes 
within the filed outline. Shading and size of circle is proportional to the magnitude of the 
observed event. Gray line is the maximum moment release value at any point in the model 
within the field outline. Model is referenced to the beginning of production, 1965.  

2.3   Maximum likelihood estimation of seismological model parameters 
Compaction and moment release maps are sourced from very different data but they are treated 

identically when fitting a seismological model. For both types of input data an equation (the seismological 

model) is used to relate the activity rate (variable in space and time) to the input geomechanical data (also 

variable in space and time). The geomechanical input used in the derivations below is the reservoir 

compaction, c, but a similar derivation can be followed for fault moment, m.  

Earthquake occurrence is assumed to be a Poisson process and a maximum likelihood estimation (MLE) is 

used to determine the coefficients of the seismological model. This methodology incorporates the spatial 

and temporal aspects of each individual observed earthquake. The analysis is based on the region of 

interest, A, the 2D activity map, 𝜆(𝒙, 𝑡) (where t is time and 𝒙 is the position in the field), and the activity 

at each point in space and time when an observed earthquake occurred, 𝜆(𝒙𝒊, 𝑡𝑖), for each of N 

earthquakes that occurred over a timespan 𝑡𝑠 ≤ 𝑡 ≤ 𝑡𝑓.  

When performing a MLE a functional form for 𝜆(𝒙, 𝑡) is specified and the parameters that maximize the 

likelihood function are determined. The form chosen for 𝜆 and the optimized parameter values are the 

seismological model.  

Following the derivation in Bourne and Oates, 2015a, the likelihood function, L, is 
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𝐿 = 𝑒𝑥𝑝 (− ∫ ∫ 𝜆(𝒙, 𝑡)𝑑𝑡𝑑𝐴
𝑡𝑓

𝑡𝑠𝐴

) ∏ 𝜆(𝒙𝒊, 𝑡𝑖)

𝑁

𝑖=1

 

Maximizing the product sum in the above equation can be computationally cumbersome so it is common 

practice to take the log of the likelihood function. The maximum of a function and the maximum of the 

log of the function occur at the same value so this simplification is accurate. The result is that the log-

likelihood function, 𝑙, is maximized to determine the best fit parameters 

𝑙 = − ∫ ∫ 𝜆(𝒙, 𝑡)𝑑𝑡𝑑𝐴
𝑡𝑓

𝑡𝑠𝐴

+ ∑ log 𝜆(𝒙𝒊, 𝑡𝑖)

𝑛

𝑖=1

 

                                            𝑙 = −Λ0 + ∑ log 𝜆(𝒙𝒊, 𝑡𝑖) 

𝑛

𝑖=1

                               (𝑒𝑞𝑛. 1) 

Where 𝛬0 is the expected total number of earthquakes in an area, over a time window, 𝑡𝑠 ≤ 𝑡 ≤ 𝑡𝑓, 

defined as 

𝛬0 = ∫ ∫ 𝜆(𝒙, 𝑡)
𝐴

𝑡f

𝑡𝑠

𝑑𝐴 𝑑𝑡 

Two time windows are used for the MLE analysis. One time window captures the observed earthquakes 

and one window captures a time of seismic quiescence. The catalog of 𝑀 ≥ 1.5 events is complete starting 

in April of 1995, so one time interval is 1995.25 ≤ 𝑡 < 2017.0. All events in 2016 are included in the 

analysis but no 2017 events. The second time interval used is 1965 ≤ 𝑡 ≤ 1988, a time when there were 

no observed earthquakes. Using both of these time windows constrains the model to have low activity in 

the early years and high activity later. Without this constraint (and more discussed later) the best fit model 

can predict a large amount of activity at a point in time when it is known that there was no activity. The 

first recorded events started in the early 90’s but it is possible that there were small events, larger than 

ML 1.5 but small enough to not be noticed, before the events of the early 90’s so this time frame is not 

included in the analysis and nothing is assumed about the number of events between January 1 of 1988 

and March 31 of 1995. 

2.3.1   Specified Forms for the Poisson Process Model 

To perform the MLE it is necessary to specify a form for 𝜆, because without this, it is not possible to solve 

for the terms in the log-likelihood equation. One approach is to start from the observation that there is a 

nonlinear relationship between the cumulative event count and the reservoir volume change, Δ𝑉 (Figure 

6c). The volume change can also be expressed as the integral of compaction over an area, A.  

 

Δ𝑉(𝐴) = ∫ 𝒄 𝑑𝐴
𝐴
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In the case of uniform compaction, this relationship simplifies to 𝑐 =
Δ𝑉

𝐴
. The nonlinear relationship 

between the total number of events between time 𝑡𝑠 and 𝑡, Λ(𝑡𝑠, 𝑡), and the volume change may be 

captured with the use of an arbitrary function, 𝑓,   in the following equation: 

𝛬(𝑡𝑠, 𝑡) = Δ𝑉 𝑓 (
Δ𝑉

𝐴
) 

Dividing this by the area provides the local total event count, 𝛬𝑙𝑜𝑐𝑎𝑙 = 𝛬/𝐴, in units of events per m2  

Λ𝑙𝑜𝑐𝑎𝑙(𝑡𝑠, 𝑡) =
Δ𝑉

𝐴
 𝑓 (

Δ𝑉

𝐴
) = 𝑐 𝑓(𝑐) 

The total activity over the field is then  

Λ(𝑡𝑠, 𝑡) = ∫ 𝛬𝑙𝑜𝑐𝑎𝑙(𝑡𝑠, 𝑡)𝑑𝐴
 

𝐴

= ∫ 𝑐𝑓(𝑐)𝑑𝐴
 

𝐴

 

The expected total event count is also related to the local activity rate by the following equation 

𝛬0(𝐴, 𝑡0, 𝑡𝑠) = ∫ ∫ 𝜆(𝒙, 𝑡)
𝐴

𝑡0

𝑡𝑠

𝑑𝐴 𝑑𝑡 

If we assume that the nonlinear relationship holds over any area, then equating the expected number of 

events and the observed number of events suggests that the local activity rate should be 

𝜆 =
𝑑Λlocal(𝑡𝑠, 𝑡)

𝑑𝑡
=

𝑑 (𝑐𝑓(𝑐))

𝑑𝑡
=  𝑐̇[𝑓(𝑐) + 𝑐𝑓′(𝑐)] 

With the above equations, the functional forms for the event count and local activity rate can be 

determined and those forms examined are presented in Table 2. Shell has used the exponential form for 

their seismological model and the above derivation shows where the Shell form for 𝜆 comes from. 

Table 2:  Relationship between the total event count, 𝚲𝟎 , and the local activity rate, 𝝀, for 
various functional forms of the nonlinear relationship 

 𝒇 𝚲𝟎 𝝀 

Linear 𝛼 ∫[𝑐𝛼]
𝑡𝑓

𝑡𝑠
 𝑑𝐴 𝛼𝑐̇ 

Quadratic 𝛽𝑐 + 𝛼 ∫[𝛽𝑐2 + 𝛼𝑐]
𝑡𝑓

𝑡𝑠
 𝑑𝐴 2𝛽𝑐𝑐̇ + 𝛼𝑐̇ 

Cubic 𝛾𝑐2 + 𝛽𝑐 + 𝛼 ∫[𝛾𝑐3 + 𝛽𝑐2 + 𝛼𝑐]
𝑡𝑓

𝑡𝑠
 𝑑𝐴 3𝛾𝑐2𝑐̇ + 2𝛽𝑐𝑐̇ + 𝛼𝑐̇ 

Exponential 𝛼𝑒𝛽𝑐 ∫[𝑐𝛼𝑒𝛽𝑐]
𝑡𝑓

𝑡𝑠
𝑑𝐴 𝛼𝑒𝛽𝑐𝑐̇ (1 + 𝑐𝛽) 

 

The forms of these equations pose some numerical challenges depending on the method implemented. 

If a reference year is chosen (e.g. 1990), then the 1990 compaction values are subtracted from the total 
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and there is a non-zero amount of compaction and compaction derivative at every point in space at the 

time of an earthquake (since all earthquakes considered occurred after 1990). Therefore there is a non-

zero 𝜆 at every event location. However, this is not the case if a reference value is chosen, (e.g. 0.15 m). 

From Figure 7 it is apparent that there are events that occurred at compaction values less than 0.15 m. If 

the model is referenced to 0.15 m then there are earthquakes that occur at a point in space with the 

relative compaction and compaction derivative terms equal to zero. If this occurs then 𝜆 = 0 at those 

points and this results in an inability to calculate the log-likelihood because the log of zero is infinite. The 

same problem arises if moment is used instead of compaction. 

To address the ill-posedness, a constant, 𝛿, is added to each equation for 𝜆 in Table 2. This ensures that 

there is always a small background activity rate at every location and allows the calculation to be 

performed. However, constraints need to be placed on the maximum value of this constant to avoid best-

fit solutions that predict sizable amounts of activity at times when it is known that there was low activity. 

Here it is assumed that the background total activity rate over a 30 km x 40 km area is no more than 0.25 

earthquakes per year. If the activity rate, 𝜆, has units of events per m2 per year, then this implies that 𝛿 ≤

2.083 ∗ 10−10. The total activity and activity rate equations of Table 2 become altered to those presented 

in Table 3, and these are used to perform the MLE.  

Table 3:  Modified forms for the local event rate, 𝝀, used for the specified model forms 

 𝝀 

Linear 𝛼𝑐̇ + 𝛿 

Quadratic 2𝛽𝑐𝑐̇ + 𝛼𝑐̇ + 𝛿 

Cubic 3𝛾𝑐2𝑐̇ + 2𝛽𝑐𝑐̇ + 𝛼𝑐̇ + 𝛿 

Exponential 𝛼𝑒𝛽𝑐𝑐̇ (1 + 𝑐𝛽) + 𝛿 

 

From the equations in Table 3 it is possible to numerically evaluate the log-likelihood function for any set 

of parameters 𝛼, 𝛽, 𝛾, and 𝛿. There are many routines that find the minimum of functions so the 

coefficients that maximize the log-likelihood are solved for by finding the minimum of the negative of the 

log-likelihood.   

