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General Introduction 

In this report, a study into the transfer of seismic motion from the soil into the foundation and the 

structure of buildings, i.e. the soil structure interaction, is described.  

Extensive studies have been carried out by Deltares to prepare a detailed map of the shallow subsurface 

(Ref. 1 to 3).  Based on the description of the shallow sub-surface, amplification factors of the ground 

motion have been derived and included in the ground motion model (GMM) (Ref. 4).   

Using representative values of the amplification factor, the response of a selection of buildings to 

earthquake motion is analysed in this report.  The models prepared for the index buildings used in the 

derivation of fragility functions were used in this study (Ref. 5).  The foundation of the buildings is 

important in the transfer of the ground motion into the buildings.  In this study index buildings with 

shallow foundations as wells as buildings with pile foundations were considered.   
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Introduction	
Dynamic	 soil–structure	 interaction	 (SSI),	 involving	 the	 coupling	 of	 structure,	 foundation	 and	
soil,	 is	a	crucial	and	challenging	problem,	especially	when	soil	nonlinearity	plays	an	 important	
role.	 In	 a	 previous	 study	 by	Mosayk	 (2015)	 a	 one-dimensional	 frequency-independent	model	
(where	 soil	 nonlinearity	 was	 accounted	 for	 only	 in	 a	 simplified	 manner)	 was	 proposed	 to	
represent	 SSI	 in	 the	 development	 of	 fragility	 functions	 for	 buildings	 in	 the	 Groningen	 field	
(Crowley	et	al.,	2015;	Crowley	and	Pinho,	2017).		

This	work	describes	instead	the	calibration	of	an	explicitly	nonlinear	SSI	macro-element	used	in	
the	development	of	the	v6	fragility	functions	for	buildings	in	the	Groningen	region	(Crowley	et	
al.,	2019).	Further,	in	order	to	gain	confidence	on	the	former,	calibration	of	two	alternative	SSI	
approaches	 (one-dimensional	 frequency-independent	model	 and	 a	 Lumped	Parameter	Model)	
are	also	carried	out,	and	the	results	compared	in	terms	of	their	impact	on	fragility	functions.		

The	report	starts	in	Chapter	1	with	a	description	of	the	characterisation	of	the	soil	properties	in	
the	 Groningen	 region	 and	 the	 selection	 of	 representative	 soil	 profiles	 for	 the	 subsequent	
analyses.	Chapter	2	summarises	the	eight	typical	structural	configurations	to	which	the	three	SSI	
approaches	are	applied.	This	is	then	followed	by	the	calibration	of	the	input	parameters	for	the	
nonlinear	 macro-element	 approach	 (Chapter	 3)	 and	 for	 the	 two	 alternative	 linear	 methods	
(Chapter	4).	Finally,	in	Chapter	5,	the	comparison	in	terms	of	fragility	functions	is	presented.		
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1 Procedure	for	the	selection	of	representative	soil	profile	for	SSI	
In	 order	 to	 account	 for	 Soil-Structure-Interaction	 (SSI)	 it	 is	 first	 required	 to	 define	
representative	 soil	 profiles	 that	 may	 be	 used	 for	 assessment	 of	 the	 input	 parameters	 of	 the	
different	 models	 used	 (one-dimensional	 frequency-independent,	 LPM,	 macro-element).	 The	
representativeness	of	 the	 soil	profile	becomes	an	even	more	 important	aspect,	 given	 the	wide	
area	being	considered	in	this	study.	

The	 selection	 of	 representative	 soil	 profiles	 takes	 advantage	 of	 the	 detailed	 microzonation	
carried	out	in	recent	years	for	the	Groningen	region,	resulting,	among	others,	in	maps	of	the	site	
response	 Amplification	 Factor	 (AF)	 for	 several	 spectral	 ordinates	 (Rodriguez-Marek	 et	 al.,	
2017).	The	examination	of	AF	distributions	shows	that	 in	general	the	patterns	of	high	and	low	
AF	are	well	reflected	by	the	geological	zonation	model	(Bommer	et	al.,	2017).	Therefore,	the	AF	
represents	well	 the	 soil	behaviour	of	 the	 shallow	deposits,	 and	 it	 can	be	 considered	a	 reliable	
parameter	for	the	identification	of	representative	soil	profiles.	

The	procedure	for	the	soil	profile	selection	involves	several	steps	listed	below	and	described	in	
more	detail	in	the	following	sections.	

1) Analysis	of	the	Amplification	Factor	(AF)	distribution;	

2) Selection	of	one	or	more	sets	of	sites	around	representative	values	of	AF;	

3) Selection	 of	 the	 Vs	 profiles	 corresponding	 to	 the	 locations	 with	 homogeneous	 AF	
identified	in	2);	

4) Evaluation	of	the	mean	Vs	profiles;	

5) Search	of	the	single	Vs	profile	with	the	best	fit	in	comparison	with	the	mean	Vs	profile;	

6) Extraction	of	the	properties	of	the	single	Vs	profile;	

The	 data	 used	 in	 this	 section	 comes	 from	 the	 enormous	 amount	 of	 multidisciplinary	 work	
carried	 out	 on	 the	 Groningen	 field	 area	 concerning	 geology,	 seismic	 hazard,	 site	 response	
analysis,	 geotechnical	 characterization,	 ground	 motion	 model,	 risk	 assessment,	 etc.,	 and	
documented	in	numerous	publications,	such	as	e.g.	Bommer	et	al.	(2015),	Bommer	et	al.	(2017),	
Bommer	et	al.	(2018),	Kruiver	&	de	Lange	(2015),	Kruiver	et	al.	(2017a),	Kruiver	et	al.	(2017b),	
Rodriguez-Marek	et	al.	(2017),	Romijn	R.	(2017).	

1.1 Analysis	of	the	Amplification	Factor	(AF)	distribution		
The	 Groningen	 subsurface	 consists	 of	 up	 to	 an	 800	 m	 thick	 sequence	 of	 soft	 unconsolidated	
sediments	that	are	mainly	composed	of	sand	and	clay.		

TNO	–	Geological	Survey	of	 the	Netherlands	 (TNO-GSN)	systematically	produces	3D	geological	
models	of	the	Dutch	subsurface	(Van	der	Meulen	et	al.,	2013).	One	of	these	models	is	the	voxel	
model	called	GeoTOP,	which	describes	the	geometry	and	properties	of	the	shallow	subsurface	to	
a	 maximum	 depth	 of	 NAP	 −50	 m	 (Stafleu	 et	 al.,	 2011,	 2012;	 Maljers	 et	 al.,	 2015;	 Stafleu	 &	
Dubelaar,	 2016).	 GeoTOP	 schematises	 the	 subsurface	 in	 a	 regular	 grid	 of	 rectangular	 blocks	
(‘voxels’,	‘tiles’	or	‘3D	grid	cells’)	each	measuring	100	m	×	100	m	×	0.5	m	(x,	y,	z).	Each	voxel	in	
the	model	contains	estimates	of	the	lithostratigraphical	unit	and	the	representative	lithological	
class	(including	a	grain-size	class	for	sand)	(Kruiver	et	al.,	2017a).	

In	 order	 to	 quantify	 seismic	 hazard	 and	 risk	 due	 to	 production-induced	 earthquakes	 in	 the	
Groningen	gas	field	two	geological	models	are	available,	the	first	focusing	on	site	response	and	
the	second	on	liquefaction.	To	derive	input	parameters	for	SSI	analysis,	most	of	the	information	
came	from	the	first	model,	which	is	the	‘Geological	model	for	Site	response	in	Groningen’	(GSG	
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model)	(Kruiver	et	al.,	2017a)	and	is	based	on	the	detailed	3D	GeoTOP	voxel	model	containing	
lithostratigraphy	and	lithoclass	attributes	mentioned	above.	

To	 build	 the	 GSG	model,	 Kruiver	 et	 al.	 (2017a)	 combine	 the	 GeoTOP	model	with	 information	
from	boreholes,	cone	penetration	tests,	regional	digital	geological	and	geo-hydrological	models	
to	 cover	 the	 full	 range	 from	 the	 surface	 down	 to	 the	 base	 of	 the	North	 Sea	 Supergroup	 (base	
Paleogene)	at	∼800	m	depth.	The	GSG	model	consists	of	a	microzonation	based	on	geology	and	a	
stack	 of	 soil	 stratigraphy	 for	 each	 of	 the	 about	 140,000	 grid	 cells	 (100	m	 ×	 100	m)	 to	which	
properties	(VS	and	parameters	relevant	for	nonlinear	soil	behaviour)	were	assigned.		

Figure	1.1	shows	the	Geological	zonation	of	the	Groningen	field	used	for	the	assessment	of	site	
amplification	(GMPE	V4)	(Kruiver	et	al.,	2017a).	It	is	constituted	by	22	main	zones,	each	of	them	
can	 be	 further	 subdivided	 into	 subzones	 with	 similar	 geological	 characteristics,	 for	 a	 total	 of	
more	than	150	zones.	Each	zone	is	characterized	by	a	code,	the	first	two	numbers	describe	the	
typical	 soil	 column,	 whereas	 the	 last	 two	 digits	 are	 a	 sequential	 number	 characterising	
differences	for	instance	in	the	thickness	and/or	depth	of	certain	layers.	For	instance,	zones	1011	
and	1012	have	 the	 same	 typical	 soil	 column	of	 type	10	 (see	 legend	of	 the	 geological	 zonation	
map),	 but	 with	 different	 thickness	 and	 depth	 sequence,	 in	 order	 to	 capture	 the	 litho-
stratigraphic	amplification.	

	

	

Figure	1.1	Geological	zonation	of	the	Groningen	field	used	for	the	assessment	of	site	amplification	(GMPE	V4).	
Similar	colours	indicate	similar	geological	successions	in	the	shallow	depth	range	(Kruiver	et	al.,	2017a).	

For	 the	 Groningen	 field,	 a	 regional	 shear-wave	 velocity	 (VS)	 model	 was	 constructed	 partially	
based	on	the	GSG	model	(Kruiver	et	al.,	2017b).	The	VS	model	extends	to	a	depth	of	almost	1	km,	
the	detailed	VS	profiles	are	constructed	from	a	combination	of	three	data	sets	covering	different,	
partially	overlapping,	depth	ranges.	The	uppermost	50	m	of	the	VS	profiles	are	obtained	from	a	
high-resolution	geological	model	with	representative	VS	values	assigned	to	the	sediments.	Field	
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measurements	 of	 VS	 were	 used	 to	 derive	 representative	 VS	 values	 for	 the	 different	 types	 of	
sediments.	The	profiles	from	50	to	120	m	are	obtained	from	inversion	of	surface	waves	recorded	
(as	noise)	during	deep	seismic	reflection	profiling	of	the	gas	reservoir.	The	deepest	part	of	the	
profiles	is	obtained	from	sonic	logging	and	VP–VS	relationships	based	on	measurements	in	deep	
boreholes	 (Kruiver	 et	 al.,	 2017b).	 The	 interested	 reader	 is	 referred	 to	 the	 latter	 work	 for	
additional	information	about	the	shear-wave	velocity	(VS)	model.	

The	 regional	 shear-wave	 velocity	 (VS)	 model	 described	 above	 has	 been	 used	 as	 a	 basis	 for	
seismic	microzonation	of	 the	Groningen	gas	 field	area,	 extending	more	 than	1000	km2.	 In	 this	
framework,	the	field-wide	VS	profiles	are	subsequently	used	to	define	a	reference	rock	horizon—
at	a	depth	of	about	800	m—and	then	used	in	a	large	number	of	site	response	analyses	to	obtain	
nonlinear	 frequency-dependent	 amplification	 factors,	 as	 described	 in	 Rodriguez-Marek	 et	 al.	
(2017).	

The	site	 response	analysis	 study	 (carried	out	 considering	3600	 input	motions	 subdivided	 into	
ten	levels)	was	performed	for	a	grid	of	about	140’000	points	homogeneously	distributed	in	the	
Groningen	 area.	 Figure	 1.2	 shows,	 as	 an	 example,	 the	 spatial	 distribution	 of	 AF	 across	 the	
Groningen	 area	 at	 0.01	s	 periods	 for	 Weak	 input	 motion	 (i.e.	 rank	 1-360)	 and	 Strong	 input	
motion	(i.e.	rank	3241-3600).	Similar	data	is	available	for	others	periods.	

	

	 	
a)	 b)	

Figure	1.2	Amplification	Factor	(AF)	for	T=0.01	s:	a)	Weak	motion	(rank	1-360);	b)	Strong	motion	(rank	3241-
3600)	(Kruiver,	2018).	

The	 AF	 data	 are	 organized	 in	 one	 file	 per	 geological	 zone.	 Each	 file	 contains	 the	 following	
information:	 localization	 the	 site	 (i.e.	 zone	 code,	 coordinates);	magnitude	 and	 distance	 of	 the	
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corresponding	input	motion;	the	rank	of	the	input	motion	(with	the	meaning	described	below);	
the	 spectral	 acceleration	 at	 the	 reference	 rock	 horizon	 and	 the	 corresponding	 amplification	
factor	 (AF)	 for	 23	 periods	 ranging	 from	 0.01	 to	 5	s;	 the	 maximum	 shear	 strain;	 the	 PGV	 on	
bedrock,	the	PGV	at	surface	and	the	PGV	amplification	factor.		

The	rank	characterizes	the	input	motion,	with	a	low	rank	corresponding	to	a	weak	input	motion,	
whereas	high	rank	corresponds	to	a	strong	input	motion.	The	3600	input	motions	were	sorted	
into	10	groups	and	one	motion	per	group	is	used	for	each	coordinate.	The	weakest	motions	have	
rank	1-360	 (group	1,	 Low	 i.m.	 in	 the	 following),	 intermediate	have	 rank	1441-1800	 (group	5,	
Medium	i.m.	in	the	following)	and	the	strongest	have	rank	3241-3600	(group	10,	High	i.m.	in	the	
following).	

The	 AF	 is	 available	 for	 different	 periods,	 the	 analysis	 of	 the	 data	 has	 been	 carried	 out	
considering	 the	 period	 of	 0.5	 s,	 which	 is	 close	 to	 the	 structural	 period	 of	 the	 buildings	
considered,	and	for	three	different	levels	of	input	motion:	low,	medium	and	high	input	motion.	
Figure	1.3	shows	the	histograms	of	the	Amplification	Factor	(AF)	for	period	equal	to	0.5	s	for	the	
three	input	motions	considered.	

	

	 	
a)	 b)	

	
c)	

Figure	1.3	Histograms	of	the	Amplification	Factor	(AF)	for	period	equal	to	0.5	s:	a)	Low	i.m.;	b)	Medium	i.m.;	c)	
High	i.m.	
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1.2 Selection	of	one	or	more	sets	of	sites	around	representative	values	of	AF	
Due	 to	 the	 non-negative	 values	 of	 the	 AF,	 it	 was	 assumed	 that	 AF	 follows	 a	 lognormal	
distribution.	Assuming	µ	and	σ	respectively	as	the	expectation	and	standard	deviation	of	ln(AF),	
the	following	relationship	can	be	defined:	

o eµ	=	µ∗	:	median,	geometric	“mean”,	
o eσ	=	σ∗	:	multiplicative	standard	deviation	

Figure	 1.4	 shows	 the	 typical	 shape	 of	 a	 lognormal	 distribution.	 In	 accordance	 with	 this	
distribution,	about	68%	of	data	are	included	in	the	range	(µ∗/	σ∗)÷(µ∗·σ∗),	whereas	about	95%	of	
data	 are	 included	 in	 the	 range	 (µ∗/σ∗2)÷	 (µ∗·σ∗2).	 Based	 on	 the	 lognormal	 distribution	 two	
representative	values	of	AF	have	been	selected,	the	first	 is	the	median	(µ∗)	while	the	second	is	
set	equal	to	µ∗·σ∗2.	For	each	of	the	two	values	of	AF	a	set	of	Vs	profiles	corresponding	to	different	
sites	have	been	analysed.	Depending	on	the	AF	considered,	two	different	intervals	of	values	have	
been	considered,	for	the	median	(µ∗)	AF	the	selected	intervals	have	an	amplitude	respectively	of	
0.1	and	0.2,	whereas	for	AF	equal	to	µ∗	σ∗2	the	amplitude	of	the	intervals	considered	is	larger,	i.e.	
0.2	and	0.4,	due	to	the	reduced	frequency	around	that	value.	

	

	
Figure	1.4	Shape	of	log-normal	distribution.	

To	 analyse	 the	 AF	 distribution,	 the	 period	 of	 0.5	s	 has	 been	 selected	 considering	 its	
representativeness	with	respect	to	the	structural	period	of	the	building	stock	of	the	Groningen	
area	used	for	derivation	of	fragility	curves.	Table	1.1	summarizes	the	number	of	sites	considered	
around	the	two	AF	values	(i.e.	µ∗	and	µ∗·	σ∗2)	at	period	equal	to	0.5	s,	for	two	amplitude	intervals	
and	taking	into	account	three	levels	of	input	motion	(i.e.	Medium,	High	and	Low).	

	
Table	1.1:	Number	of	sites	considered	around	the	two	AF	values	at	period	equal	to	0.5	s	(i.e.	µ*	and	µ*·	σ*2)	for	
two	amplitude	intervals	and	taking	into	account	three	levels	of	input	motion	(i.e.	Medium,	High	and	Low).	

	

Low	i.m. Medium	i.m. High	i.m.
N°	sites	in	the	interval	0.1	around	median		AF 6895 7272 7216
N°	sites	in	the	interval	0.2	around	median		AF 13749 14500 14437

N°	sites	in	the	interval	0.2	around	AF	equal	to		µ*	·		σ*2	 1526 1491 888
N°	sites	in	the	interval	0.4	around	AF	equal	to		µ*	⋅	σ*2	 3214 3070 1815
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Figure	1.5	 shows	 the	normalized	histograms	 and	 corresponding	 lognormal	 distribution	 of	 the	
Amplification	Factor	(AF)	for	a	period	equal	to	0.5	s,	for	the	three	levels	of	input	motion.	Table	
1.2	summarizes	the	relevant	parameters	of	the	lognormal	distribution	of	the	AF	at	period	equal	
to	0.5	s	for	the	three	levels	of	input	motion.	

	

a) 	

b) 	

c) 	

Figure	1.5	Normalized	histograms	and	lognormal	distribution	of	the	Amplification	Factor	(AF)	for	period	
equal	to	0.5	s:	a)	Low	i.m.;	b)	Medium	i.m.;	c)	High	i.m.	
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Table	1.2:	Relevant	parameters	of	the	lognormal	distribution	of	the	AF	at	period	equal	to	0.5	s	for	three	levels	
of	input	motion	(i.e.	Low,	Medium	and	High).	

	
	

1.3 Selection	 of	 Vs	 profile	 corresponding	 to	 identified	 locations	 with	
homogeneous	AF		
The	Vs	 profiles	 provided	 by	Deltares	 (Kruiver,	 2018)	 are	 grouped	 into	 158	 files	 based	 on	 the	
geology	zonation.	An	intermediate	step	was	to	separate	the	different	Vs	profiles	(together	with	
the	 others	 attributes)	 into	 single	 files,	 resulting	 in	 140’821	 VS	 profiles,	 each	 of	 them	
characterized	by	a	progressive	number.	

In	section	1.2,	a	few	sets	of	sites	with	homogeneous	AF	were	identified.	The	sites	were	selected	
from	 the	 “Complete”	 database	 that	 is	 constituted	 by	 a	 regular	 grid,	 covering	 the	 whole	
Groningen	 area,	 of	 about	 ∼140k	 sites.	 However,	 since	 buildings	 are	 not	 equally	 spread	 out	
throughout	the	region,	a	“Reduced”	subset	of	sites	has	been	defined,	including	about	∼34k	sites,	
based	on	the	exposure,	i.e.	considering	only	profiles	close	to	buildings.		

Figure	1.6	shows	a	Groningen	area	map	indicating	the	sites	where	the	VS	profiles	are	considered	
and	the	position	of	the	buildings.	

	

	
Figure	1.6	Groningen	area	map	in	which	are	indicated	the	sites	where	the	VS	profiles	are	considered	and	the	

position	of	the	buildings.	

LOGNORMAL	DISTRIBUTION Low	i.m. Medium	i.m. High	i.m.
Mean	of	ln(AF)	==>	µ 0.9925 0.9608 0.8114
Standard	deviation	of	ln(AF)	==>	σ 0.2549 0.2643 0.3465
median==>	µ∗=eµ 2.70 2.61 2.25
	σ∗=eσ 1.29 1.30 1.41
	µ∗  σ∗2 4.49 4.43 4.50
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In	 the	 following,	 the	 VS	 profiles	 will	 be	 selected	 considering	 both	 the	 “Complete”	 and	 the	
“Reduced”	database,	in	case	the	resulting	mean	VS	profile	is	not	affected	by	the	reduced	number	
of	sites	considered,	the	“Reduced”	subset	has	the	advantage	of	considering	only	soil	properties	
close	to	the	buildings,	being	therefore	more	representative	for	SSI	analysis.	

The	following	combination	of	VS	profiles	were	extracted	for	24	cases:	

o two	databases	of	sites:	Complete	and	Reduced	depending	on	exposure;	
o three	levels	of	input	motion:	Low,	Medium,	High;	
o different	AF	amplitude:	µ*	and	µ*σ2;	
o for	each	AF	amplitude	two	different	intervals:	0.1	and	0.2	around	µ*	and	0.2	and	0.4	

around	µ*σ2		

The	analysis	of	 the	VS	profiles	has	been	 limited	 to	 the	 first	50m,	 this	depth	can	be	considered	
sufficiently	representative	for	SSI	analysis.	

The	 following	 figures	 show	 the	 VS	 profiles	 (blue	 continuous	 lines)	 for	 each	 group	 described	
above.	The	figures	also	show	the	upper	and	lower	envelop	(yellow	dashed	lines).	Moreover,	 in	
accordance	with	 the	 considerations	 discussed	 in	 section	 1.4,	 the	 figures	 below	 also	 show	 the	
mean	(red	dashed	line)	and	mean	plus	and	minus	the	standard	deviations	(black	dashed	lines)	
VS	profiles.	
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Complete	database	
	

	 	
Medium	i.m.	Interval	0.1	around	µ*	 Medium	i.m.	Interval	0.2	around	µ*	

	 	
High	i.m.	Interval	0.1	around	µ*	 High	i.m.	Interval	0.2	around	µ*	

	 	
Low	i.m.	Interval	0.1	around	µ*	 Low	i.m.	Interval	0.2	around	µ*	

Figure	 1.7	 VS	 profiles	 for	 different	 input	 motion	 level	 (i.e.	 Medium,	 High,	 Low)	 considering	 the	 Complete	
database	of	site	–	Amplitude	of	the	interval	around	µ*:	0.1	and	0.2.	
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Reduced	database	
	

	 	
Medium	i.m.	Interval	0.1	around	µ*	 Medium	i.m.	Interval	0.2	around	µ*	

	 	
High	i.m.	Interval	0.1	around	µ*	 High	i.m.	Interval	0.2	around	µ*	

	 	
Low	i.m.	Interval	0.1	around	µ*	 Low	i.m.	Interval	0.2	around	µ*	

Figure	1.8	VS	profiles	for	different	input	motion	level	(i.e.	Medium,	High,	Low)	considering	the	Reduced	
database	of	site	–	Amplitude	of	the	interval	around	µ*:	0.1	and	0.2.	
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Complete	database	
	

	 	
Medium	i.m.	Interval	0.2	around	µ*σ2	 Medium	i.m.	Interval	0.4	around	µ*σ2	

	 	
High	i.m.	Interval	0.2	around	µ*σ2	 High	i.m.	Interval	0.4	around	µ*σ2	

	 	
Low	i.m.	Interval	0.2	around	µ*σ2	 Low	i.m.	Interval	0.4	around	µ*σ2	

Figure	1.9	VS	profiles	for	different	input	motion	level	(i.e.	Medium,	High,	Low)	considering	the	Complete	
database	of	site	–	Amplitude	of	the	interval	around	µ*σ2:	0.2	and	0.4.	
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Reduced	database	
	

	 	
Medium	i.m.	Interval	0.2	around	µ*σ2	 Medium	i.m.	Interval	0.4	around	µ*σ2	

	 	
High	i.m.	Interval	0.2	around	µ*σ2	 High	i.m.	Interval	0.4	around	µ*σ2	

	 	
Low	i.m.	Interval	0.2	around	µ*σ2	 Low	i.m.	Interval	0.4	around	µ*σ2	

Figure	1.10	VS	profiles	for	different	input	motion	level	(i.e.	Medium,	High,	Low)	considering	the	Reduced	
database	of	site	–	Amplitude	of	the	interval	around	µ*σ2:	0.2	and	0.4.	
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1.4 Evaluation	of	the	mean	VS	profiles		
In	this	step,	the	mean	VS	profile	and	the	corresponding	standard	deviation	were	evaluated,	with	
the	 plots	 of	 the	mean	VS	 profile	 (additionally	 also	mean	±	 standard	deviation)	 for	 each	 group	
considered	already	shown	in	section	1.3	(see	Figure	1.7,	Figure	1.8,	Figure	1.9,	Figure	1.10).	It	is	
worth	noting	that	the	dispersion	around	the	mean	VS	profiles	is	generally	limited.	