While the above equations are shown using compaction, c, the exact same formulation can also be 

performed using the geomechanical fault moment or fault energy. Compaction is a change in volume per 

unit area and the maps of geomechanical model moment release are a change in moment per unit area 

so m can be directly substituted into the above equations for c without altering the process.  

2.3.2   Generic Poisson Process Methodology 

As an alternative to specifying a limited set of forms for the activity rate (as described in the previous 

section), a generic model form for the activity rate can be evaluated. The generalized linear model for a 

Poisson process is the following equation 

𝜆 = exp (𝛼0 + 𝛼1𝑓1(𝒄) + 𝛼2𝑓2(𝒄) + 𝛼3𝑓3(𝒄) + ⋯ + 𝛼𝑘𝑓𝑘(𝒄)) 
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where the 𝛼 parameters are fitting coefficients and the functions, 𝑓, can take on a range of forms (The 

addition of a term always improves the model fit (increases 𝑙), but the AIC penalizes the additional model 

complexity to avoid over-fitting. The model with the smallest AIC is the one that should have the best 

predictive accuracy.  

Table 4 summarizes the forms that are examined here). In the generic model terms are iteratively added 

to the model to improve the fit until the addition of new terms is no longer warranted. The metric used 

to determine if the addition of a new term is warranted is the Akaike Information Criterion (AIC). The AIC 

value is calculated based on the log-likelihood value, 𝑙, and the number of parameters, 𝑘, that were solved 

for in the estimation.  

𝐴𝐼𝐶 = 2𝑘 − 2𝑙 

The addition of a term always improves the model fit (increases 𝑙), but the AIC penalizes the additional 

model complexity to avoid over-fitting. The model with the smallest AIC is the one that should have the 

best predictive accuracy.  

Table 4: Terms that can be incorporated into the generic Poisson process model 

Term Form 
𝒇𝟏 𝒄 
𝒇𝟐 𝒄2 

𝒇𝟑 𝒄3 
𝒇𝟒 𝒄̇ 
𝒇𝟓 𝒄̇2 
𝒇𝟔 𝒄̇3 
𝒇𝟕 𝒄𝒄̇ 

𝒇𝟖 𝒄2𝒄̇ 

𝒇𝟗 𝒄𝒄̇2 

𝒇𝟏𝟎 𝒄2𝒄̇2 
 

The null hypothesis is that the data can be explained with a single term in the exponential, 𝛼0. Similar to 

the methodology presented in section 2.3.1, an assumption is made regarding the maximum value for the 

coefficient 𝛼0. It is assumed that the background total activity rate over a 30 km x 40 km area is no more 

than 0.25 earthquakes per year. If activity rate, 𝜆, has units of events per m2 per year, then 𝛼0 ≤ −22.292. 

Terms are added using forward stepwise refinement. To add a second parameter the MLE is performed 

for each potential two parameter set (𝛼0 and each model each term, 𝛼1𝑓1 through 𝛼𝑘𝑓𝑘). The AIC is then 

evaluated for the two parameter fit and compared to the AIC for the one parameter fit. If the AIC 

decreases, then the improvement in the goodness of fit is statistically large enough to warrant the addition 

of a second fitting parameter. The term that decreases the AIC the most is added to the model and a new 

search over the remaining model terms is performed. This process is then repeated to find additional 

terms that should be added until the AIC value does not decrease. In general adding the term that provides 

the maximum reduction in AIC is a good approach, however, on occasion (especially with the fits to the 
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fault moment) this was found to result in the selection of a local maximum in the log-likelihood (and hence 

AIC) value. To address this rare situation, after some trial and error, the initial term or two to be added to 

the model were specified a priori.  

2.4   Comparison of Activity Models 
The two methodologies described in section 2.3 result in different forms for the activity rate. One way to 

determine which model is the best is to compare the AIC values for all of the models. However, it is 

necessary that the MLE be performed on the same model input domain when comparing AIC or log-

likelihood values. The domain is an important consideration when comparing models based on the 

compaction data to models based on the fault slip data because the fault slip model data only exists within 

the boundaries of the three submodels while the compaction model data exists across the entire field. 

The MLE should be performed only using earthquakes that occurred within the submodel domain and the 

integral of the activity rate should only be performed over the area of the submodels as well.  If the domain 

is the same amongst models the log-likelihood or AIC values can be compared for an assessment of which 

model is the best.  

The choice of domain will affect the results of the MLE. Different compaction based activity models will 

be determined if the domain of the entire field is used versus the domain of the submodels. Results for 

both domains will be presented in section 3.1. 

Though the AIC is designed to estimate predictive accuracy, it is also possible to directly assess predictive 

accuracy. This can be achieved by performing the MLE over a specified time span (e.g. April 1, 1995 – Jan 

1, 2006), obtaining the best fit parameters, and using these parameters to evaluate the log-likelihood for 

all future years of seismicity (2006, 2007, …, 2016). The most predictive model will have the highest log-

likelihood value in each of the following years. For simplicity, the log-likelihood can be summed over all 

of the future years so that a single parameter can be compared between models. After this, the MLE is 

performed over a longer time span (e.g. April 1, 1995 – Jan 1, 2007) and the parameters are used to 

evaluate and sum the log-likelihood values for all future years. The most predictive model should 

consistently have one of the highest log-likelihood summation values regardless of the timespan used to 

fit the model.  

The summation of the log-likelihood over all future years is a good comparison between models, but the 

model performance in forecasting the 2015 and 2016 seismicity is of particular interest. Since the recent 

reductions in the annual production cap there has been a decrease in the seismicity in the field. A good 

activity model should be able to forecast both increases and decreases in seismicity so a high log-likelihood 

value in 2015 and 2016 is indicative of a good activity model. The decreased activity can provide a good 

constraint on some of the models and greatly improve their predictive power over the last year but some 

models may be less capable of representing the decrease in seismicity.  
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3.0   Results 

3.1   Compaction Based Activity Models  
To determine the best compaction based activity model both methodologies discussed in section 2.3 were 

examined (generic as well as the specified Poisson process). Additionally, different references (years 1988-

1995 and compaction values 0-0.24 m) were examined for each methodology. Models fit based on data 

in two model domains were also considered. The models fit to the field domain will be discussed in detail 

to illustrate the results of the analysis and since they can be used to generate complete hazard maps. The 

models fit to the submodel domain will be discussed in less detail.  

3.1.1   Fit to field domain 

Table 5 summarizes the log-likelihood and AIC values for each of the fits and forms of activity model fit to 

the domain of the field. Larger log-likelihood values (less negative) indicate better fits and smaller AIC 

values indicate better estimated predictive accuracy for the number of parameters used to fit the model. 

The best fits for each of the methodologies (specific vs. generic), for each type of reference (year vs. value), 

and for both AIC and log-likelihood criterions are indicated with red text. If the AIC and log-likelihood 

values are in agreement, this means that there will be four “best-fit” models that are compared to one 

another. Sometimes the AIC values and the log-likelihood values suggest that different references are the 

best fit or that a different specified form is the best fit. If there is disagreement, the better AIC value is 

generally chosen as the better model but sometimes the model with the better log-likelihood value is still 

discussed for comparison.  
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Table 5: Log-likelihood and AIC values for models fit to the compaction data over the whole field 
domain. Larger log-likelihood values (less negative) and smaller AIC values indicate better fits 
for the number of parameters used to fit the model. The best fits for each of the methodologies, 
for each type of reference, and for both AIC and log-likelihood criterions are indicated with red 
text.  The first four fits (linear – exponential) are described in section 2.3.1. The final column is 
the best fit generic model described in section 2.3.2. Model fits and parameter values for the 
reference years and values in red are presented in Table 6 and Figure 11-Figure 17. 

 Log-likelihood AIC 
Ref. Linear Quadratic Cubic Exp. Generic Linear Quadratic Cubic Exp. Generic 

1988 -5004.10 -4949.80 -4942.93 -4943.93 -4939.80 10012.19 9905.60 9893.86 9893.85 9889.61 

1989 -5004.10 -4948.83 -4942.80 -4943.70 -4939.89 10012.19 9903.66 9893.60 9893.39 9889.79 

1990 -5004.10 -4947.41 -4941.73 -4942.37 -4938.36 10012.19 9900.83 9891.47 9890.75 9888.72 

1991 -5004.10 -4946.25 -4941.62 -4942.06 -4938.64 10012.19 9898.51 9891.24 9890.11 9889.28 

1992 -5004.10 -4947.33 -4943.91 -4944.32 -4942.76 10012.19 9900.66 9895.82 9894.65 9895.52 

1993 -5004.10 -4948.62 -4945.49 -4945.83 -4945.07 10012.19 9903.25 9898.97 9897.66 9900.14 

1994 -5004.10 -4948.93 -4946.77 -4947.11 -4946.93 10012.19 9903.86 9901.55 9900.21 9903.86 

1995 -5004.44 -4949.32 -4947.34 -4947.46 -4947.76 10012.88 9904.63 9902.68 9900.92 9905.52 

0.0 m -5266.56 -5011.10  -4969.61 -4948.68 10537.12 10028.20  9945.22 9907.36 

0.01 m -5254.51 -5019.17 -4964.67 -4969.31 -4947.87 10513.02 10044.34 9937.35 9944.62 9907.73 

0.02 m -5241.70 -5026.00 -4963.79 -4968.98 -4948.15 10487.39 10058.01 9935.57 9943.95 9908.31 

0.04 m -5214.93 -5030.54 -4962.90 -4968.25 -4949.39 10433.85 10067.08 9933.79 9942.50 9908.79 

0.06 m -5189.09 -4986.19 -4962.99 -4967.45 -4949.86 10382.18 9978.39 9933.99 9940.91 9909.72 