In	the	following,	the	different	parameters,	namely	type	of	database,	input	motion	level,	value	of	
AF,	etc.,	considered	for	the	evaluation	of	mean	VS	profiles	are	compared.	The	comparisons	of	VS	
profiles	are	limited	to	the	first	20	m	depth	because	those	soil	layers	are	the	ones	mostly	affecting	
SSI.	Although	it	is	not	shown,	the	VS	profiles	in	the	lower	part	(>20	m)	are	almost	coincident.	

Figure	 1.11	 shows	 the	mean	 VS	 profiles	 for	 the	 three	 input	motion	 levels	 (i.e.	 Medium,	 High,	
Low)	and	the	two	databases	(i.e.	total	and	reduced).	The	analysis	is	carried	out	considering	the	
sites	 with	 AF	 amplitude	 in	 the	 interval	 around	µ*	 equal	 to	 0.1.	 For	 both	 databases,	 Low	 and	
Medium	input	motions	have	similar	VS	profiles	 (red	continuous	and	black	dashed	 lines),	while	
the	VS	profile	corresponding	to	the	High	input	motion	slightly	diverges	in	the	upper	part	(about	
6-7m)	(blue	continuous	line).		

	

	 	
a)	 b)	

Figure	1.11	Mean	VS	profiles	for	three	input	motion	levels	(i.e.	Medium,	High,	Low)	considering	the	sites	with	
AF	amplitude	in	the	interval	around	µ*	equal	to	0.1:	a)	Complete	database;	b)	reduced	database.	

Figure	1.12	shows	the	influence	of	the	amplitude	of	the	interval	considered	around	the	selected	
AF,	 and	 in	 particular	 around	 µ*,	 the	 comparison	 is	 limited	 to	 the	 Complete	 database.	 The	
comparison	shows	that	independently	from	the	input	motion	level	(i.e.	Medium,	High,	Low)	the	
effect	of	the	amplitude	of	the	interval	considered	(i.e.	0.1	or	0.2)	is	negligible.	

Figure	1.13	shows	the	influence	of	the	database	used	(i.e.	Complete	vs	Reduced)	for	the	median	
AF	 (µ*),	 the	 comparison	 is	 limited	 to	 the	 interval	 around	 the	 selected	 AF	 equal	 to	 0.2.	 The	
comparison	shows	that	independently	from	the	input	motion	level	(i.e.	Medium,	High,	Low)	the	
effect	of	the	database	(i.e.	Complete	vs	Reduced)	is	 limited	not	influencing	the	mean	VS	profile.	
This	 result	 supports	 the	 use	 of	 the	 reduced	 database,	 which	 is	 filtered	 based	 on	 exposure	
including	VS	profiles	close	to	buildings.	
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a)	 b)	 c)	

Figure	1.12	Comparison	between	the	mean	VS	profiles	obtained	considering	the	Complete	database	and	sites	
with	AF	amplitude	in	the	interval	around	µ*	equal	to	0.1	and	0.2:	a)	Medium	i.m.;	b)	High	i.m.;	c)	Low	i.m.	

	

	 	 	
a)	 b)	 c)	

Figure	1.13	Comparison	between	the	mean	VS	profiles	obtained	considering	sites	with	AF	amplitude	in	the	
interval	around	µ*	equal	to	0.2	for	Complete	and	Reduced	database:	a)	Medium	i.m.;	b)	High	i.m.;	c)	Low	i.m.	

Figure	 1.14	 shows	 the	mean	 VS	 profiles	 for	 the	 three	 input	motion	 levels	 (i.e.	 Medium,	 High,	
Low)	and	the	two	databases	(i.e.	total	and	reduced)	considering	the	sites	with	AF	amplitude	in	
the	 interval	 around	 µ*σ2	 equal	 to	 0.2.	 For	 both	 databases	 (i.e.	 total	 and	 reduced),	 Low	 and	
Medium	input	motions	have	similar	VS	profiles	 (red	continuous	and	black	dashed	 lines),	while	
the	 VS	 profile	 corresponding	 to	 the	 High	 input	 motion	 slightly	 diverges	 in	 the	 upper	 part	
between	2	and	13m	(blue	continuous	line).		

The	trend	of	VS	profiles	for	the	two	AF	considered	(i.e.	µ*	and	µ*σ2)	is	similar	for	the	three	i.m.	
(see	 Figure	 1.11	 and	 Figure	 1.14),	 but	 the	 depth	 at	 which	 there	 are	 differences	 between	
Low/Medimum	i.m.	and	High	i.m.	is	larger	for	AF	equal	to	µ*σ2.	
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a)	 b)	

Figure	1.14	Mean	VS	profiles	for	three	input	motion	levels	(i.e.	Medium,	High,	Low)	considering	the	sites	with	
AF	amplitude	in	the	interval	around	µ*σ2	equal	to	0.2:	a)	Complete	database;	b)	Reduced	database.	

Figure	1.15	shows	the	influence	of	the	amplitude	of	the	interval	considered	around	the	selected	
AF,	and	 in	particular	around	µ*σ2,	with	 the	comparison	 limited	 to	 the	Complete	database.	The	
comparison	shows	that	independently	from	the	input	motion	level	(i.e.	Medium,	High,	Low)	the	
effect	of	the	amplitude	of	the	interval	considered	(i.e.	0.2	or	0.4)	is	negligible.	

	

	 	 	
a)	 b)	 c)	

Figure	1.15	Comparison	between	the	mean	VS	profiles	obtained	considering	the	Complete	database	and	sites	
with	AF	amplitude	in	the	interval	around	µ*σ2	equal	to	0.2	and	0.4:	a)	Medium	i.m.;	b)	High	i.m.;	c)	Low	i.m.	

Figure	1.16	shows	the	influence	of	the	database	used	(i.e.	Complete	vs	Reduced)	for	the	median	
AF	 (µ*σ2),	 the	 comparison	 is	 limited	 to	 the	 interval	 around	 the	 selected	 AF	 equal	 to	 0.4.	 The	
comparison	shows	that	independently	from	the	input	motion	level	(i.e.	Medium,	High,	Low)	the	
effect	of	the	database	(i.e.	Complete	vs	Reduced)	is	limited,	not	influencing	the	mean	VS	profile.	
This	 result	 supports	 the	 use	 of	 the	 reduced	 database,	 which	 is	 filtered	 based	 on	 exposure	
including	VS	profiles	close	to	buildings.	
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a)	 b)	 c)	

Figure	1.16	Comparison	between	the	mean	VS	profiles	obtained	considering	sites	with	AF	amplitude	in	the	
interval	around	µ*σ2	equal	to	0.4	for	Complete	and	Reduced	database:	a)	Medium	i.m.;	b)	High	i.m.;	c)	Low	

i.m.		

From	the	above	considerations	it	results	that	neither	the	database	(i.e.	total	vs	reduced)	nor	the	
amplitude	of	the	interval	around	the	selected	AF,	affect	the	mean	VS	profiles.	

1.5 Search	of	single	Vs	profile	with	best	fit	with	respect	to	mean	Vs	profile	
In	the	previous	steps,	mean	Vs	profiles	for	different	conditions	(i.e.	characterized	by	different	AF	
value	 and	 related	 amplitude	 interval,	 type	 of	 database,	 level	 of	 input	 motion)	 have	 been	
calculated.	However,	Vs	is	not	the	only	parameter	of	interest	for	SSI;	a	precise	stratigraphy,	and	
related	parameters,	needs	 to	be	associated	 to	 the	Vs	profile.	The	simplest	way	 to	perform	 this	
operation	is	to	identify	a	real	stratigraphy,	i.e.	one	of	the	about	140k	sites	considered	(at	which	a	
stratigraphy	and	soil	parameters	are	associated),	compatible	with	the	computed	mean	Vs	profile.	
This	can	be	done	evaluating	the	deviation	between	the	mean	Vs	profile	and	one	of	the	Vs	profiles	
belonging	 to	 the	 group	 considered	 (i.e.	 characterized	 by	 the	 AF	 value	 and	 related	 amplitude	
interval,	 type	 of	 database,	 level	 of	 input	 motion).	 The	 deviation	 can	 be	 computed	 using	 the	
following	formula:	

	

𝛿! =
!
!

!!,! !! !!!,!"#$ !!
!!,!"#$ !!

!
!
!!! 	 	 	 	 	 				 	 														(1.1)	

	

where	δj	 is	the	deviation	between	the	mean	Vs	profile	and	the	j-ith	Vs	profile	considered	in	the	
corresponding	group.	The	deviation	represents	a	quantitative	measure	of	how	much	the	single	
Vs	profile	deviates	 from	 the	 reference	mean	Vs	profile.	N	 is	 the	number	of	 levels	 at	which	 the	
comparison	 between	 the	 single	 Vs	 profile	 and	 the	mean	 Vs	 profile	 is	 computed;	 VS,j(zi)	 is	 the	
value	of	VS,j	at	 level	zi;	VS,mean(zi)	 is	the	value	of	VS,mean	at	 level	zi.	δj	has	been	evaluated	within	a	
depth	of	50	m.	

Based	 on	 the	 value	 of	 the	 minimum	 deviation,	 for	 each	 mean	 VS	 profile	 computed	 a	 real	
stratigraphy	 has	 been	 associated.	 Figure	 1.17	 shows	 the	 comparison	 between	 the	 mean	 VS	
profiles	and	the	VS	profiles	with	minimum	deviation	δj	for	6	cases.	Only	the	reduced	database	of	
sites	 has	 been	 considered,	 in	 accordance	with	 the	 conclusions	 of	 section	 1.4,	 thus	 allowing	 to	
include	in	the	group	of	sites	only	VS	profiles	close	to	buildings.	Two	AF	values	were	considered,	

0

5

10

15

20

0 100 200 300

De
pt
h	
(m

)

VS (m/s)

M_int=0.4_tot

M_int=0.4_red

0

5

10

15

20

0 100 200 300

De
pt
h	
(m

)

VS (m/s)

H_int=0.4_tot

H_int=0.4_red

0

5

10

15

20

0 100 200 300

De
pt
h	
(m

)

VS (m/s)

L_int=0.4_tot

L_int=0.4_red



A	nonlinear	macro-element	for	SSI	analysis	in	the	Groningen	region	 21	

	

 

including	only	the	case	with	larger	amplitude	resulting	in	the	following	combinations:	AF	around	
µ*	 -	 Interval	0.2	/	AF	around	µ*σ2	 -	 Interval	0.4.	The	 three	different	 input	motion	 levels	were	
considered	(i.e.	Medium,	High,	Low).	

	 AF	around	µ*	-	Interval	0.2	 AF	around	µ*σ2	-	Interval	0.4	

M
ed
iu
m
	i.
m
.	

	 	
	 a)	 b)	
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ig
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	 c)	 d)	

Lo
w
	i.
m
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Figure	1.17	Comparison	between	the	mean	VS	profiles	and	the	VS	profiles	with	minimum	deviation	δ 	
considering	the	following	combination:	Reduced	database	of	site;	different	input	motion	levels	(i.e.	Medium,	
High,	Low);	two	combinations	of	AF	and	amplitude	interval	(AF	around	µ*	-	Interval	0.2	/	AF	around	µ*σ2	-	

Interval	0.4).	
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Section	1.4	showed	that	 the	mean	VS	profiles	have,	 in	general,	 similar	 trends	 independently	of	
the	 input	motion	 levels;	 however,	 in	 the	 upper	 part,	 there	 are	 some	 differences	 between	 the	
cases	of	Low/Medium	 i.m.	 (that	are	practically	 coincident)	and	High	 input	motion.	Among	 the	
two	 levels	 of	 input	 motion,	 the	 High	 i.m.	 was	 considered	 more	 representative	 for	 the	
development	of	fragility	curves	in	relation	to	the	spectral	acceleration	levels	considered.		

Figure	1.18	 shows	 the	 response	 spectrum	at	bedrock	and	surface,	 for	High	 input	motion	 level	
and	reduced	database	for	the	two	sites	in	the	AF	range	considered	(i.e.	µ*	and	µ*σ2),	whose	VS	
profile	has	the	minimum	deviation	with	respect	to	the	mean	VS	profile	evaluated	in	section	1.4.	
For	the	two	cases	mentioned	above,	Figure	1.19	shows	the	Amplification	Factor	(AF)	evaluated	
as	the	ratio	of	the	response	spectrum	at	surface	and	bedrock.	This	kind	of	plot	provides	a	rough	
idea	of	 the	 frequency	where	 the	maximum	amplifications	occurs.	The	data	 are	 extracted	 from	
the	results	of	site	response	analysis	V5	provided	by	Kruiver	(2018).	