0.08 m -5156.20 -4997.91 -4962.33 -4965.97 -4950.29 10316.41 10001.82 9932.67 9937.93 9912.58 

0.09 m -5141.31 -4990.31 -4961.88 -4965.51 -4953.94 10286.62 9986.62 9931.76 9937.01 9915.89 

0.10 m -5125.18 -4978.62 -4961.58 -4965.04 -4953.16 10254.35 9963.24 9931.16 9936.08 9916.32 

0.11 m -5107.30 -4980.89 -4961.09 -4964.01 -4954.94 10218.61 9967.78 9930.19 9934.01 9919.89 

0.12 m -5089.00 -4976.44 -4960.89 -4963.42 -4954.13 10181.99 9958.89 9929.78 9932.84 9920.26 

0.13 m -5072.71 -4974.27 -4961.25 -4963.46 -4956.37 10149.43 9954.54 9930.51 9932.91 9922.73 

0.14 m -5056.18 -4972.94 -4962.90 -4964.60 -4958.11 10116.36 9951.88 9933.81 9935.21 9928.21 

0.15 m -5044.72 -4971.54 -4965.62 -4967.05 -4963.38 10093.43 9949.08 9939.24 9940.09 9936.75 

0.16 m -5032.11 -4971.63 -4967.14 -4968.08 -4966.15 10068.23 9949.27 9942.28 9942.16 9942.30 

0.18 m -5021.24 -4980.11 -4977.14 -4977.70 -4979.55 10046.49 9966.22 9962.28 9961.41 9971.10 

0.20 m -5020.62 -4993.22 -4990.67 -4991.38 -4994.60 10045.25 9992.43 9989.33 9988.75 10003.20 

0.22 m -5069.35 -5047.11 -5046.94 -5047.44 -5051.33 10142.70 10100.22 10101.89 10100.89 10114.67 

0.24 m -5122.10 -5114.21 -5113.77 -5114.01 -5125.01 10248.19 10234.416 10235.547 10234.023 10264.02 

 

According to Table 5, a compaction reference of 0.0m provides the best AIC for generic models, whereas 

a compaction reference of 0.12m and a cubic form is best among the specified models. In the case of a 

reference year, 1990 is the best fit for the generic model and 1991 is the best fit for the specified model. 

Since the preference for one year vs. another is so small, here we choose to only examine 1990, because 

as will be discussed later, 1990 is also a good year for fits made to just the submodel domain. Additionally, 

the exponential fit referenced to the year 1990 is the fit that is often used by Shell/NAM to produce hazard 

maps.  The log-likelihood value indicates that the cubic is the best model fit while the AIC value indicates 

that the exponential is the best model fit. Both scenarios are presented and discussed here so that the 

effect of the subtle differences in the activity maps can be illustrated. The reference year and reference 

values that are some of the best fits are also highlighted in red in column 1 of Table 5. The parameters for 

these best fit models (as well as the other specific model fits that are made for the best fit reference 
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values) are presented in Table 6 and the terms of the generic model are presented in order of their 

addition to the AIC resulting solution.  

Table 6:  Best fit parameters used to generate the models presented in Table 5. All fits were 
performed using the compaction data and the earthquake catalog within the outline of the field. 
Terms of the generic model are presented in order of their addition to the solution.  

Reference Linear Quadratic Cubic Exponential Generic 

1990 𝛼 =  3.482 𝑒-6 
𝛿 = 4.155 𝑒-11 

𝛽 =  6.644 𝑒-5 
𝛼 = −6.202 𝑒-7 
𝛿 =  7.118 𝑒-11 

𝛾 =  7.124 𝑒-4 
𝛽 =  −8.105 𝑒-6 

𝛼 = 7.010 𝑒-7 
𝛿 =  5.140 𝑒-11 

𝛼 = 5.128 𝑒-7 
𝛽 =16.294 

𝛿 = 4.967 𝑒-11 

𝛼0 = −22.72 
𝛼1 = 7.026 𝑒1 

𝛼2 = −4.193 𝑒2 
𝛼4 = 4.227 𝑒2 

𝛼6 = −2.682 𝑒6 
𝛼3 = 9.998 𝑒2 

0.00 m     
 

𝛼0 = −23.06 
𝛼1 = 2.367 𝑒1 

𝛼3 =  −9.018 𝑒1 
𝛼8 = 4.767 𝑒3 

𝛼5 = −2.655 𝑒4 

0.12 m 
 

𝛼 = 2.599 𝑒-6 
𝛿 = 2.083 𝑒-10 

𝛽 = 3.298 𝑒-5 
𝛼 = −1.845 𝑒-7 
𝛿 =  2.083 𝑒-10 

𝛾 =  2.596 𝑒-4 
𝛽 =  −3.167 𝑒-6 

𝛼 = 1.660 𝑒-7 
𝛿 =  2.083 𝑒-10 

𝛼 = 2.552 𝑒-7 
𝛽 = 12.82 

𝛿 = 2.083 𝑒-10 

 

 

A comparison of the four best AIC values (red text in Table 5) indicates which model is estimated to have 

the best predictive accuracy. The generic model referenced to a year is the best, followed closely by the 

exponential specific model referenced to a year (or the cubic specific model referenced to a year if log-

likelihood is considered), then the generic model referenced to a value and then the cubic specific model 

referenced to a value. Based on the AIC and log-likelihood values, the models referenced to a year are 

substantially better fits to the observed earthquake data than the models that are referenced to values.  

Behind each of the log-likelihood/AIC values presented in Table 5 there is a model specified by a set of 

parameters that characterizes the historical activity and can be used to forecast the future seismicity. 

Every fit is different and the best fit scenarios are presented in Figure 11-Figure 17 for a 27 bcm production 

scenario. Figure 11 and Figure 12 illustrate the sum of the total activity over the entire field domain. The 

black circles are the number of earthquakes per year within the field boundary and the colored lines are 

different model fits. All models that are referenced to a year are shown in Figure 11 while all models that 

are referenced to a compaction value are shown in Figure 12. Figure 13-Figure 17 show the spatial 

distribution of activity for the five models considered.   

All of the specified Poisson process models referenced to a year appear in Figure 11a while all of the 

generic Poisson process models referenced to a year appear in Figure 11c. To illustrate how the fit changes 

as parameters are added to the generic model, multiple fits from the iterative process are included. “fit 

1” is the fit using just the 𝛼0 parameter while “fit 2” is the fit using 𝛼0 and the next best term (listed in 

order in Table 6) and so on. The final fit is the best generic model fit using all of the parameters included 

in Table 6. The specified and generic models from the best fit reference year, 1990, are shown in Figure 

11b and d respectively. Of the specified Poisson process models, the cubic fit has the best log-likelihood 

value but the exponential model has the best AIC value. The best generic model is “fit 6” in Figure 11d. 

These are three of the 5 models considered going forward.  
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All models that are referenced to a compaction value are shown in Figure 12. All the Specified Poisson 

process models appear in Figure 12a while all the generic Poisson process models appear in Figure 12c. 

The models from the best fit reference values, 0.12m for the specified models or 0.0m for the generic 

models are shown in Figure 11b and d. 

A visual examination of the best fit models in Figure 11 does not reveal large differences in the fit to the 

observed earthquakes. This is a qualitative assessment that is backed up by the quantitative assessment 

that is captured by the log-likelihoods. The log-likelihood values for the best fit models to reference years 

are very close (Δ < 1). A visual examination of the best fit models in Figure 12 shows an over prediction 

of the number of earthquakes predicted in the early 80’s, a time when few to no earthquakes are likely to 

have occurred. The lower quality of fit is reflected in the log-likelihood values (Δ = 10 − 20). This large 

difference and the visual examination of the activity level lead to a conclusion that models that are 

referenced to a year are much more consistent with observed seismicity to date than models that are 

referenced to a compaction value.  

While the three best models referenced to a year all have a similarly good representation of the historical 

activity level, there are some significant differences in their activity level projections for future years. The 

exponential model forecasts a higher activity level than the cubic or the generic model. Additionally, the 

generic model projects a nearly constant future activity rate while the cubic and exponential forecast 

activity rates rise and fall over time.  

Another way to examine the historical and future fits is via maps of activity for different years. Figure 13-

Figure 17 show the activity maps for 1996-2020 for the five best model fits. A careful comparison of these 

figures shows that the models result in different degrees of spatial localization of the activity. The generic 

model, referenced to 1990 results in the most diffuse activity forecast while the generic model referenced 

to a value of 0 m is the most localized. As discussed in section 4, the spatial distribution of forecast activity 

will affect resulting hazard maps.  
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Figure 11: Compaction based fits made on the field domain and referenced to a year. (a) All specified 
Poisson process model fits to all reference years examined. (b) Specified Poisson process model fits 
to the best year, 1990. Cubic is the log-likelihood (map shown in Figure 14) and exponential is the 
best AIC (map shown in Figure 13). (c) All generic Poisson process model fits to all reference years 
examined - progression of fit with the addition of parameters is shown. (d) Generic Poisson process 
model fit to the best year, 1990. Fit 6 is the best fit and is used for the maps shown in Figure 15.  

a) 

b) 

c) 

d) 
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Figure 12: Similar to Figure 11. Fits to compaction data, in the field domain, referenced to specific 
values. Best fits are highlighted in (b) and (d) with corresponding maps of activity shown in Figure 
16 (cubic) and Figure 17 (fit 5) respectively.  