	

	 	
a)	 b)	

Figure	1.18	Response	spectrum	at	bedrock	and	surface	considering	Reduced	database	and	High	i.m.:	a)	site	
with	VS	profile	with	minimum	deviation	from	the	mean	VS	profile	corresponding	to	AF	equal	to	µ*	-	interval	
0.2;	b)	site	with	VS	profile	with	minimum	deviation	from	the	mean	VS	profile	corresponding	to	AF	equal	to	

µ*σ2	-	interval	0.4.	

	 	
a)	 b)	

Figure	1.19	Amplification	Factor	(AF)	evaluated	as	the	ratio	of	the	response	spectrum	at	surface	and	bedrock	
considering	Reduced	database	and	High	i.m.:	a)	site	with	VS	profile	with	minimum	deviation	from	the	mean	VS	
profile	corresponding	to	AF	equal	to	µ*	-	interval	0.2;	b)	site	with	VS	profile	with	minimum	deviation	from	the	

mean	VS	profile	corresponding	to	AF	equal	to	µ*σ2	-	interval	0.4.		

1.6 Extraction	of	the	properties	of	the	single	Vs	profile	
Based	on	the	considerations	carried	out	in	the	previous	sections,	two	representative	soil	profiles	
to	account	for	SSI	were	identified	corresponding	to	the	following	combination:	
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Ø Profile	 Type	 A:	 Reduced	 database	 of	 sites;	 sites	 with	 AF	 around	 µ*	 and	 interval	
amplitude	0.2;	High	input	motion	level.	

Ø Profile	 Type	 B:	 Reduced	 database	 of	 sites;	 sites	 with	 AF	 around	 µ*σ2	 and	 interval	
amplitude	0.4;	High	input	motion	level.	

For	each	of	the	two	profiles	identified	above,	it	is	possible	to	extract	besides	VS	profile	and	soil	
stratigraphy	also	other	geotechnical	parameters	used	for	site	response	analysis.	In	particular,	a	
set	 of	 geomechanical	 parameters	 used	 to	describe	 the	dynamic	 soil	 behaviour	 in	 terms	of	 the	
modulus	 reduction	 and	damping	 curves.	 For	 clay,	 these	parameters	 are	 the	 overconsolidation	
ratio	(OCR),	the	plasticity	index	(IP),	the	undrained	shear	strength	(Su)	and	the	total	unit	weight,	
which	 allows	 to	 define	modulus	 reduction	 and	 damping	 curves	 in	 accordance	with	 Darendeli	
(2001)	relationships.	For	sand,	these	parameters	are	the	median	grain	size	(D50),	the	coefficient	
of	 uniformity	 (Cu)	 and	 the	 total	 unit	 weight,	 which	 allows	 defining	 modulus	 reduction	 and	
damping	curves	 in	accordance	with	Menq	(2003)	relationships.	See	Kruiver	et	al.	 (2017a)	and	
Rodriguez-Marek	et	al.	(2017)	for	more	details	on	the	derivation	of	these	parameters.		

Among	the	available	parameters	for	cohesive	material	(e.g.	clay,	silt,	etc.)	there	is	the	undrained	
shear	strength.	Conversely,	for	cohesionless	material	(e.g.	sand,	etc.)	there	is	no	information	on	
soil	 strength,	 therefore	 further	 considerations	 need	 to	 be	 added	 to	 define	 proper	 strength	
parameters.	

1.6.1 Profile	type	A		

Profile	type	A	corresponds	to	a	site	(coordinates	234550,	580650)	extracted	from	the	reduced	
database,	taking	into	account	sites	with	AF	around	the	median	value	(µ*)	and	interval	amplitude	
equal	to	0.2,	and	considering	the	AF	obtained	with	High	input	motion	level.	

Table	1.3	shows	the	stratigraphy	and	the	available	geotechnical	parameters	within	30	m	depth	
for	soil	type	A,	the	deposit	is	constituted	by	an	alternation	of	fine	sand	and	cohesive	(i.e.	clayey	
sand	and	sandy	clay)	layers.	Figure	1.20a)	shows	the	stratigraphy	(blue	cohesionless	layers;	red	
cohesive	 layers)	 and	 undrained	 shear	 strength	 profile	 for	 cohesive	 material,	 whereas	 Figure	
1.20b)	shows	the	shear	wave	velocity	profile.	

	
Table	1.3:	Stratigraphy	and	geotechnical	parameters	within	30m	depth	for	soil	type	A,	corresponding	to	a	site	

with	AF	around	the	median	value	(µ*).	

	

Depth Thickness Lithology VS γ PI OCR Cu D50 k0 Su
m m - m/s kN/m3 - - - - - kPa
0 2 Fine	Sand 167.1 18.4 0 1.0 5.53 0.08 0.5 	nan
2 3 224.5 19.4 0 1.0 1.94 0.12 1 	nan
5 1 Clayey	sand	and	sandy	clay 197.9 16.9 50 4.8 	nan 	nan 1.1 87.5
6 3 211.0 16.7 15 4.9 	nan 	nan 1.2 101.0
9 2 211.0 16.7 15 5.0 	nan 	nan 1.2 117.7
11 1 211.0 16.7 10 5.0 	nan 	nan 1.2 127.7
12 3 Fine	Sand 270.8 19.6 0 1.0 1.84 0.12 1 	nan
15 3 Clayey	sand	and	sandy	clay 224.0 18.1 30 5.3 	nan 	nan 1.2 142.6
18 2 237.1 18.1 30 5.2 	nan 	nan 1.2 155.0
20 3 Fine	Sand 284.3 19.6 0 1.0 1.84 0.12 1 	nan
23 1 Clayey	sand	and	sandy	clay 261.0 18.1 30 5.0 	nan 	nan 1.2 180.1
24 1 Fine	Sand 288.4 19.6 0 1.0 1.84 0.12 1 	nan
25 1 Clayey	sand	and	sandy	clay 270.5 18.1 30 4.9 	nan 	nan 1.2 191.0
26 1 Fine	Sand 290.8 19.6 0 1.0 1.84 0.12 1 	nan
27 1 Clay 266.5 17.6 50 4.8 	nan 	nan 1.1 241.1
28 2 Fine	Sand 293.6 19.6 0 1.0 1.84 0.12 1 	nan
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a)	 b)	

Figure	1.20	Soil	profile	type	A:	a)	Stratigraphy	(blue	cohesionless	layers;	red	cohesive	layers)	and	undrained	
shear	strength	profile	for	cohesive	material;	b)	Shear	wave	velocity	profile.		

As	 described	 in	 more	 detail	 in	 Section	 3.1.1,	 SSI	 analysis	 involves	 modelling	 the	 foundations	
through	 the	macro-element	 approach,	which	 requires	 as	 input	 parameters	 the	 capacity	 of	 the	
foundation.	The	shallow	water	table	level	requires	that	the	computation	of	the	bearing	capacity	
be	performed	under	undrained	conditions,	consequently	proper	strength	parameters	need	to	be	
defined.	

The	5	m	of	 fine	 sand	 in	 the	upper	part	of	 the	 stratigraphy	mostly	 affects	 the	bearing	 capacity	
calculation	of	the	shallow	foundations.	Section	3.1.1.1	describes	the	main	features	of	the	shallow	
foundations,	which	are	typically	characterized	by	a	width	of	about	60	cm	and	foundation	 level	
rather	 limited.	 The	 two	 aspects	mentioned	 above	make	 that	 the	 depth	 at	 which	 the	 strength	
parameters	under	undrained	conditions	need	to	be	evaluated	 is	rather	shallow,	corresponding	
mostly	to	the	fine	sand	layer.	

Unfortunately,	 for	 fine	 sand,	 strength	 parameters	 were	 not	 defined	 in	 the	 framework	 of	 site	
response	 analysis	 calculation	 (see	 Table	 1.3);	 moreover,	 results	 of	 laboratory	 tests	 are	 not	
available.	 Consequently,	 strength	 parameters	 for	 fine	 sand	 were	 defined	 based	 on	 literature	
information,	 trying	 to	 constrain	 the	 selected	 values	 based	 on	 available	 information	 (i.e.	 VS	
profile,	Cu	and	D50)	and	engineering	judgement.	

The	 assessment	 of	 constant-volume	 friction	 angle	 (φ’cv),	 as	 well	 as	 other	 critical	 state	
parameters,	has	thus	been	carried	out	based	on	literature	information.	In	the	following,	results	
of	laboratory	tests	on	cohesionless	material	are	collected	from	literature;	particularly	Table	1.4	
summarizes	 the	 characteristics	of	 the	 sands	used	by	Bolton	 (1986),	Table	1.5	 summarizes	 the	
characteristics	 of	 the	 sands	 used	 by	 Negussey	 et	 al.	 (1988),	 Table	 1.6	 summarizes	 the	
characteristics	of	the	sands	used	by	Fear	&	Robertson	(1995),	whereas	Table	1.7	and	Table	1.8	
summarize	the	characteristics	of	the	sands	used	by	Santamarina	&	Cho	(2001).	Finally,	also	the	
data	 included	 in	 the	work	 of	 Prearo	 (2015)	 has	 been	 considered.	 The	 laboratory	 tests	 results	
include	both	classification	tests,	 for	 instance	grain	size	distribution	related	parameters	such	as	
CU	and	D50,	as	well	as	critical	state	parameters,	such	as	φ’cv,	Γ	and	λln.	
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Table	1.4:	Characteristics	of	the	sands	used	by	Bolton	(1986).	

	 	
	

Table	1.5:	Characteristics	of	the	sands	used	by	Negussey	et	al.	(1988).	

	
	

	
Table	1.6:	Characteristics	of	the	sands	used	by	Fear	&	Robertson	(1995).	

	

CU
A 2.42
B 36.67
C 1.00
D 2.00
E 1.67
F 1.56
G 1.31
H 1.40
I 2.24
J 1.50
K 2.27
L 2.56
M 1.57
N 6.00
P 1.73
R 1.47
S 1.17
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Table	1.7:	Tested	materials—properties	(from	Santamarina	and	Cho,	2001).	

	

	
Table	1.8:	Simple	CS	test	results—Critical	state	parameters	for	several	soils	(from	Santamarina	&	Cho,	2001).	

	
	

The	 critical	 state	 angle	 of	 shearing	 resistance	 of	 soil,	which	 is	 shearing	 at	 constant	 volume,	 is	
principally	 a	 function	 of	mineralogy	 (Bolton,	 1986),	 and	 is	 independent	 from	 relative	 density	
and	mean	 effective	 stress.	 The	 suggested	 values	 of	ϕ’cv	of	 the	 British	 Standard	 8002:2015	 on	
Earth	 retaining	 structures	 are:	 31°	 for	 rounded	material;	 33°	 for	 subangular	material;	 35°	 for	
angular	material.	Based	on	 this	 literature	data,	 the	value	of	 the	constant-volume	 friction	angle	
(φ’cv)	is	assumed	equal	to	30°.	

Fear	&	Robertson	(1995)	proposed	a	framework	for	estimating	the	ultimate	undrained	steady-
state	shear	strength	of	sand	(Su)	 from	 in	situ	 tests,	which	combines	 the	 theory	of	critical	 state	
soil	mechanics	with	 shear	wave	velocity	measurements,	 the	 latter	being	available	 in	detail	 for	
the	Groningen	area.	

Within	the	critical	state	soil	mechanics	framework,	it	is	possible	to	calculate	Su	for	a	soil	with	a	
given	void	ratio	when	loaded	in	undrained	shear,	assuming	no	pore	pressure	redistribution	and	
therefore	no	change	in	void	ratio.	The	concept	is	that	a	sand	which	has	an	initial	state	given	by	
(p',	q,	e)	and	is	loaded	in	undrained	shear	will	reach	the	same	Su	as	the	point	on	its	steady	state	
line	(SSL)	with	 the	same	void	ratio	 (p’ss,	qss,	e)	 (Fear	&	Robertson,	1995).	Therefore,	Su	can	be	
determined	as	follows:	

	

𝑆! =
!
!
𝑀 !!

!"# !
!!"

	 	 	 	 	 				 	 	 	 														(1.2)	
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where	

	

𝑀 = !!!
!!!!

= ! !"# !!!!

!!!"# !!!!
	 	 	 	 	 				 	 	 	 														(1.3)	

	

𝑝! = !
!

 σ!! + 2 σ!! 	 	 	 	 	 				 	 	 	 														(1.4)	

	

𝑞 =  σ!! −  σ!! 	 	 	 	 	 				 	 	 	 	 														(1.5)	

	

φ’ss	or	φ’cv	is	the	steady	state	friction	angle;	

λln	is	the	slope	of	the	SSL	in	e-ln	p'	space;	

ψ=e-ess	is	the	initial	state	parameter	(Been	&	Jefferies,	1985);	

e	is	the	initial	void	ratio;	and	

ess	is	the	void	ratio	of	the	point	on	the	SSL	with	the	same	p'	as	the	initial	state.	