a) 

b) 

c) 

d) 
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Figure 13: Maps of activity based on compaction data, fit to the field domain data, for the 
exponential model, referenced to the year 1990, using a 27 bcm scenario for future projections. 
This is the model often used by Shell/NAM for the production of hazard maps. Actual activity is 
presented for a range of years. The number in parenthesis in the sub-figure title is the forecasted 
number of events in that year. Activity color bar ranges from 0-1e-7 events per m2 per year 
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Figure 14: Maps of activity based on compaction data, fit to the field domain data, for the cubic 
fit, referenced to the year 1990, using a 27 bcm scenario for future projections. Actual activity is 
presented for a range of years. The number in parenthesis in the sub-figure title is the forecasted 
number of events in that year. Activity color bar ranges from 0-1e-7 events per m2 per year 
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Figure 15: Maps of activity based on compaction data, fit to the field domain data, for the best 
generic Poisson process model, referenced to the year 1990, using a 27 bcm scenario for future 
projections. Actual activity is presented for a range of years. The number in parenthesis in the 
sub-figure title is the forecasted number of events in that year. Activity color bar ranges from 0-
1e-7 events per m2 per year 
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Figure 16: Maps of activity based on compaction data, fit to the field domain data, for the cubic 
fit, referenced to a compaction value of 0.12m, using a 27 bcm scenario for future projections. 
Actual activity is presented for a range of years. The number in parenthesis in the sub-figure title 
is the forecasted number of events in that year. Activity color bar ranges from 0-1e-7 events per 
m2 per year 
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Figure 17: Maps of activity based on compaction data, fit to the field domain data, for the best 
generic Poisson process model, referenced to a compaction value of 0.0m, using a 27 bcm 
scenario for future projections. Actual activity is presented for a range of years. The number in 
parenthesis in the sub-figure title is the forecasted number of events in that year. Activity color 
bar ranges from 0-1e-7 events per m2 per year 
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To directly assess predictive power, each model is fit to a subset of the data and the sum of the log-

likelihood values for all future years is examined. As with all log-likelihood values, larger values (less 

negative) indicate a better fit. Figure 18 shows these values for the models highlighted above, referenced 

to the year 1990. A value plotted in the year 2010 is the sum of the log-likelihood for years 2010-2016. 

Many of the lines plot on top of one another so the same data is presented in Figure 19, but flattened so 

that the second worst model fit is on the x axis. This allows for the distinction between the lines to be 

more clearly visible.  

 

Figure 18: Sum of the log-likelihood for all future years of observation for each of the best fitting 
models that are referenced to 1990. Data points in year 2013 are for a model that is fit to data 
spanning from April 1, 1995 to January 1, 2013. Model parameters are then used to evaluate the 
log-likelihood for the years 2013 – 2016 and then these four numbers are summed.  

 

Figure 19: Same as Figure 18 but flattened to the second lowest log-likelihood line so that 
differences between the models are more clearly visible.  
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Starting with data that is fit to a time frame that ends January 1, 2009, the generic Poisson process model, 

fit 6, is the most predictive model. When earthquake observation data post January 1, 2014 is added to 

the model fitting, the specified model forms begin to catch up to the generic model forms. This means 

that the decrease in activity is having a larger effect on the specified model forms and increasing their 

predictive power more than the generic model forms.  For the time being, “fit 6” is still a consistently 

better performing model than either the cubic or the exponential, but this may change over the next year 

or two if low seismic activity rates continue.  

 

Figure 20: Same as Figure 19 but for reference to a value rather than a year.  

Figure 18-Figure 19 are for the models that are referenced to a year, which are much better models than 

those that are referenced to values. However, for completeness the predictive power of the models 

referenced to values are also presented in Figure 20. The generic model is more predictive than the 

specific models, and while the gap is narrowing, the specific models are not yet close to overtaking the 

generic model.  

Many model fits are performed over varying time windows when generating the data needed to directly 

assess the predictive power of the models. Figure 21 and Figure 22 show all of the different models and 

their projections into the future for models referenced to a year and to a value respectively. The variation 

in the model projections over time is an indication of how much the activity forecast changes with the 

addition of additional years of data (note that only fits up to Jan 1, 2016 are included so the most up-to-

date model is not included in the figures). Some models are poorly constrained in the beginning and 

forecast negative activity rates (e.g. the cubic model as of a few years ago when referenced to a year). In 

general, the models that are referenced to a value (Figure 22) are more stable with the addition of new 

data, but these have substantially worse fits in general.  
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Figure 21: The collection of model fits made to the data over the timespan starting in April 1, 
1995 and ending in January 1, 2006 to January 1, 2016. At early times, with little data to constrain 
the model, some models are poorly behaved and forecast negative activity rates post 2010.  
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Figure 22: Same as Figure 21 but for models referenced to a value, not a year.  

3.1.2   Fit to the submodel domain 

For a direct comparison of compaction based and fault based models, it is necessary that the same data 

be used in the fitting process and the AIC evaluation. Therefore, the MLE based on the compaction data 

is also performed over the domain of just the submodels. The resulting AIC values and parameter fits are 

presented in Table 7. All AIC values in Table 7 are smaller than those in Table 5 because the size of the 

model domain and the number of earthquakes used to fit the model are smaller. The AIC values cannot 
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be compared between Table 5 and Table 7 because of the difference in domain. The parameter fits behind 

the best fit models of Table 7 are presented in Table 8. A comparison between the parameter values in 

Table 6 and Table 8 shows that there are some differences in the fit (which is expected given that they are 

fit to different datasets) but some of the differences are small. One of the most significant differences is 

that different terms are added to the generic model depending on the domain considered 

(𝑓1, 𝑓2, 𝑓4, 𝑓6, 𝑓3used for the field domain and 𝑓1, 𝑓2, 𝑓8, 𝑓9, 𝑓4 used for the submodel domain). 

Similar to when the model was fit to the compaction and earthquake data in the domain of the entire 

field, the models that are referenced to years are much better fits than those that are referenced to 

compaction values. The best generic model, according to the AIC value, is referenced to 1988 while the 

best specific model is the cubic model referenced to 1990. When the log-likelihood value is considered, 

the best generic model is referenced to 1990 and the best specific model remains the cubic referenced to 

1990. Here, for simplicity, only 1990 is examined further since this consistently shows up as a good 

reference year for the compaction model fits.  

Table 7: Identical to Table 5 but for compaction based fits to the submodel domain. The best fits 
for each of the methodologies, for each type of reference, and for both AIC and log-likelihood 
criterions are indicated with red text. Model fits and parameter values for the reference years 
and values in red are presented in Table 8 and Figure 23-Figure 26. 

 Log-likelihood AIC 
Reference Linear Quadratic Cubic Exp. Generic Linear Quadratic Cubic Exp. Generic 

1988 -4618.07 -4565.21 -4556.68 -4558.77 -4550.12 9240.14 9136.42 9121.37 9123.54 9110.23 

1989 -4618.07 -4564.68 -4557.20 -4559.01 -4551.14 9240.14 9135.37 9122.40 9124.01 9112.28 

1990 -4618.07 -4563.60 -4556.81 -4558.29 -4550.00 9240.14 9133.19 9121.61 9122.58 9112.00 

1991 -4618.07 -4562.72 -4557.33 -4558.48 -4551.05 9240.14 9131.43 9122.67 9122.96 9114.09 

1992 -4618.07 -4562.41 -4558.63 -4559.66 -4552.95 9240.14 9130.83 9125.27 9125.32 9117.90 

1993 -4618.07 -4562.83 -4559.74 -4560.67 -4555.15 9240.14 9131.67 9127.47 9127.34 9122.29 

1994 -4618.07 -4562.04  -4561.29 -4556.64 9240.14 9130.08  9128.58 9125.28 

1995 -4618.25 -4562.45 -4561.32 -4562.26 -4558.07 9240.49 9130.90 9130.64 9130.52 9128.14 

0.0 m -4862.50 -4641.10 -4596.12 -4595.75 -4566.79 9729.01 9288.21 9200.23 9197.50 9147.59 

0.01 m -4851.04 -4647.40 -4593.76 -4595.45 -4568.62 9706.09 9300.79 9195.53 9196.89 9149.23 

0.02 m -4838.90 -4652.55 -4591.68 -4595.11 -4570.80 9681.81 9311.10 9191.35 9196.22 9151.60 

0.04 m -4815.73 -4651.82 -4588.84 -4594.57 -4571.20 9635.46 9309.64 9185.68 9195.13 9152.41 

0.06 m -4794.20 -4610.42 -4588.31 -4594.06 -4572.33 9592.40 9226.83 9184.62 9194.13 9154.66 

0.08 m -4765.24 -4619.39 -4586.98 -4592.60 -4572.64 9534.48 9244.78 9181.95 9191.20 9157.28 

0.09 m -4752.41 -4611.93 -4586.56 -4592.30 -4573.12 9508.82 9229.86 9181.13 9190.59 9158.24 

0.10 m -4737.75 -4601.02 -4586.33 -4591.95 -4576.10 9479.50 9208.05 9180.65 9189.90 9162.19 

0.11 m -4721.29 -4602.97 -4585.89 -4590.94 -4576.70 9446.59 9211.94 9179.77 9187.87 9165.41 

0.12 m -4704.35 -4599.26 -4585.96 -4590.51 -4578.62 9412.70 9204.52 9179.93 9187.02 9169.25 

0.13 m -4689.97 -4596.78 -4586.80 -4590.93 -4578.09 9383.95 9199.56 9181.60 9187.86 9168.18 

0.14 m -4675.01 -4595.37 -4588.91 -4592.45 -4580.94 9354.03 9196.74 9185.83 9190.90 9173.89 

0.15 m -4660.49 -4593.24 -4590.08 -4592.86 -4584.16 9324.99 9192.49 9188.16 9191.72 9180.33 

0.16 m -4648.35 -4593.99 -4592.13 -4594.18 -4585.81 9300.70 9193.97 9192.26 9194.36 9185.61 

0.18 m -4637.02 -4603.57 -4602.82 -4603.74 -4602.96 9278.03 9213.13 9213.63 9213.48 9217.91 

0.20 m -4635.34 -4613.89 -4613.67 -4614.07 -4617.09 9274.68 9233.78 9235.35 9234.15 9242.18 

0.22 m -4668.41 -4654.70 -4654.68 -4654.95 -4658.74 9340.82 9315.39 9317.35 9315.91 9327.48 

0.24 m -4729.88 -4725.58 -4725.28 -4725.46 -4736.89 9463.75 9457.17 9458.55 9456.93 9485.78 
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The model fits and forecasts over the submodel domain are shown in Figure 23 and Figure 24. The spatial 

map for the generic model referenced to 1990 is presented in Figure 25. A comparison of Figure 15 (field 

domain) and Figure 25 (submodel domain) shows much redder colors in Figure 25, and the same color 

scale is used. This means that there is higher activity in the submodel area when the fit is performed only 

in the submodel domain. This is because most of the earthquakes occur within the submodel domain, so 

if only that domain is considered, there must be a higher activity rate per square meter. For this reason it 

is not recommended to extend this fit to the entire field domain for hazard forecasts because the activity 

would be over-predicted. This fit should only be used for comparison to the fault slip based models.  

Table 8:  Best fit parameters used to generate the models presented in Table 7. All fits were 
performed using the compaction data and the earthquake catalog within the submodel domain.  

Reference Linear Quadratic Cubic Exponential Generic 

1990 

𝛼 = 4.516 𝑒-6 
𝛿 =  5.839 𝑒-11 

𝛽 =   8.549 𝑒-5 
𝛼 =  −7.612 𝑒-7 
𝛿 =   1.185 𝑒-10 

𝛾 =   1.048 𝑒-3 
𝛽 =  −2.435 𝑒-5 
𝛼 =  1.172 𝑒-6 

𝛿 =   7.984 𝑒-11 

𝛼 = 6.634 𝑒-7 
𝛽 = 1.626 e1 

𝛿 = 7.741 𝑒-11 

𝛼0 = -22.35 
𝛼1 = 8.709 𝑒1 

𝛼2 =  −5.295 𝑒2 
𝛼8 =  2.186 𝑒2 
𝛼9 =  5.374 𝑒4 

𝛼4 =  −6.323 𝑒5 

0.00 m 

    𝛼0 = -22.29 
𝛼1 = 1.910 𝑒1 

𝛼3 =  −8.742 𝑒1 
𝛼8 =  8.097 𝑒3 

𝛼5 =  −1.041 𝑒5 
𝛼10 = −1.657 𝑒6 

𝛼9 = 6.527 𝑒5 

0.12 m 
 

𝛼 = 3.357 𝑒-6 
𝛿 = 2.083 𝑒-10 

𝛽 =  4.130 𝑒-5 
𝛼 = −1.738 𝑒-7 
𝛿 =  2.083 𝑒-10 

𝛾 =  3.100 𝑒-4 
𝛽 = −2.330 𝑒-6 
𝛼 = 1.887 𝑒-7 

𝛿 =  2.083 𝑒-10 

𝛼 = 3.561 𝑒-7 
𝛽 = 12.13 

𝛿 = 2.083 𝑒-10 

 

 

Similar to when the model is fit over the domain of the entire field, Figure 27 indicates that the generic 

model was historically the most predictive model but the specific models have become relatively much 

more predictive over the past few years now that the annual production has been reduced and the seismic 

activity has decreased. It is possible that an additional year of decreased seismic activity will result in the 

specified models overtaking the generic model in terms of their predictive power.  
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Figure 23: Similar to Figure 11. Fits to compaction data, in the submodel domain, referenced to 
a year. Best fits are highlighted in (b) and (d) with the cubic the best fit in (b) and fit 6 the best 
fit in (d). Maps of forecast activity are shown in Figure 26 (cubic) and Figure 25 (fit 6) respectively.  

a) 

b) 

c) 

d) 
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Figure 24: Similar to Figure 11. Fits to compaction data, in the submodel domain, referenced to 
specific values. Best fits are highlighted in (b) and (d) with cubic and fit 7 being the best 
respectively.  

a) 

b) 

c) 

d) 
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Figure 25: Maps of activity based on compaction data, fit to the submodel domain data, for the 
best generic Poisson process model, referenced to the year 1990, and for the 27 bcm production 
scenario. Actual activity is presented for a range of years. The number in parenthesis in the sub-
figure title is the forecasted number of events in that year. Activity color bar ranges from 0-1e-7 
events per m2 per year 
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Figure 26: Maps of activity based on compaction data, fit to the submodel domain data, for the 
cubic specific Poisson process model, referenced to the year 1990, and for the 27 bcm production 
scenario. Actual activity is presented for a range of years. The number in parenthesis in the sub-
figure title is the forecasted number of events in that year. Activity color bar ranges from 0-1e-7 
events per m2 per year 
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Figure 27: Same as Figure 19 but for reference to a value rather than a year.  

3.2   Fault Slip Based Activity Models 
As discussed in section 2.2, the fault moment occurs only at specific locations where there are faults 

captured in the geomechanical model. There is a fair amount of error in observed earthquake locations, 

so most events are assigned coordinates where there is no fault and hence no corresponding modeled 

moment release. With zero moment release, an activity rate at that coordinate would be zero, and this 

poses many obstacles to the MLE of model parameters (the estimation requires that the log be taken of 

the activity rate at the location of the observed earthquake and the log of zero is infinite). One way to 

overcome this is to use a Gaussian kernel to distribute the geomechanically modeled moment over a 

spatial area, and this removes many of the areas where an activity rate of zero would be forecasted.  

Three sizes of kernel (3 km, 5 km and 7 km) were examined to determine if there is a better fit associated 

with one kernel size or another. The size is specified by the radius to the point that is equivalent to three 

standard deviations. The 7 km kernel results in the smoothest spatial distribution of moment (see Figure 

28 for a comparison of the modeled moment as of Jan 1, 2017 for the three kernel sizes). For the small 

kernel size, the spatial distribution of modeled moment still resembles that of faults, but for the larger 

kernel sizes, the modeled moment distribution is very smoothly varying in space and the underlying 

character of the fault map is not preserved. For all kernel sizes, upon a visual examination there is a very 

good spatial correlation between the observed events and the areas of high moment release. However, 

in the 3 km case, there are earthquakes observed at locations with little to no moment release and this 

will result in those models being penalized during the maximum likelihood estimation. The 5 km and 7 km 

distribution models have a non-trivial amount of moment release at all points in the submodel domain 

and this will affect the model fitting. Results for the 3 km and 7 km distribution model will be presented 

in more detail. The results of the 5 km distribution model are intermediate to the presented results.  
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Figure 28: Comparison of cumulative moment release by fault slip in the geomechanical model 
as of January 1, 2017, referenced to 1990, for three different sizes of Gaussian kernels used to 
distribute the moment over a spatial area.  

The log-likelihood and AIC values for specific and generic models fit to the moment data distributed using 

a 3 km kernel, are presented in Table 9. Similar to the compaction based results, models that are 

referenced to a year are a much better fit to the observed earthquakes than those that are referenced to 

a value. 1994 is the best year for both the specific and the generic models to use as a reference. The log-

likelihood and AIC values prefer different specific model forms (cubic and quadratic respectively). All the 

model fits referenced to a year are presented in Figure 29. In comparison to the compaction based models, 

much lower activity rates are forecasted in the future years for the 3 km distributed moment based 

models. Also, especially for the specified model forms, there is very little difference between the fits and 

forecasts for the different specified model forms. Many parameters are included in the generic model fit 

(9 parameters were selected by the algorithm) and the generic model has a much higher (worse) AIC value 

than the specified model forms (a difference of 20 compared to a difference of 10 for the compaction 

models fit to the submodel domain), indicating that the generic model is not as appropriate as the 

specified models for this scenario.   

All the model fits referenced to a slip value are presented in Figure 30. The best generic model referenced 

to a value is shown in Figure 30d and it is a poor representation of the observed earthquakes so it will not 

be discussed further. The specified model forms are a much better representation of the observations 

and the relatively trivial difference between the different specified model forms that was observed for 

the models referenced to a year persists when a reference slip value is used.  

The predictive power of the models fit to a reference year are shown in Figure 31. Except for those models 

that are fit to the data ending January 1, 2014, the specified model forms are consistently more predictive 

than the generic models.  
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Table 9: Identical to Table 5 but for moment based fits using a 3 km kernel and only fit to the 
submodel domain. The best fits for each of the methodologies, for each type of reference, and 
for both AIC and log-likelihood criterions are indicated with red text. Model fits and parameter 
values for the reference years and values in red are presented in Table 10 and Figure 29-Figure 
30. 

 Log-likelihood AIC 
Reference Linear Quadratic Cubic Exp. Generic Linear Quadratic Cubic Exp. Generic 

1988 -4596.55 -4587.86 -4587.08 -4587.34 -4594.14 9197.11 9181.72 9182.16 9180.67 9206.29 

1989 -4596.55 -4587.53 -4586.87 -4587.05 -4593.94 9197.11 9181.06 9181.75 9180.09 9205.88 

1990 -4596.55 -4586.90 -4586.39 -4586.47 -4592.76 9197.11 9179.80 9180.77 9178.93 9203.52 

1991 -4596.55 -4586.18 -4585.84 -4585.84 -4591.32 9197.11 9178.37 9179.69 9177.69 9200.64 

1992 -4596.55 -4585.03 -4584.94 -4584.94 -4589.43 9197.11 9176.06 9177.88 9175.89 9196.86 

1993 -4596.55 -4583.87 -4583.87 -4584.08 -4588.26 9197.11 9173.75 9175.75 9174.16 9194.51 

1994 -4596.82 -4583.04 -4582.93 -4583.64 -4587.65 9197.64 9172.08 9173.85 9173.29 9193.29 

1995 -4597.13 -4585.38 -4585.32 -4585.77 -4602.26 9198.26 9176.76 9178.63 9177.53 9220.53 

0.0 m -4758.96 -4686.18 -4684.48 -4699.66 -4688.61 9521.92 9378.36 9376.96 9405.31 9383.23 

0.01 m -4707.62 -4691.09 -4688.23 -4695.32 -4699.63 9419.23 9388.19 9384.45 9396.63 9413.26 