The	ultimate	steady	state	 line	(SSL)	 in	the	e-p'	plane	can	be	defined	by	two	parameters,	Γ	and	
λln.	Γ	is	the	void	ratio	on	the	SSL	at	p'	=	1	kPa,	and	λln	is	the	slope	of	the	SSL	when	the	p'	axis	is	
plotted	on	a	natural	logarithm	scale.	The	SSL	in	e-ln	p'	space	is	therefore	defined	as	follows:	

	

𝑒 = Γ − λ!" ln 𝑝! 	 	 	 	 				 	 	 	 	 														(1.6)	

	

Cunning	 et	 al.	 (1995)	 have	 demonstrated	 that	 soil	 state	 can	 be	 estimated	 from	 shear	 wave	
velocity	measurements	using	the	following	formula:	

	

ψ = !
!
− Γ − !!"

! !! !" − λ!" ln !!!

!
1 + 2𝐾! 	 	 	 	 	 														(1.7)	

	

where	Vs1	is	normalized	shear	wave	velocity,	in	m/s	

	

𝑉!! = 𝑉!
!!
!!!

!"!!"
	 	 	 	 				 	 	 	 	 														(1.8)	

	

Pa	is	100	kPa	and	na	=	nb	=	0.125,	typically;	A	and	B	are	constants	for	a	given	sand,	both	in	m/s;	
Ko	is	the	ratio	of	horizontal	to	vertical	effective	stresses;	and	σ’v	is	the	vertical	effective	stress.	

The	 state	 parameter	 is	 therefore	 a	 function	 of	 soil	 type	 (A,	 B,	 Γ,	 and	 λln),	 Ko,	 σ’v	 and	 Vs1.	
Combining	eq.	(1.2)	with	eq.	(1.7)	results	in	the	following	equation	relating	Su	to	Vs1:	

	

 𝑆! =
!
!
exp !

!!"

!!"
! !! !" −

!
!
− Γ 	 	 	 	 	 	 	 														(1.9)	
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where	Vs1	is	in	m/s	and	λln	has	units	of	l/ln(kPa).	

Similarly,	 combining	 eq.	 (1.2),	 properly	 rearranged	 as	 Su/p’,	 and	 (1.7)	 results	 in	 the	 following	
equation	relating	Su/p’	to	Vs1:	

	

!!
!!
= !

!

!"# !!"
! !! !"!!!" !" !!!

! !!!!!

!"# !
!!!

	 	 	 	 	 	 	 											(1.10)	

	

Replacing	p'	in	the	left	side	of	eq.	(1.10)	by	the	expression	given	in	eq.	(1.4)	(substituting	σ’v	and	
Ko	σ’v	for	σ’1,	and	σ’3	respectively)	results	in	a	similar	equation	relating	Su/σ’v	to	Vs1:	

	

	

!!
!!!
= !

!

!"# !!"
! !! !"!!!" !" !!!

! !!!!!

!"# !
!!!

1 + 2𝐾! 	 	 	 	 	 											(1.11)	

	

Examining	eq.	(1.9),	it	is	clear	that	for	a	given	material	under	a	particular	direction	of	undrained	
loading	 (constant	 A,	 B,	 na,	 M,	 Γ,	 and	 λin)	 and	 for	 a	 given	 Ko,	 Su	 is	 uniquely	 a	 function	 of	 Vs1.	
However,	eqs.	1.10	and	1.11	show	that	neither	Su/p’	nor	Su/σ’v	are	a	unique	function	of	Vs1,	even	
for	a	given	material	and	Ko.	Rather,	Su/p’	and	Su/σ’v	 remain	a	 function	of	σ’v	as	well	 (Fear	and	
Robertson,	1995).	

The	Fear	and	Robertson	(1995)	formulation	was	used	to	define	the	undrained	shear	strength	of	
the	fine	sand	deposit.	To	define	the	required	critical	state	parameters,	data	available	in	literature	
was	 collected	 in	 Table	 1.9	 defining	 reasonable	 ranges	 of	 variation	 (mean	 and	 standard	
deviation).	Within	the	defined	ranges	of	variation,	the	following	values	were	selected:	Γ equal	to	
0.9	and	λln	equal	to	0.05.	The	A	and	B	parameters	have	been	selected	based	on	Fear	&	Robertson	
(1995)	 suggestion;	 A	 equal	 to	 363	m/s,	 B	 equal	 to	 235	m/s.	 Figure	 1.21	 shows	 the	 resulting	
undrained	 shear	 strength	versus	 the	depth	of	 the	 cohesionless	 layers	 in	 the	upper	part	of	 the	
deposit.	
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Table	1.9:	Collection	of	sand	parameters	from	Fear	&	Robertson	(1995),	Prearo	(2015)	and	Santamarina	&	
Cho	(2001).	

	
	

	
Figure	1.21	Undrained	shear	strength	of	sand	for	Soil	profile	type	A	derived	using	the	approach	proposed	by	

Fear	&	Robertson	(1995)	considering	φ ’cv	equal	to	30°,	Γ  equal	to,	0.9	and	λ ln	equal	to	0.05,	A	equal	to	
363	m/s,	B	equal	to	235	m/s.		

mean 31.4 0.923 0.0436
st.dev 2.2 0.096 0.0253

ϕ'ss Γ λln D50 Cu Source
Ottawa 30.5 0.926 0.032 Fear	&	Robertson	(1995)

Ottawa	+5%	fines 29.5 0.809 0.029 Fear	&	Robertson	(1995)
Ottawa	+7.5%	fines 29.6 0.835 0.052 Fear	&	Robertson	(1995)
Ottawa	+10%	fines 29.4 0.93 0.103 Fear	&	Robertson	(1995)

Erksak 30.9 0.82 0.013 Fear	&	Robertson	(1995)
Toyura	(p's<100kPa) 30.9 0.938 0.004 Fear	&	Robertson	(1995)

Lornex 35 1.1 0.022 Fear	&	Robertson	(1995)
Brenda 35.9 1.112 0.042 Fear	&	Robertson	(1995)
Syncrude 29.8 0.847 0.017 Fear	&	Robertson	(1995)
Nerlek 30 0.885 0.014 Fear	&	Robertson	(1995)

Leighton	Buzzard 29.8 1 0.035 Fear	&	Robertson	(1995)
Toyura	 31 0.934 0.019 0.22-0.18 1.31-1.52 Prearo	(2015)
Ticino 34 0.923 0.046 0.53 1.3 Prearo	(2015)

ASTM	graded	sand 30 0.869 0.08 0.35 1.65 Santamarina	&	Cho	(2001)
Blasting	sand 34 1.074 0.068 0.71 1.94 Santamarina	&	Cho	(2001)
Ottawa	20–30 28 0.806 0.053 0.72 1.15 Santamarina	&	Cho	(2001)

Ottawa	F-110	sand 31 0.937 0.077 0.12 1.62 Santamarina	&	Cho	(2001)
Sandboil	sand 33 0.791 0.049 0.36 2.41 Santamarina	&	Cho	(2001)
Ticino	sand 34 1.006 0.074 0.58 1.38 Santamarina	&	Cho	(2001)
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1.6.2 Profile	type	B		

Profile	type	B	corresponds	to	a	site	(coordinates	242150;	574550)	extracted	from	the	reduced	
database,	taking	into	account	sites	with	AF	around	the	µ*σ2	value	and	interval	amplitude	equal	
to	0.4,	and	considering	the	AF	obtained	with	High	input	motion	level.	

Table	1.10	shows	the	stratigraphy	and	geotechnical	parameters	within	30	m	depth	for	soil	type	
B;	the	deposit	is	constituted	by	an	alternation	of	cohesive	layers	(i.e.	clayey	sand	and	sandy	clay,	
peat,	 clay)	 and	 cohesionless	 layers	 (i.e.	 fine	 sand	 and	 moderately	 coarse	 sand	 in	 the	 bottom	
part).	 Figure	 1.22a)	 shows	 the	 stratigraphy	 (blue	 cohesionless	 layers;	 red	 cohesive	 layers;	
yellow	peat	 layer)	and	undrained	shear	strength	profile	 for	cohesive	material,	whereas	Figure	
1.22b)	shows	the	shear	wave	velocity	profile.	

	
Table	1.10:	Stratigraphy	and	geotechnical	parameters	within	30	m	depth	for	soil	type	B,	corresponding	to	a	

site	with	AF	around	the	median	value	(µ*σ2).	

	
	

	 	
a)	 b)	

Figure	1.22	Soil	profile	type	B:	a)	Stratigraphy	(blue	cohesionless	layers;	red	cohesive	layers;	yellow	peat)	and	
undrained	shear	strength	profile	for	cohesive	material;	b)	Shear	wave	velocity	profile.	 	

Depth Thickness Lithology VS γ PI OCR Cu D50 k0 Su
m m - m/s kN/m3 - - - - - kPa
0 1 Clayey	sand	and	sandy	clay 110.0 16 50 2.0 	nan 	nan 0.5 47.9
1 1 Clay 85.0 14.1 50 2.0 	nan 	nan 0.5 15.6
2 2 Peat 84.6 11.4 	nan 4.6 	nan 	nan 1.1 15.3
4 3 88.2 11.4 	nan 4.6 	nan 	nan 1.1 17.2
7 2 Fine	Sand 222.3 19.4 0 1.0 2.34 0.12 1 	nan
9 1 Clay 151.8 14.4 50 4.7 	nan 	nan 1.1 57.2
10 3 Fine	Sand 236.1 19.4 0 1.0 2.34 0.12 1 	nan
13 1 242.6 19.4 0 1.0 2.34 0.12 1 	nan
14 3 Clayey	sand	and	sandy	clay 220.5 16.9 50 5.0 	nan 	nan 1.1 128.0
17 3 258.6 17.2 40 5.1 	nan 	nan 1.3 149.0
20 2 258.6 17.2 40 5.2 	nan 	nan 1.3 167.0
22 3 Fine	Sand 257.5 19.4 0 1.0 1.76 0.11 1 	nan
25 1 257.5 19.4 0 1.0 1.76 0.11 1 	nan
26 1 Moderately	coarse	sand 281.9 20.6 0 1.0 1.86 0.24 1 	nan
27 1 Clayey	sand	and	sandy	clay 211.0 16.7 15 5.5 	nan 	nan 1.2 225.1
28 3 Moderately	coarse	sand 291.8 20.6 0 1.0 1.86 0.24 1 	nan
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2 Investigated	index	buildings	
Eight	different	index	buildings	modelled	by	Arup	(2017;	2019)	and	featuring	either	shallow	or	
pile	foundations	have	been	considered	herein,	with	the	characteristics	summarised	in	Table	2.1	
and	Table	2.2.	These	residential	buildings	are	either	detached,	terraced	(with	units	varying	from	
2	to	8),	aggregate	units	or	apartment	blocks	and,	depending	on	their	age,	they	are	constructed	
with	timber	or	concrete	floors,	and	solid	or	cavity	URM	walls	(see	Figure	2.1	and	Figure	2.2).	

	
Table	2.1:	Summary	of	the	URM	index	buildings	with	shallow	foundations.	

Index	Building	Name		 System	type	 Floor	type	 Wall	type	 Number	of	
storeys	

Mass	
(tonnes)	

Period	
(s)	

Zijlvest	 Terraced	 Concrete	 Cavity	 2	+	attic	 219	 0.34	

Kwelder	 Detached	 Concrete	 Cavity		 1	+	attic	 96	 0.08	

Badweg	 Detached	 Timber	 Cavity	 1	+	attic	 44	 0.13	

Dijkstraat	 Aggregate	
unit	

Timber	 Solid	 1	+	attic	 185	 0.363	

De	Haver	(barn	
house)	

Detached	 Timber	 Solid	 1	+	attic	 159	 0.125	

	

Table	2.2:	Summary	of	the	URM	index	buildings	with	pile	foundations.	

Index	Building	Name		 System	type	 Floor	type	 Wall	type	 Number	of	
storeys	

Mass	
(tonnes)	

Period	
(s)	

Drive-in	 Apartment	
block	

Concrete	 Cavity	 Garage	+	2	 764	 0.178	

Koeriersterweg	(K-
Flat)	

Apartment	
block	

Concrete	 Cavity	 3	+	2	attics	 1493	 0.362	

Georg	van	
Saksenlaan	

Apartment	
block	

Concrete	 Cavity	 4	 1140	 0.199	
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Figure	2.1	Screenshots	of	LS-DYNA	models	of	buildings	assumed	to	have	shallow	foundations	

	

 
Figure	2.2	Screenshots	of	LS-DYNA	models	of	buildings	assumed	to	have	pile	foundations		
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3 Nonlinear	macro-element	approach	
The	concept	of	macro-elements	has	been	developed	by	the	earthquake	engineering	community	
for	SSI	analysis	during	the	last	20	years.	Nowadays	it	is	frequently	adopted	in	research	studies	
for	 the	 reliable	 estimation	 of	 soil	 displacements,	 despite	 the	 complex	 and	 highly	 nonlinear	
behaviour	of	the	foundation	soil	and	the	difficulty	in	assessing	SSI	effects	(Correia,	2011;	2013).	