0.02 m -4690.87 -4688.62 -4686.78 -4690.56 -4724.78 9385.74 9383.25 9381.56 9387.13 9467.57 

0.03 m -4691.21 -4682.21 -4682.20 -4685.40 -4754.70 9386.42 9370.42 9372.39 9376.79 9527.41 

0.04 m -4694.81 -4681.63 -4677.90 -4704.75 -4835.45 9393.61 9369.27 9363.80 9415.50 9680.89 

0.05 m -4714.93 -4691.92 -4677.07 -4714.93 -4891.76 9433.85 9389.85 9362.15 9435.85 9793.52 

0.06 m -4779.16 -4748.54 -4721.17 -4779.16 -4988.57 9562.32 9503.08 9450.35 9564.32 9987.13 

0.07 m -4884.78 -4848.71 -4810.48 -4884.78 -5089.76 9773.56 9703.41 9628.97 9775.56 10193.52 

0.08 m -5025.56 -4992.09 -4957.46 -5025.56 -5274.74 10055.13 9990.19 9922.92 10057.13 10555.49 

0.09 m -5166.04 -5138.98 -5111.91 -5166.04 -5323.32 10336.08 10283.96 10231.82 10338.08 10658.64 

0.10 m -5297.99 -5277.16 -5277.16 -5297.99 -5455.90 10599.99 10560.31 10562.31 10601.99 10917.79 

0.11 m -5412.27 -5401.49 -5401.49 -5412.27 -5467.93 10828.55 10808.98 10810.98 10830.55 10943.85 

0.12 m -5456.13 -5450.52 -5450.52 -5456.13 -5478.78 10916.26 10907.04 10909.04 10918.26 10963.57 

 

Table 10. Best fit parameters used to generate the models presented in Table 9. All fits were 
performed using the modeled moment distributed with a 3 km kernel and the earthquake 
catalog within the area of only the submodels.  

Reference Linear Quadratic Cubic Exponential Generic 

1994 

𝛼 = 1.307 𝑒-14 
𝛿 = 2.229 𝑒-16 

𝛽 = 2.971 𝑒-22 
𝛼 = 7.066 𝑒-15 
𝛿 = 6.465 𝑒-15 

𝛾 = −1.381 𝑒-30 
𝛽 = 3.688 𝑒-22 
𝛼 = 6.519 𝑒-15 
𝛿 = 2.110 𝑒-14 

𝛼 = 8.264 𝑒-15 
𝛽 = 1.085 𝑒-8 

𝛿 = 3.894 𝑒-24 

𝛼0 = −22.29 
𝛼4 = 2.690 𝑒-6 

𝛼5 = −4.403 𝑒-13 
𝛼9 = 1.865 𝑒-20 
𝛼8 = 2.347 𝑒-21 
𝛼1 = 3.118 𝑒-7 

𝛼7 = −1.488 𝑒-13 
𝛼2 = −4.780 𝑒-15 
𝛼10 = −2.555 𝑒-28 

0.00 m 
    𝛼0 = −22.29 

𝛼1 = 9.846 𝑒-8 
𝛼2 = −4.285 𝑒-16 

0.05 m 
 

𝛼 = 6.585 𝑒-14 
𝛿 = 2.083 𝑒-10 

𝛽 = −1.880 𝑒-21 
𝛼 = 8.440 𝑒-14 
𝛿 =  2.083 𝑒-10 

𝛾 = 1.315 𝑒-28 
𝛽 = −7.351 𝑒-21 
𝛼 = 1.131 𝑒-13 
𝛿 = 2.083 𝑒-10 

𝛼 = 6.585 𝑒14 
𝛽 = 3.846 𝑒-15  
𝛿 = 2.083 𝑒-10 
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Figure 29: Similar to Figure 11. Fits to moment data with a 3 km kernel, in the submodel domain, 
referenced to a year. Best fits are highlighted in (b) and (d) with cubic and quadratic fits being the best in 
(b), depending on the metric used, and fit 9 being the best in (d).  

a) 

b) 

c) 

d) 
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Figure 30: Similar to Figure 11. Fits to moment data with a 3 km kernel, in the submodel domain, 
referenced to a slip value. Best fits are highlighted in (b) and (d) with cubic and fit 3 being the 
best respectively.  

a) 

b) 

c) 

d) 
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Figure 31: Same as Figure 19 but for reference to a value rather than a year.  

The log-likelihood and AIC values for specific and generic models fit to the moment data distributed using 

a 7 km kernel are presented in Table 11. Similar to all other results presented, models that are referenced 

to a year are a much better fit to the observed earthquake activity than those that are referenced to a 

value. The best reference year for the specific models is 1993 while the best reference year for the generic 

models is 1988. Similar to the 3 km kernel results, the specific models are much better than the generic 

model (an AIC difference of ~20). The log-likelihood value suggests that the cubic is the best fit to the 

observations, but the AIC value indicates that the quadratic would be more predictive. All of the fits are 

shown in Figure 32. As with the 3 km distribution results, the cubic and quadratic fits are very similar to 

one another.  

All the model fits referenced to a year are presented in Figure 33. Similar to the 3 km distribution model 

data, the best generic model referenced to a value (shown in Figure 33d) yields a poor representation of 

the observed earthquakes so it will not be discussed further. The specified model forms referenced to a 

year are a much better representation of the observations and there is only a small difference between 

the quadratic and the cubic forms, which are both good fits to the observations. Hence the models 

referenced to a year rather than a value are greatly preferred. An example of the activity maps for the 

quadratic model, referenced to 1993 is shown in Figure 34. 

As with other scenarios, the predictive power of the models referenced to a year is examined in Figure 

35. Historically the generic model was generally the most predictive but recently the specified cubic and 

quadratic forms became the most predictive. The variation in the model fits is shown in Figure 36. 

Because the models fit to the 3 km distribution model moment data and the 7 km distribution model 

moment data were made over the same domain area and the same set of earthquakes, the log-likelihood 

and AIC values can be directly compared.  The best 3 km distribution model has an AIC value of 9172 while 

the best 7 km distribution model has an AIC value of 9054. This difference is very significant and indicates 
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that the smoother activity maps of the 7 km distribution model are much better for modeling the 

observations.  

Table 11: Identical to Table 5 but for distributed moment based fits using a 7 km kernel and only 
fit to the submodel domain. The best fits for each of the methodologies, for each type of 
reference, and for both AIC and log-likelihood criterions are indicated with red text. Model fits 
and parameter values for the reference years and values in red are presented in Table 12 and 
Figure 32-Figure 33. 

 Log-likelihood AIC 
Ref. Linear Quadratic Cubic Exp. Generic Linear Quadratic Cubic Exp. Generic 

1987 -4578.46 -4526.30 -4525.89 -4534.08 -4530.95 9160.92 9058.60 9059.78 9074.17 9073.90 

1988 -4578.46 -4525.98 -4525.49 -4534.09 -4529.75 9160.92 9057.96 9058.99 9074.19 9073.50 

1989 -4578.46 -4526.34 -4525.90 -4534.33 -4545.95 9160.92 9058.67 9059.80 9074.66 9099.89 

1990 -4578.46 -4526.28 -4525.93 -4534.11 -4537.50 9160.92 9058.57 9059.87 9074.22 9085.00 

1991 -4578.46 -4525.97 -4525.63 -4533.84 -4538.12 9160.92 9057.93 9059.26 9073.69 9086.23 

1992 -4578.46 -4524.76 -4524.21 -4533.43 -4538.41 9160.92 9055.52 9056.43 9072.87 9086.82 

1993 -4578.46 -4524.22 -4523.49 -4533.25 -4539.38 9160.92 9054.45 9054.99 9072.51 9088.77 

1994 -4578.72 -4525.06 -4524.15 -4533.98 -4541.85 9161.44 9056.11 9056.29 9073.97 9093.70 

1995 -4579.09 -4533.05 -4532.29 -4539.50 -4534.68 9162.18 9072.10 9072.59 9085.00 9083.36 

0.0 m -4758.96 -4686.18 -4684.48 -4699.66 -4654.75 9521.92 9378.36 9376.96 9405.31 9321.51 

0.01 m -4674.08 -4554.83 -4553.47 -4585.21 -4574.83 9352.17 9115.66 9114.95 9176.41 9155.65 

0.02 m -4635.27 -4564.12 -4559.95 -4585.05 -4592.02 9274.54 9134.24 9127.91 9176.11 9190.04 

0.03 m -4605.54 -4573.86 -4563.48 -4583.94 -4613.32 9215.09 9153.72 9134.96 9173.88 9232.63 

0.04 m -4586.53 -4580.18 -4568.60 -4582.03 -4644.34 9177.05 9166.35 9145.21 9170.05 9294.68 

0.05 m -4575.98 -4575.58 -4571.41 -4575.98 -4699.69 9155.96 9157.16 9150.82 9157.96 9405.37 

0.06 m -4582.36 -4570.47 -4570.33 -4582.36 -4709.11 9168.72 9146.94 9148.67 9170.72 9428.22 

0.07 m -4617.32 -4588.98 -4579.92 -4617.32 -4800.68 9238.65 9183.97 9167.85 9240.65 9613.37 

0.08 m -4681.02 -4642.34 -4642.34 -4681.02 -5023.00 9366.04 9290.69 9292.69 9368.04 10053.99 

0.09 m -4790.28 -4745.06 -4745.06 -4790.28 -5040.44 9584.56 9496.13 9498.13 9586.56 10088.87 

0.10 m -4948.25 -4901.30 -4901.30 -4948.25 -5220.49 9900.50 9808.61 9810.61 9902.50 10448.98 

0.11 m -5163.82 -5127.39 -5127.39 -5163.82 -5431.02 10331.63 10260.78 10262.78 10333.63 10868.04 

0.12 m -5314.79 -5314.79 -5314.79 -5314.79 -5451.73 10633.57 10635.57 10637.57 10635.57 10909.46 

 

Table 12:  Best fit parameters used to generate the models presented in Table 11. All fits were 
performed using the modeled moment distributed with a 7 km kernel and the earthquake 
catalog within the area of only the submodels.  