The	macro-element	approach	belongs	to	the	class	of	hybrid	methods,	combining	the	features	of	
sub-domain	decomposition	and	finite	element	modelling,	including	soil	nonlinearities.	The	basic	
idea	of	the	method	is	to	divide	the	soil	medium	in	far-field	and	near-field	regions.	The	far-field	is	
governed	by	the	propagation	of	seismic	waves	and	modelled	with	frequency-independent	linear	
springs	and	dashpots,	representing	the	dynamic	 impedances.	On	the	other	hand,	the	near-field	
takes	into	account	all	the	nonlinearities	occurring	in	the	system:	geometrical	nonlinearities	like	
foundation	 sliding	 or	 uplift	 for	 shallow	 foundations,	 and	 material	 nonlinearities	 due	 to	 soil	
yielding	 under	 the	 foundation	 (Pecker	 et	 al.,	 2014).	 The	 entire	 soil-foundation	 system	 is	
condensed	into	a	single	nonlinear	element	at	the	base	of	the	superstructure,	also	accounting	for	
energy	dissipation	through	radiation	damping	(see	Figure	3.1).	

	

	
Figure	3.1:	Concept	of	macro-element	(Pecker	et	al.,	2014).	

3.1 Shallow	foundation	macro-element	
Macro-element	models	for	shallow	foundations	have	previously	shown	to	be	a	cost-effective	and	
reliable	 tool	 for	 such	 type	 of	 analysis,	 since	 they	 suitably	 represent	 both	 the	 nonlinear	 soil	
behaviour	at	 the	near-field	and	the	ground	substratum	dynamic	characteristics	at	 the	far-field,	
as	well	as	the	interaction	with	the	seismic	response	of	the	structure.	Hence,	all	aspects	of	elastic	
and	 inelastic	 behaviour	 of	 the	 foundation	 system	 are	 encompassed	 into	 one	 computational	
entity	and	are	described	by	the	behaviour	of	a	single	point	at	the	centre	of	the	foundation.	Their	
application	to	seismic	design	is	straightforward,	leading	to	a	more	efficient	design	and	to	higher	
confidence	in	the	predicted	structural	response.	

The	macro-element	model	 by	 Correia	 &	 Paolucci	 (2019)	 builds	 upon	 the	 innovative	 concepts	
and	 formulations	 of	 the	 models	 by	 Chatzigogos	 et	 al.	 (2011)	 and	 by	 Figini	 et	 al.	 (2012).	
Nevertheless,	 it	 incorporates	 relevant	 improvements,	 namely	 addressing	 inconsistencies	
regarding	the	formulation	of	the	participating	mechanisms	and	extending	their	scope	to	three-
dimensional	loading	cases.	Moreover,	this	macro-element	introduces	an	enhanced	uplift	model,	
based	on	a	nonlinear	elastic-uplift	response	that	also	considers	the	degradation	of	the	contact	at	
the	soil/footing	 interface	due	to	 irrecoverable	changes	 in	 its	geometry.	An	 improved	bounding	
surface	 plasticity	 model	 and	 return	 mapping	 algorithms	 were	 also	 adopted	 in	 order	 to	
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reproduce	 a	 more	 general	 and	 realistic	 behaviour,	 which	 correctly	 takes	 into	 account	 the	
simultaneous	elastic-uplift	and	plastic	nonlinear	responses.	Within	the	framework	of	the	present	
endeavour,	 this	 model	 has	 been	 implemented	 in	 SeismoStruct	 and	 herein	 employed	 for	
nonlinear	SSI	analyses.	

Following	the	parametric	study	by	Pianese	(2018),	the	five	calibration	parameters	of	the	macro-
element	became	well-constrained,	allowing	for	the	dynamic	response	to	be	obtained	with	high	
confidence.	 The	 remaining	 parameters	 correspond	 to:	 (i)	 the	 footing	 dimensions;	 (ii)	 the	 six	
initial	 elastic	 frequency-independent	 values	 of	 the	 diagonal	 impedance	 matrix,	 which	 can	 be	
easily	obtained	from	literature,	and	which	represent	the	far-field	response;	(iii)	the	six	bearing	
capacity	 values,	which	 can	 be	 derived	 from	 classical	 formulae,	 and	which	 represent	 the	 near-
field	 failure	 conditions.	 In	 between	 these	 two	 extreme	 types	 of	 response,	 the	macro-element	
gradually	 evolves	 from	 the	 initial	 elastic	 response	 to	 the	 plastic	 flow	 at	 failure	 through	 the	
bounding	surface	plasticity	model,	incorporating	the	uplift	and	contact	degradation	phenomena.	

The	adopted	system	for	nonlinear	dynamic	analyses,	as	modelled	in	SeismoStruct,	composed	of	
a	nonlinear	structural	SDOF	and	a	footing	macro-element,	is	shown	in	Figure	3.2.	The	structural	
SDOF	mass,	 stiffness	 and	 damping	 coefficient	 are	 indicated	with	ms,	 ks	 and	 cs,	 respectively,	 in	
Figure	 3.2.	 In	 order	 to	 capture	 the	 inertial	 interaction	 between	 the	 superstructure	 and	 the	
foundation	(with	mass	mf),	the	superstructure	mass	is	placed	above	the	ground	at	the	building	
centroid	height,	Heff,	and	is	connected	to	the	interface	node	by	a	rigid	link.	In	this	way,	the	rigid	
displacement	of	the	superstructure	mass	due	to	the	foundation	rotation	θf,	and	equal	to	Heff	�θf,	is	
taken	 into	account	within	 the	nonlinear	dynamic	analyses,	 and	 then	 subtracted	 from	 the	 total	
displacement.	The	seismic	acceleration,	a(t),	 is	actually	 input	 to	 the	system	as	an	 inertia	 force	
history,	 f(t),	 applied	 to	 the	 superstructure	mass:	 this	 approach	properly	 considers	 the	 inertial	
components	 in	 the	 presence	 of	 the	 structure	 (structure	 and	 foundation	 masses	 and	 their	
interaction),	 resulting	 in	 a	 response	 in	 terms	 of	 relative	 displacements	 with	 respect	 to	 the	
ground	motion.		

 

 
Figure	3.2:	Adopted	system	with	structural	SDOF	and	footing	macro-element,	for	dynamic	analyses.	
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The	 three	 springs	 and	 dashpots	 represented	 in	 the	 2D	 view	 of	 Figure	 3.2	 model	 the	 macro-
element	 elastic	 behaviour	 in	 the	 far-field.	 Their	 constants	 correspond	 to	 the	 stiffness	 and	
damping	in	the	vertical	direction	(kV,	cV),	horizontal	x-direction	(kHx,	cHx)	and	rotational	direction	
around	 the	 y-axis	 (kMy,	 cMy).	 For	 simplicity,	 the	 remaining	 three	 springs	 and	 dashpots	 are	 not	
visualised	 in	 the	 2D	 scheme:	 however,	 such	 elements	 are	 present	 in	 the	 macro-element	
implementation	 and	 play	 an	 active	 role	 in	 the	 dynamic	 analyses,	 being	 the	 macro-element	
behaviour	fully	coupled	in	the	six	directions.	

3.1.1 Assessment	of	input	parameters	for	shallow	foundation	macro-element	

This	 paragraph	 describes	 the	 input	 parameters	 for	 shallow	 foundation	macro-elements	 to	 be	
used	for	the	calibration	step	of	MDOF	models	of	the	buildings.	At	this	stage,	the	parameters	are	
derived	 only	 for	 soil	 type	 A,	 being	 the	 median	 AF	 characterizing	 soil	 type	 A	 the	 most	
representative.	 The	 parameters	 definition	 is	 preceded	 by	 the	 description	 of	 the	 foundation	
typologies.	

3.1.1.1 Foundation	typologies		

The	 typical	 foundations	 of	 the	 buildings	 considered	 consist	 of	 a	 grid	 of	 continuous	 beams	
oriented	in	two	orthogonal	directions,	of	either	unreinforced	masonry	or	concrete.	

Figure	3.3	shows	the	schemes	of	foundations	considered	for	bearing	capacity	calculation	by	Crux	
Engineering	 for	 both	 unreinforced	 masonry	 and	 concrete	 foundations.	 The	 typical	 width	 is	
600mm,	whereas	 the	 foundation	 level	 range	between	0.2	and	1m.	This	 type	of	 foundation	has	
been	considered	for	both	Detached	and	Terraced	buildings	type.	

A	 typical	 unreinforced	masonry	 foundation	 (URM)	 is	 a	 strip	 foundation	 that	 is	 achieved	 by	 a	
widening	of	the	load	bearing	walls;	a	representative	foundation	section	is	shown	in	Figure	3.4a).	
The	 inertia	characteristics	of	 the	 foundation	were	evaluated	considering,	a	rectangular	section	
660mm	wide,	 characterized	 by	 the	 same	 moment	 of	 inertia	 of	 the	 section	 showed	 in	 Figure	
3.4a).	The	resulting	height	of	the	equivalent	square	section	is	equal	to	221mm.		

A	 typical	 reinforced	 concrete	 foundation	 is	 a	 strip	 foundation	with	width	 600mm	 and	 height	
330mm;	only	in	some	cases,	for	non-bearing	walls	of	terraced	buildings,	a	square	cross	section	
330mm	wide	has	been	considered.	

For	 both	 unreinforced	 masonry	 and	 concrete,	 a	 foundation	 level	 at	 600mm	 depth	 has	 been	
considered.		

 
Figure	3.3	Appendix	C	Crux	Engineering	BV	Reports	(229746/032.0/REP102)		
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a)	 b)	

Figure	3.4:	a)	Typical	masonry	foundation	(from	Arup	2015b);	b)	Typical	concrete	foundation.	

3.1.1.2 Macro-element	parameters	

This	 paragraph	 describes	 the	 definition	 of	 the	 parameters	 for	 macro-elements	 of	 shallow	
foundations	to	be	used	for	MDOF	model.	Four	cases	were	considered	which	are	characterized	by	
different	 foundation	 layout.	 Table	 3.1	 shows	 the	 main	 characteristics	 of	 the	 buildings	
considered.		

	
Table	3.1:	Main	characteristics	of	the	buildings	considered.	

Index	Building	 Characteristics	 Macro-element	code	

Zijlvest	 4	unit	2	storey	terraced	 ME1	

Kwelder		 detached	1	storey	 ME2	

Badweg		 detached	1	storey	 ME3	

Dijkstraat	 single	unit	2	storey	town	house	 ME4	

De	Haver	 detached	1	storey	 ME5	

The	 input	 parameters	 of	 the	 macro-elements	 can	 be	 subdivided	 into	 three	 main	 groups	
described	 in	 the	 following:	 foundation	 capacity,	 foundation	 stiffness	 and	 model	 specific	
parameters.		

Foundation	capacity.	

The	bearing	capacity	of	shallow	foundation	under	combined	loading	is	represented	as	a	surface	
in	 the	 space	 of	 the	 resultant	 forces	 (V,	 vertical	 load;	 H	 horizontal	 load;	M,	 bending	moment)	
acting	on	the	foundation	(see	Figure	3.5).		

Butterfield	&	Gottardi	(1994)	used	to	fit	to	the	data	for	cohesionless	dry	soil	the	form	shown	in	
Figure	3.5a),	in	which	a	symmetrical	parabola	intersects	the	V	axis,	at	slope	t,	at	the	origin	and	at	
Vmax,	 where	 Vmax	 is	 the	 central	 vertical	 load	 capacity	 of	 the	 footing.	 Such	 parabolas	 have	 the	
equations:	

	

𝐻 𝑡! = 𝑉 𝑉!"# − 𝑉 𝑉!"#	 	 	 				 	 	 	 	 														(3.1)	
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𝑀 𝐵𝑡! = 𝑉 𝑉!"# − 𝑉 𝑉!"#	 	 	 				 	 	 	 	 														(3.2)	

	

When	V	is	much	smaller	than	Vmax,	equation	(3.1)	reduces	to	H	=	V/th,	and	therefore	th	is	related	
to	the	footing-soil	friction.	From	the	simple	observation	that	the	eccentricity	ratio	(e/B	=	M/BV)	
of	any	vertical	load	cannot	exceed	0.5,	this	is	the	maximum	possible	value,	at	small	V,	of	tm;	the	
parameter	tm	in	equation	(3.2)	is	equal	to	0.33	according	to	Meyerhof	theory	(1953)	and	to	0.48	
according	to	Vesic’s	correction	(1975).	The	maximum	values	of	H	and	M	are	attained	at	V/Vmax	
equal	to	0.5.	

	

	
Figure	3.5	Failure	envelopes	relating	(V,	H),	(V,	M/B)	and	(V,	H,	M/B)	(from	Butterfield	&	Gottardi,	1994)	

Due	 to	 the	 high	 water	 table	 level,	 the	 bearing	 capacity	 was	 considered	 under	 undrained	
conditions	 and	 with	 a	 slightly	 different	 failure	 envelope	 at	 low	 values	 of	 the	 vertical	 load,	
reflecting	the	effect	of	the	cohesion	(Correia	&	Paolucci,	2019).	

Finally,	 the	 strength	 parameters	 characterizing	 the	 surface	 of	 ultimate	 loads	 are	 defined	 as	
follows:	

- the	maximum	centred	vertical	load	capacity,	Vmax=qlim	B,	that	corresponds	to	the	ultimate	
static	bearing	capacity	of	the	foundation	characterized	by	a	width	equal	to	B,	and	can	be	
evaluated	by	standard	superposition	formula	(e.g.	Brinch-Hansen,1970):	

	

𝑞!"# = 𝑠!𝑁!𝑠!!𝑑!!𝑖!!𝑏!!𝑔!! + 𝑞	 	 	 	 	 	 	 														(3.3)	

	

In	which	 for	 vertical	 centred	 load,	 the	 only	 not	 null	 correcting	 factor	 is	 related	 to	 the	
foundation	shape	(B<L	are	the	foundation	dimensions):	

	

															𝑠!! = 1 + 0.2 !
!
	 	 	 	 	 	 	 	 	 														(3.4)	
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where	Su	 is	 the	undrained	shear	strength,	assumed	at	 the	depth	of	 interest	equal	 to	12	
kPa	based	on	the	considerations	carried	out	in	section	1.6.	

- the	 maximum	 base	 shear	 capacity,	 Hmax,	 and	 maximum	 base	 moment	 capacity	 Mmax,	
which	 can	 be	 calibrated	 based	 either	 on	 material	 parameters	 (e.g.	 soil-foundation	
friction	 resistance)	 or	 on	 theoretical	 values.	 In	 the	 following	 analyses	 for	 undrained	
conditions:	

	

															H!"# = 𝑠!A	 	 	 	 	 	 	 	 	 														(3.5)	
!!"#
!!"#∙!

= 0.12		 	 	 	 	 	 	 	 	 														(3.6)	

	
where	A	is	the	foundation	area.	

Foundation	stiffness.	

The	 foundation	 elastic	 impedances	 can	 be	 evaluated	 by	 using	 standard	 formulas,	 e.g.	 Gazetas	
(1991)	 proposed	 closed	 form	 solutions	 for	 dynamic	 stiffness	 and	 dashpot	 coefficients	 for	
arbitrary	 shaped	 foundations	 on	 homogenous	 half-space	 surface.	 Impedance	 formulas	 are	
derived	for	an	arbitrarily-shaped	foundation	mat,	with	foundation–soil	contact	surface	area	(Ab)	
obtained	from	a	circumscribed	rectangle	with	dimension	2L	x	2B	(L>B,	B	and	L	are	semi-width	
and	semi	length	of	the	circumscribed	rectangle)	(see	Figure	3.6).	The	other	input	parameters	for	
computation	of	the	impedances	in	the	six	modes	of	vibration	are:		

- moments	of	inertia	about	x,	y	(Ibx,	Iby);	
- polar	moment	of	inertia	about	z	(Jt)	of	the	actual	soil	foundation	contact	surface;	
- ω	is	the	cyclic	frequency	(in	rad/s)	of	interest;	
- shear	modulus	(G);	
- Poisson’s	ratio	(ν);	
- the	shear	wave	velocity	(VS);	
- ‘‘Lysmer’s	 analog’’	 wave	 velocity	 (VLa),	 i.e.	 the	 apparent	 propagation	 velocity	 of	

compression–extension	waves	under	a	foundation	and	related	to	VS	according	to:	
	

														𝑉!" =
!.!

! !!!
𝑉!	 	 	 	 	 	 	 	 	 														(3.7)	

	

The	 static	 stiffness	 for	 the	 six	modes	of	 vibration	 for	 rectangular	 foundations	on	homogenous	
half-space	proposed	by	Gazetas	(1991)	are	summarized	in	the	following	formula:	

	

Vertical,	z	 𝐾! =
2𝐺𝐿
1 − 𝜈

0.73 + 1.54
𝐵
𝐿

!.!"
	 (3.8)	

Horizontal,	y	(transverse	direction)	 𝐾! =
2𝐺𝐿
2 − 𝜈

2 + 2.5
𝐵
𝐿

!.!"
	 (3.9)	

Horizontal,	x	(longitudinal	direction)	 𝐾! = 𝐾! −
0.2 𝐺𝐿
0.75 − 𝜈

1 −
𝐵
𝐿
	 (3.10)	

Rocking	rx,	(around	x	axis)	 𝐾!" =
𝐺

1 − 𝜈
𝐼!"!.!"

𝐿
𝐵

!.!"
2.4 + 0.5

𝐵
𝐿
	 (3.11)	



A	nonlinear	macro-element	for	SSI	analysis	in	the	Groningen	region	 39	

	

 

Rocking	ry,	(around	y	axis)	 𝐾!" =
𝐺

1 − 𝜈
𝐼!"!.!"3

𝐿
𝐵

!.!"
	 (3.12)	

Torsional	 𝐾! = 𝐺 𝐽!!.!" 4 + 11 1 −
𝐵
𝐿

!"
	 (3.13)	

where		Jt	(=	Ibx+Iby)	is	the	polar	moment	of	inertia	of	the	foundation-soil	contact	surface.	

 

The	impedance	of	a	foundation,	representing	its	force-displacement	or	moment-rotation	ratio,	is	
represented	 in	 the	 form	 expressed	 by	 equation	 4.2.	 The	 radiation	 damping	 contribution	 in	
equation	 4.2,	 for	 the	 six	modes	 of	 vibration	 for	 rectangular	 foundations	 on	homogenous	 half-
space	proposed	by	Gazetas	(1991)	are	summarized	in	the	following	formula:	

 

Vertical,	z	
𝐶! = (𝜌𝑉!"𝐴!)𝑐!	

With	𝑐!	ploted	in	graph	c	of	Figure	3.6	
(3.14)	

Horizontal,	y	(lateral	direction)	
𝐶! = (𝜌𝑉!𝐴!)𝑐!	

With	𝑐!	ploted	in	graph	d	of	Figure	3.6	
(3.15)	

Horizontal,	x	(longitudinal	direction)	 𝐶! ≅ (𝜌𝑉!𝐴!)	 (3.16)	

Rocking	rx,	(around	x	axis)	
𝐶!" = (𝜌𝑉!"𝐼!")𝑐!" 	

With	𝑐!" 	ploted	in	graph	e	of	Figure	3.6	
(3.17)	

Rocking	ry,	(around	y	axis)	
𝐶!" = (𝜌𝑉!"𝐼!")𝑐!"	

With	𝑐!"	ploted	in	graph	f	of	Figure	3.6	
(3.18)	

Torsional	
𝐶! = (𝜌𝑉!𝐽!)𝑐!	

With	𝑐!	ploted	in	graph	g	of	Figure	3.6	
(3.19)	

 

For	 soil	 type	A,	 the	 stiffness	 and	damping	 coefficients	of	 the	 foundations	have	been	evaluated	
considering	the	relationships	described	above,	 taking	 into	account	a	homogeneous	soil	profile,	
since	only	a	shallow	depth	is	involved	in	the	response	of	the	footings,	characterized	by	VS	equal	
to	190	m/s,	γ	equal	to	18.4	kN/m3	and	ν	equal	0.45.	The	corresponding	shear	modulus	is	equal	
to	67.7	MPa.	

The	 radiation	 damping	 coefficient	 depend	 on	 𝑎! = 0.5 𝜔𝐵/𝑉! 	(see	 Figure	 3.6),	 with	 the	
frequency	(f)	for	computation	of	the	circular	frequency	ω	(=2	π	f)	assumed	for	soil	type	A	equal	
to	 1.67	 Hz	 (i.e.	 0.6s).	 This	 value	 was	 selected	 taking	 into	 account	 both	 the	 period	 of	 the	
structures	 to	 be	 considered	 and	 the	AF	 trend	 shown	 in	 Figure	 1.19a),	 the	 latter	 has	 peaks,	 of	
almost	equal	value,	between	0.4	and	1.67	Hz.	Assuming	B	equal	to	0.6	m,	the	resulting	ao	is	equal	
to	0.017.	
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Figure	3.6	Dynamic	dashpot	coefficients	on	homogenous	half-space	(from	Mylonakis	et	al.,	2006).	

Model	specific	parameters.	

The	macro-element	model	specific	parameters	are	the	following:	

- the	uplift	initiation	parameter	(α)	is	only	dependent	on	the	assumed	stress	distribution	
of	 vertical	 stresses	 underneath	 the	 foundation	 and	 its	 value	 can	 be	 determined	 from	
simple	static	considerations.	In	the	following	analysis,	it	is	set	equal	to	3,	by	assuming	a	
linear	 distribution	 of	 vertical	 stresses	 underneath	 the	 foundation	 for	 the	 soil	 at	 the	
beginning	of	the	analysis;	

- the	 soil/footing	 contact	 degradation	 (dmg)	 that	 takes	 into	 account	 the	 decrease	 of	 the	
contact	area	due	to	 inelastic	rocking,	 is	evaluated	based	on	calibration	to	experimental	
results.	In	the	following	analyses	it	is	set	equal	to	0.1;	

- reference	plastic	modulus	(ho),	set	equal	to	0.2;	
- the	exponent	for	loading	history	in	unloading/reloading	(nUR),	set	equal	to	1;	
- plastic	potential	parameter	(χg),	set	equal	to	2;	
- bounding	surface	type	(rugby	ball;	scallop	shape;	ellipsoid),	in	the	following	analysis	the	

"scallop"	shape	was	considered,	which	is	suitable	for	modelling	the	undrained	response.	
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The	definition	of	the	macro-element	model	parameters	takes	advantage	of	the	calibration	work	
carried	out	by	Pianese	(2018).	

3.1.1.3 Terraced	house	“Zijlvest”	

Figure	3.7	shows	the	position	of	the	27	foundation	beams	of	the	Zijlvest	 index	building,	where	
each	beam	is	modelled	by	a	macro-element.	Zijlvest	building	is	a	4	units	terraced	house,	with	the	
foundations	of	the	main	walls	constituted	by	60	cm	continuous	concrete	footings,	while	the	ones	
of	the	secondary	partition	walls	(i.e.	beams	n°	20,	22,	24	and	26	in	Figure	3.7)	are	33	cm	wide.	

 

 
Figure	3.7	Terraced	house	“	Zijlvest”	–	position	of	beams	representing	single	macro-elements.	

For	 each	of	 the	macro-elements	 considered,	Table	3.2	 summarizes	 their	 initial	 stiffness,	Table	
3.3	 summarizes	 the	 foundation	 capacities	 and	 Table	 3.4	 summarizes	 the	 radiation	 damping	
equivalent	dashpot	coefficients.	
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Table	3.2:	Initial	stiffness	of	the	macro-elements	of	Zijlvest	index	building.	

 
 

 

 

 

 

 

 

 

 

 

 

 

	Vertical	
	Horizontal		
along	X	

Rotational		
around	Y

	Horizontal		
along	Y	

	Rotational		
around	X	 Torsional	

Kz	 Kx Kry	 Ky Krx	 Kt	
Beam MN/m MN/m 	MNm/rad MN/m 	MNm/rad 	MNm/rad
1 305.883 203.847 161.489 229.798 30.928 114.153
2 400.364 265.360 427.329 311.058 45.361 314.473
3 439.644 291.310 588.766 345.470 51.547 452.415
4 439.644 291.310 588.766 345.470 51.547 452.415
5 439.644 291.310 588.766 345.470 51.547 452.415
6 439.644 291.310 588.766 345.470 51.547 452.415
7 439.644 291.310 588.766 345.470 51.547 452.415
8 426.612 282.681 531.597 334.020 49.485 402.428
9 305.883 203.847 161.489 229.798 30.928 114.153
10 305.883 203.847 161.489 229.798 30.928 114.153
11 400.364 265.360 427.329 311.058 45.361 314.473
12 439.644 291.310 588.766 345.470 51.547 452.415
13 439.644 291.310 588.766 345.470 51.547 452.415
14 439.644 291.310 588.766 345.470 51.547 452.415
15 439.644 291.310 588.766 345.470 51.547 452.415
16 439.644 291.310 588.766 345.470 51.547 452.415
17 426.612 282.681 531.597 334.020 49.485 402.428
18 305.883 203.847 161.489 229.798 30.928 114.153
19 916.845 777.626 130.723 615.146 5832.827 6536.013
20 838.809 739.277 39.263 570.704 4074.710 5184.890
21 916.845 777.626 130.723 615.146 5832.827 6536.013
22 838.809 739.277 39.263 570.704 4074.710 5184.890
23 916.845 777.626 130.723 615.146 5832.827 6536.013
24 838.809 739.277 39.263 570.704 4074.710 5184.890
25 916.845 777.626 130.723 615.146 5832.827 6536.013
26 838.809 739.277 39.263 570.704 4074.710 5184.890
27 916.845 777.626 130.723 615.146 5832.827 6536.013
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Table	3.3:	Foundation	capacity	of	the	macro-elements	of	Zijlvest	index	building.	