Reference Linear Quadratic Cubic Exponential Generic 

1988 

    𝛼0 =-22.76 
𝛼1 = 1.145 𝑒-7 

𝛼3 = −8.584 𝑒-24 
𝛼4 = 4.070 𝑒-6 

𝛼5 = −1.193 𝑒-12 
𝛼7 = −5.047 𝑒-14 
𝛼9 = 1.752 𝑒-20 

1993 

𝛼 = 1.398 𝑒-14 
𝛿 = 2.306 𝑒-16 

𝛽 = 8.746 𝑒-22 
𝛼 = −1.180 𝑒-15 
𝛿 = 3.625 𝑒-15 

𝛾 = −6.210 𝑒-30 
𝛽 = 1.078 𝑒-21 

𝛼 = −2.031 𝑒-15 
𝛿 = 7.962 𝑒-16 

𝛼 = 4.773 𝑒-15 
𝛽 = 2.964 𝑒-8 

𝛿 = 1.979 𝑒-15 

 

0.01 m 

𝛼 = 1.236 𝑒-14 
𝛿 =  2.225 𝑒-16 

𝛽 =  7.614 𝑒-22 
𝛼 = −4.397 𝑒-15 
𝛿 =  2.083 𝑒-10 

𝛾 =  −5.063 𝑒-30 
𝛽 =  9.797 𝑒-22 

𝛼 = −5.421 𝑒-15 
𝛿 =  2.083 𝑒-10 

𝛼 = 2.853 𝑒-15 
𝛽 = 3.058 𝑒-8 

𝛿 = 9.075 𝑒-14 

𝛼0 = −22.29 
𝛼1 = 2.069 𝑒-7 

𝛼2 = −1.838 𝑒-15 
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Figure 32: Similar to Figure 11. Fits to moment data distributed with a 7 km kernel, in the 
submodel domain, referenced to a year. Best fits are highlighted in (b) and (d) with cubic and 
quadratic fits being the best in (b), depending on the metric used, and fit 7 being the best in (d).  

a) 

b) 

c) 

d) 
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Figure 33: Similar to Figure 11. Fits to moment data distributed with a 7 km kernel, in the 
submodel domain, referenced to the year 1967 and then a value. Best fits are highlighted in (b) 
and (d) with cubic and quadratic fits being the best in (b), depending on the metric used, and fit 
3 being the best in (d).  

a) 

b) 

c) 

d) 
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Figure 34: Maps of activity based on moment data distributed using a 7 km Gaussian kernel, fit 
to the submodel domain data, for the quadratic specific Poisson process model, referenced to 
the year 1993, and for the 27 bcm production scenario. Actual activity is presented for a range 
of years. The number in parenthesis in the sub-figure title is the forecasted number of events in 
that year. Activity color bar is for 0-1e-7 events per m2 per year 
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Figure 35: Same as Figure 19 but for a 7 km distribution of moment referenced to a year.  

 

Figure 36: Same as Figure 21 but for moment data distributed using a 7 km Gaussian kernel and 
referenced to a year.  
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4.0   Discussion 
Reference years were preferable to reference values for both compaction and fault moment based 

models. The specified exponential model used by Bourne and Oates (2015a,b) is a conservative 

assumption that can be made because it frequently results in the highest forecasted activity rates. The 

cubic or quadratic specified models are frequently preferred over the exponential except for the case of 

compaction fit to the entire field domain. In this scenario the exponential has the best AIC value but the 

cubic has the best log-likelihood value. If fault moment is considered, the more diffuse moment based 

models (using a 7 km kernel) give significantly better fits to the earthquake observations than the  more 

localized fault moment models (3 km kernel).  

In this section a subset of models are examined more closely to determine the effect of the model fits on 

hazard maps and implications for activity rate based production caps. A comparison of the field wide 

compaction based models is discussed first, followed by a comparison of the fault and compaction based 

models in the submodel domain.  

4.2   Field Wide Compaction Based Models 
In section 3.1.1 the activity maps for five field wide compaction based models are presented. The five 

models result in similar spatial distributions of activity but there is a fair range in the number of events 

that would be forecasted to occur over the next 5 years for the 27 bcm production scenario. Figure 37 

shows the PGA (at a 10% chance of exceedance in 50 years) for the five scenarios. These maps were 

generated using the maximum magnitude distribution determined by a panel of experts during the 

Maximum magnitude workshop (Coppersmith et al., 2016) and a 50-50 weighting on the upper and middle 

branches of the version 2 GMPE (Bommer et al., 2015b). Because the version 2 GMPE is applied with a 

Monte Carlo framework, we accounted for uncertainty using the standard deviation values from version 

1 (Bommer et al., 2015a). The spatial patterns of the hazard maps (PGA with a 10% probability of 

exceedance in 50 years) are very similar to one another despite the differences in the degree of activity 

localization between the models. The maximum PGA ranges from 0.149-0.168 g for the five models 

considered. This is a very small range given the variation in the input models and the number of events 

that are forecasted. The models used as input for (a), (b) and (c) are far better fits to the data than those 

shown in (d) and (e). When only the top three performing models are considered, the range in maximum 

PGA reduces to 0.153-0.168 g. This narrow range reflects a reasonable amount of uncertainty in the 

hazard calculation.  

With the recent decrease in activity the specified model forms are becoming more predictive than the 

generic model forms. While the generic model form is currently the most predictive model (Figure 37a) 

an additional year or two of low seismic activity rates could potentially make this model less predictive 

than the cubic and exponential forms (Figure 37b and c). For some of the moment based models a 

transition to the specified forms being more predictive has already occurred. For this reason, the 

exponential and the cubic forms are the preferred model forms. The AIC value of the exponential form is 

lower making it a better representation of the seismicity given the number of parameters used to fit the 

model, but the cubic model fits the historical data better than the exponential. Both of these models 
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should be used going forward as a measure of the uncertainty range in the forecasted seismicity rates and 

hazard maps.  

 

 

Figure 37: PGA (10% probability of exceedance in 50 years) hazard maps for the five best activity 
models based on the field wide compaction data. (a) generic model referenced to 1990; (b) 
exponential specific model referenced to 1990; (c) cubic specific model referenced to 1990; (d) 
cubic specific model referenced to 0.12 m; (e) generic model referenced to 0.0 m. Despite the 
differences in activity forecast maps, the hazard maps are very similar. The models used as input 
for (a), (b) and (c) yield far better fits to the data than those shown in (d) and (e). 

4.1   Comparison of Compaction and Fault Based Models 

4.1.1   Best Fault and Compaction based Models for Comparison 

A comparison of the compaction and fault based moment models can only be made in the submodel 

domain since the faulted geomechanical model does not exist across the domain of the entire field.  

d) e) 

a) b) c) 
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The best AIC value for a fault moment based model was 9054.45 for the 7 km Gaussian kernel, quadratic 

model referenced to 1993. This was followed closely behind by the 7 km Gaussian kernel cubic model, 

referenced to 1993, with an AIC value of 9054.99 (values in Table 11). In comparison, the best compaction 

based model is the generic model, referenced to 1988, with an AIC value of 9110.23. Many results were 

presented in section 3.1.2 for the compaction based model referenced to 1990 (rather than 1988). That 

model had an AIC value of 9112.0 which is only slightly worse than the 1988 reference year compaction 

based model. An AIC value of ~9110 is substantially higher than an AIC value of 9054 indicating that the 7 

km Gaussian kernel moment based activity maps may be better activity models than those that are 

compaction based. In comparison, the best 3 km Gaussian kernel fault based model AIC value is 9172.08, 

which is for the quadratic model referenced to 1993. This is worse than the AIC value for the best 

compaction based model.  

The poor AIC value for the 3 km distributed moment based model is surprising given the high spatial 

correlation between the observed events and the fault slip data shown in Figure 28a. The poor fit is 

believed to be due to the fact that seismic activity is observed in locations where the 3 km distribution 

has little to no fault moment release. Use of a larger kernel size disperses the activity more so this does 

not occur but the high degree of spatial correlation between fault slip and observed seismicity is preserved 

(Figure 28c).  

Five models are chosen for comparison using just the submodel domain. An activity map is needed over 

a larger domain, but this submodel comparison is sufficient to determine the magnitude of the model 

effect on the activity levels and the PGA hazard map. The five models selected are: 

1. Fault moment distributed with a 3 km Gaussian kernel, referenced to 1994, quadratic specified 

model – this is the lowest AIC valued model but not the lowest log-likelihood (-4583.04 for the 

quadratic vs. -4582.93 for the cubic). However, the log-likelihood values are very close and the 

cubic and quadratic models are very similar in their activity forecasts with the cubic forecasting 

slightly less activity. Of the five models considered this is the poorest fit. 

2. Fault moment distributed with a 7 km Gaussian kernel, referenced to 1993, quadratic specified 

model – this is the lowest AIC valued model but not the lowest log-likelihood (-4524.22 for the 

quadratic vs. -4523.49 for the cubic). However, the log-likelihood values are close and the 

quadratic model predicts higher activity than the cubic model. Of the five models considered this 

is the best fit 

3. Compaction, referenced to 1990, generic model – this is not the lowest AIC value (compare 

9110.23 for 1988 to 9112.0 for 1990). However, 1990 is the year with the best log-likelihoods for 

both the specific and generic models, a good reference year for the field wide models and the 

reference year used by Shell in the last HRA submission. This model forecasts comparatively low 

levels of seismicity (Figure 11d) that are not consistent with many of the other model predictions 

so this model is an outlier within the group 

4. Compaction, referenced to 1990, exponential model – this is not the lowest AIC or log-likelihood 

choice, but it is the most similar to the NAM HRA submission.  

5. Compaction, referenced to 1990, cubic model – this model has the best AIC and log-likelihood 

values for the specified model forms fit to compaction and referenced to a year. The generic 
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model (model 3) has a lower AIC but an outlier future forecast. Hence this cubic model is the most 

best supported compaction based model fit.  

Model 1 does not fit the data as well as the others and model 3 has an anomalous forecast so they are 

included to provide a bound on the level of seismicity expected. Model 2 yields the best fit and models 4 

and 5 also yield good fits. The differences in forecasts from these three models provide some idea about 

the variability that is reasonable.  

4.1.2   Comparison of Activity in the Near Term  

The total activity for the 5 models in the submodel domain is shown in Figure 38. The five models make 

very different forecasts about the future level of activity. The generic compaction model (model 3 - blue 

line) is different from all the other models shown here and the large decrease in activity is not seen in 

many of the other model fits presented in section 3. Therefore, even though this model has the lowest 

AIC value of the compaction models, and it is the best representation of the historical seismicity, it is the 

least conservative model and should not be the only scenario carried forward.   

The response of the regulator to the most recent Winningsplan submission was to base a production level 

recommendation on the number of forecasted events and not the seismic hazard level (Kamp, 2016).   This 

is a challenging metric on which to base a production cap because activity forecasts are based on a Poisson 

process and the observed number of seismic events in a given year will be highly variable around an 

expected rate. Even if the expected rate is lower than the 2015 level, from a statistical point of view it is 

possible that a larger number of events may be observed in at least one of the next five years.  At the time 

of writing, the regulator recommendation was that the number of yearly events in the next five years 

should not exceed the activity level observed in 2015. Figure 38 shows significant differences between 

the 5 models over this five year interval. 
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Figure 38: Total activity in the submodel domain for the five models closely examined. Same 
models are shown in both figures but lower figure is a close up of the current time frame. All 
forecasts are based on a 27 bcm production scenario. 
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Figure 39: Average activity over the next 5 years for the four models under consideration (a) 
model 1 - 3 km distribution of fault moment, referenced to 1994, quadratic specified model; (b) 
model 2 - 7 km distribution of fault moment, referenced to 1993, quadratic specified model; (c) 
model 3 - Compaction, referenced to 1990, generic model; (d) model 4 - Compaction, referenced 
to 1990, exponential model; (e) model 5 - Compaction, referenced to 1990, cubic model. 

In addition to the differences in the total activity rate the five models also result in different spatial 

distributions of seismic activity. The PGA hazard calculation is based on the activity map over the next five 

years (activity from January 1, 2017 to December 31, 2021) so average maps over this time frame are 

shown in Figure 39. The activity ranges from an average of 14-23 events per year but the best model has 

19 events per year and the second best has 22 events per year.  

  

a) b) 

e) d) c) 
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4.1.3   Comparison of PGA Hazard Maps  

 

      

  

Figure 40: PGA hazard maps for the four activity models shown in Figure 39 plotted at the 10% 
in 50 years exceedance level. (a) model 1 - 3 km fault moment, referenced to 1994, quadratic 
specified model; (b) model 2 - 7 km distribution of fault moment, referenced to 1993, quadratic 
specified model; (c) model 3 - Compaction, referenced to 1990, generic model; (d) model 4 - 
Compaction, referenced to 1990, exponential model; (e) model 5 - Compaction, referenced to 
1990, cubic model. 

One potential impact of the seismological model is the effect on resulting hazard maps. Figure 40 shows 

the PGA (at a 10% chance of exceedance in 50 years) for the five models. These maps were generated 

using the maximum magnitude distribution determined by a panel of experts during the Maximum 

magnitude workshop (Coppersmith et al., 2016) and a 50-50 weighting on the upper and middle branches 

of the version 2 GMPE (Bommer et al., 2015). While the forecast activity maps that fed into these hazard 

a) b) 

e) d) c) 
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maps were quite different, the spatial distribution of the hazard is very similar for all of the models 

considered.  

The five models result in different peak PGA values. The model underlying Figure 40a is the worst 

representation of the historical seismicity and the maximum PGA is 0.148 g. The model underlying Figure 

40c forecasts a substantial decrease in future seismicity that may not be likely to occur, and as a result 

the maximum PGA is 0.144 g. These two scenarios provide lower estimates of the PGA. The three 

remaining models Figure 40b, d and e, show similar maximum PGA hazard values 0.165-0.180 g. The 

similarity in these PGAs is striking given that they come from two different input data sets (compaction 

and fault moment).  

The spatial and peak PGA value similarities to the compaction based models make it clear that a fault 

based model can be incorporated without significantly changing the hazard map. This work supports the 

models previously submitted by NAM by demonstrating that compaction based models provide an 

assessment of the PGA hazard level that is consistent with fault based model results. 

5.0   Summary and Conclusions 
Geomechanical models can be used to constrain the range of likely deformation scenarios in the 

subsurface due to a given production schedule. A geomechanical measure can then be used to generate 

a seismological model, which is the link between deformation and seismic activity. Subsurface 

deformation can be driven by reservoir compaction, slip on discrete faults, or a combination of both. The 

seismological model is a statistical model that represents the average activity rate as a function of the 

geomechanical input. In the absence of a deep physical understanding of how the number of earthquakes 

is related to the subsurface deformation, the statistical model can take many forms. Assuming a form for 

the statistical model will have implications for the seismicity levels that are forecasted in future years.   

This report explores many potential forms for the statistical model and methods of calibration to the onset 

of seismicity. However, this is not a complete analysis and additional forms not investigated here could 

later prove to offer better representations of the seismicity. Similar to the methodology followed by 

Bourne and Oates (2015a,b) a few forms for the seismological model were specified a priori and these 

four models are referred to as the specified models. To complement the specified forms, a generic form 

for a Poisson process was applied that could include a variety of parameters. An iterative approach was 

used to progressively add one term at a time to the solution to obtain a final seismological model. The 

end result of this iterative procedure is referred to as the generic model.  

In addition to examining many functional forms for the model, both compaction and fault based slip are 

considered as inputs into the seismological model. Compaction is a field wide variable (every point in 

space has a compaction associated with it) but that is not the case for fault slip because there is not a fault 

at every point in space. Therefore, fault slip (fault moment release) was converted to a field variable by 

distributing the modeled moment release over a spatial area. The amount of dispersion/localization used 

for this conversion also became a parameter that was examined to determine what produced the best 

seismological model. The final dimension that was explored was the reference (threshold) value for the 
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input data. A large amount of production occurred before the initiation of seismicity indicating that a 

threshold was reached. This threshold could be imposed in the models as either a year or a deformation 

value (a critical level of compaction or amount of modeled fault slip) so only deformation that occurred 

after this threshold was reached was considered in generating the statistical model. The threshold used 

is referred to as the reference since all input geomechanical quantities are in reference to this year or 

value.  

Regardless of the approach taken, models with a reference year were consistently found to provide better 

fits to the historical seismicity than models with a reference value. Conceptually it makes sense that a 

large amount of compaction has an effect but a small amount is negligible (a threshold value) but it is hard 

to come up with a reason that everything changed in one year, especially given the amount of variability 

in compaction across the field in a given year. However, regardless of the physical intuition, a reference 

year is consistently the better option. One possibility is that this is the manifestation of an important 

dependency that is not captured in the current set of variables, but at this point that is strictly speculation.   

For fault slip based seismological models different kernel sizes were used to distribute the modeled fault 

slip over a spatial area. The more localized representations (3 km kernel) preserved the character of the 

fault network but gave poor fits to the historical seismicity. When the moment was more dispersed (using 

a 7 km kernel) there were fewer earthquakes observed in areas with a near zero activity rate so the fit 

was better. The 3 km and 7 km Gaussian kernel scenarios result in very different activity maps and 

forecasted event numbers. The differences could have large implications for a production cap determined 

by the number of events but have a much smaller effect on resulting PGA hazard maps. The spatial 

distribution of hazard is nearly identical and the forecast max PGA value only differs by 10%. For the 

purposes of this study we have not investigated the effects on spectral accelerations at different structural 

periods or other values for probability of exceedance.  

Fault moment based models can only be made in the domain where the faulted geomechanical models 

exist. This is referred to as the submodel domain and covers the area where most of the observed 

earthquakes occurred.  To compare compaction and fault based models the analysis must be limited to 

the submodel domain. Five models were selected to understand the effect on the PGA hazard maps and 

the variability in activity rates forecasted over the next five years. A seismological model based on the 7 

km distribution of fault moment model is statistically the best fit to the past seismicity. The next best 

models are compaction based and the worst fitting model is the 3 km distribution of fault moment based 

model. The five models discussed above respectively predict large differences in the forecasted seismicity 

rate.  

The best fitting fault slip based seismological model forecasts lower activity rates over the next 30 years 

than the seismological model that is used by NAM.  Despite these differences, the resulting PGA hazard 

maps are not substantially different. Compaction and fault based models result in very different spatial 

distributions of earthquake activity, but this has a relatively small effect on resulting PGA hazard maps 

due to the fact that the Ground Motion Prediction Equations (GMPEs) act to disperse the hazard over a 

larger domain.  
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The results here indicate that a fault based model is a valuable addition to the PSHA process because it 

can provide a very good representation of the seismicity. However, it will not substantially alter the PGA 

hazard maps, and hence the results support the compaction based hazard maps previously submitted to 

the regulator by NAM.  

The faulted geomechanical model does not exist in the entire domain of the field, so currently only 

compaction can be used to develop a field wide activity model. A variety of forms were considered and 

the model currently used by NAM was found to be one of the better models. However, there are two 

other seismological models that represent the historical data better, or nearly as well, that make different 

forecasts about the seismicity rate in the near term.  

Many models can represent the observed seismicity equally well, but these models can yield very different 

activity forecasts over the next 10 years so it might be worthwhile to consider a wide range of models and 

not be locked into one form at the expense of potentially more predictive models. Multiple models should 

be carried forward and weighted appropriately in a logic tree so that the unconstrained assumption of 

one form for the seismological model does not singularly determine the result.  
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