 
	

	

	

	

	

	

	

	

	

	

	

	

Centred	vertica l 	
bearing	s trength	

Maximum	base	shear	
capaci ty	a long	X	

Maximum	base	moment	
capaci ty	around	Y	

Maximum	base	shear	
capaci ty	a long	X

Maximum	base	moment	
capaci ty	around	Y

QQ_N_MAX QQ_HX_MAX QQ_MY_MAX QQ_HY_MAX QQ_MX_MAX 

Beam MN MN MNm MN MNm
1 0.081 0.013 0.017 0.013 0.006
2 0.119 0.019 0.037 0.019 0.009
3 0.135 0.022 0.049 0.022 0.010
4 0.135 0.022 0.049 0.022 0.010
5 0.135 0.022 0.049 0.022 0.010
6 0.135 0.022 0.049 0.022 0.010
7 0.135 0.022 0.049 0.022 0.010
8 0.130 0.021 0.045 0.021 0.009
9 0.081 0.013 0.017 0.013 0.006
10 0.081 0.013 0.017 0.013 0.006
11 0.119 0.019 0.037 0.019 0.009
12 0.135 0.022 0.049 0.022 0.010
13 0.135 0.022 0.049 0.022 0.010
14 0.135 0.022 0.049 0.022 0.010
15 0.135 0.022 0.049 0.022 0.010
16 0.135 0.022 0.049 0.022 0.010
17 0.130 0.021 0.045 0.021 0.009
18 0.081 0.013 0.017 0.013 0.006
19 0.345 0.056 0.025 0.056 0.323
20 0.189 0.031 0.007 0.031 0.176
21 0.345 0.056 0.025 0.056 0.323
22 0.189 0.031 0.007 0.031 0.176
23 0.345 0.056 0.025 0.056 0.323
24 0.189 0.031 0.007 0.031 0.176
25 0.345 0.056 0.025 0.056 0.323
26 0.189 0.031 0.007 0.031 0.176
27 0.345 0.056 0.025 0.056 0.323
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Table	3.4:	Radiation	damping	dashpot	coefficients	of	the	macro-elements	of	Zijlvest	index	building.	

 
 

 

 

 

 

 

 

 

Cz Cy Cx Cry  Crx Ct

Beam ton/s ton/s ton/s ton*m2/s ton*m2/s ton*m2/s
1 957.2 486.4 374.2 9.4 0.7 5.3
2 1767.1 926.1 561.3 31.7 1.0 17.0
3 2082.7 1122.6 641.5 47.3 1.1 25.0
4 2082.7 1122.6 641.5 47.3 1.1 25.0
5 2082.7 1122.6 641.5 47.3 1.1 25.0
6 2082.7 1122.6 641.5 47.3 1.1 25.0
7 2082.7 1122.6 641.5 47.3 1.1 25.0
8 1995.9 1075.8 614.7 41.7 1.1 22.1
9 957.2 486.4 374.2 9.4 0.7 5.3
10 957.2 486.4 374.2 9.4 0.7 5.3
11 1767.1 926.1 561.3 31.7 1.0 17.0
12 2082.7 1122.6 641.5 47.3 1.1 25.0
13 2082.7 1122.6 641.5 47.3 1.1 25.0
14 2082.7 1122.6 641.5 47.3 1.1 25.0
15 2082.7 1122.6 641.5 47.3 1.1 25.0
16 2082.7 1122.6 641.5 47.3 1.1 25.0
17 1995.9 1075.8 614.7 41.7 1.1 22.1
18 957.2 486.4 374.2 9.4 0.7 5.3
19 5907.3 1667.8 3669.2 13.8 499.2 425.3
20 3249.0 917.3 2018.1 2.3 274.5 233.0
21 5579.1 1667.8 3335.6 13.8 499.2 425.3
22 3249.0 917.3 2018.1 2.3 274.5 233.0
23 5579.1 1667.8 3335.6 13.8 499.2 425.3
24 3249.0 917.3 2018.1 2.3 274.5 233.0
25 5579.1 1667.8 3335.6 13.8 499.2 425.3
26 3249.0 917.3 2018.1 2.3 274.5 233.0
27 5907.3 1667.8 3669.2 13.8 499.2 425.3
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3.1.1.4 Detached	house	“Kwelder”	

Figure	3.8	shows	the	position	of	the	16	foundation	beams	of	the	Kwelder	index	building,	where	
each	beam	is	modelled	by	a	macro-element.	The	foundations	of	 the	main	walls	are	constituted	
by	60	cm	continuous	concrete	footings.	

 

 
Figure	3.8	Detached	house	“Kwelder”	–	position	of	beams	representing	single	macro-elements.	

For	 each	of	 the	macro-elements	 considered,	Table	3.5	 summarizes	 their	 initial	 stiffness,	Table	
3.6	 summarizes	 the	 foundation	 capacities	 and	 Table	 3.7	 summarizes	 the	 radiation	 damping	
equivalent	dashpot	coefficients.	

Table	3.5:	Initial	stiffness	of	the	macro-elements	of	Kwelder	index	building.	

	

	Vertical	
	Horizontal		
along	X	

Rotational		
around	Y

	Horizontal		
along	Y	

	Rotational		
around	X	 Torsional	

Kz	 Kx Kry	 Ky Krx	 Kt	
Beam MN/m MN/m 	MNm/rad MN/m 	MNm/rad 	MNm/rad
1 305.883 203.847 161.489 229.798 30.928 114.153
2 588.559 478.119 75.630 391.012 1524.950 1382.897
3 438.604 344.555 51.382 290.620 584.067 448.263
4 385.015 255.272 372.852 297.698 42.970 270.381
5 552.300 366.578 1246.044 445.561 69.692 1089.185
6 711.859 589.757 96.084 474.667 2747.589 2759.984
7 279.504 186.975 114.246 207.624 27.052 82.776
8 333.393 221.600 222.497 253.193 35.052 156.586
9 480.993 318.806 795.063 381.992 58.145 641.406
10 480.993 318.806 795.063 381.992 58.145 641.406
11 343.180 261.575 36.537 227.951 247.288 174.473
12 610.601 497.979 79.259 405.907 1711.757 1584.971
13 321.900 243.389 33.320 214.165 195.485 137.520
14 631.568 516.913 82.723 420.102 1901.925 1794.372
15 516.794 342.740 1005.836 413.825 63.918 845.724
16 631.568 516.913 82.723 420.102 1901.925 1794.372
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Table	3.6:	Foundation	capacity	of	the	macro-elements	of	Kwelder	index	building.	

 
 

Table	3.7:	Radiation	damping	dashpot	coefficients	of	the	macro-elements	of	Kwelder	index	building.	

 
 

 

Centred	vertica l 	
bearing	s trength	

Maximum	base	shear	
capaci ty	a long	X	

Maximum	base	moment	
capaci ty	around	Y	

Maximum	base	shear	
capaci ty	a long	X

Maximum	base	moment	
capaci ty	around	Y

QQ_N_MAX QQ_HX_MAX QQ_MY_MAX QQ_HY_MAX QQ_MX_MAX 

Beam MN MN MNm MN MNm
1 0.081 0.013 0.017 0.013 0.006
2 0.199 0.032 0.014 0.032 0.107
3 0.135 0.022 0.010 0.022 0.048
4 0.113 0.018 0.034 0.018 0.008
5 0.183 0.030 0.090 0.030 0.013
6 0.253 0.041 0.018 0.041 0.173
7 0.071 0.011 0.013 0.011 0.005
8 0.092 0.014 0.022 0.014 0.007
9 0.153 0.024 0.062 0.024 0.011
10 0.153 0.024 0.062 0.024 0.011
11 0.096 0.015 0.007 0.015 0.024
12 0.209 0.034 0.015 0.034 0.117
13 0.087 0.014 0.006 0.014 0.020
14 0.218 0.035 0.016 0.035 0.128
15 0.168 0.027 0.076 0.027 0.012
16 0.218 0.035 0.016 0.035 0.128

Cz Cy Cx Cry  Crx Ct

Beam ton/s ton/s ton/s ton*m2/s ton*m2/s ton*m2/s
1 736.3 411.6 374.2 9.4 0.7 2.1
2 2814.8 953.6 1525.8 5.6 93.3 32.2
3 1572.5 639.3 831.1 1.9 28.1 9.9
4 1147.8 636.3 530.3 26.7 0.9 5.8
5 2587.6 1315.0 876.7 120.8 1.6 25.1
6 4077.0 1218.8 2193.8 7.2 194.8 66.7
7 637.4 323.9 323.9 6.1 0.6 1.4
8 883.6 470.4 427.6 14.0 0.8 3.1
9 2002.8 1017.8 727.0 68.9 1.3 14.4
10 2002.8 1017.8 727.0 68.9 1.3 14.4
11 923.3 446.9 491.6 1.3 9.6 3.5
12 3150.5 1000.7 1601.1 5.9 107.8 37.1
13 837.2 405.2 445.7 1.2 7.2 2.7
14 3291.9 1045.6 1672.9 6.2 123.0 42.3
15 2208.9 1122.6 801.8 92.4 1.4 19.3
16 3291.9 1045.6 1672.9 6.2 123.0 42.3
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3.1.1.5 Detached	house	“Badweg”	

Figure	3.9 shows	 the	position	of	 the	13	 foundation	beams	of	 the	Badweg	 index	building,	 each	
beam	being	modelled	by	a	macro-element.	The	foundations	of	the	main	walls	are	constituted	by	
60	cm	continuous	unreinforced	masonry	footings.	

 

 
Figure	3.9	Detached	house	“Badweg”	–	position	of	beams	representing	single	macro-elements.	

For	 each	of	 the	macro-elements	 considered,	Table	3.8	 summarizes	 their	 initial	 stiffness,	Table	
3.9	 summarizes	 the	 foundation	 capacities	 and	 Table	 3.10	 summarizes	 the	 radiation	 damping	
equivalent	dashpot	coefficients.	

 
Table	3.8:	Initial	stiffness	of	the	macro-elements	of	Badweg	index	building.	

 

	Vertical	
	Horizontal		
along	X	

Rotational		
around	Y

	Horizontal		
along	Y	

	Rotational		
around	X	 Torsional	

Kz	 Kx Kry	 Ky Krx	 Kt	
Beam MN/m MN/m 	MNm/rad MN/m 	MNm/rad 	MNm/rad
1 206.740 141.474 32.737 148.244 16.907 29.766
2 592.573 481.732 76.290 393.722 1557.981 1418.342
3 333.393 221.600 222.497 253.193 35.052 156.586
4 277.800 185.891 111.550 206.201 26.804 81.019
5 277.800 185.891 111.550 206.201 26.804 81.019
6 277.800 185.891 111.550 206.201 26.804 81.019
7 805.067 674.893 111.754 538.364 3977.626 4231.236
8 333.393 221.600 222.497 253.193 35.052 156.586
9 327.930 218.063 209.380 248.528 34.227 147.272
10 607.600 403.877 1685.540 495.272 78.764 1556.383
11 305.883 203.847 161.489 229.798 30.928 114.153
12 294.727 220.387 29.279 196.692 140.221 99.881
13 187.653 133.262 14.433 129.877 21.135 21.722
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Table	3.9:	Foundation	capacity	of	the	macro-elements	of	Badweg	index	building.	

 
 

Table	3.10:	Radiation	damping	dashpot	coefficients	of	the	macro-elements	of	Badweg	index	building.	

 
 

 

 

 

 

Centred	vertica l 	
bearing	s trength	

Maximum	base	shear	
capaci ty	a long	X	

Maximum	base	moment	
capaci ty	around	Y	

Maximum	base	shear	
capaci ty	a long	X

Maximum	base	moment	
capaci ty	around	Y

QQ_N_MAX QQ_HX_MAX QQ_MY_MAX QQ_HY_MAX QQ_MX_MAX 

Beam MN MN MNm MN MNm
1 0.044 0.006 0.005 0.006 0.003
2 0.201 0.032 0.014 0.032 0.108
3 0.092 0.014 0.022 0.014 0.007
4 0.070 0.011 0.013 0.011 0.005
5 0.070 0.011 0.013 0.011 0.005
6 0.070 0.011 0.013 0.011 0.005
7 0.295 0.048 0.021 0.048 0.235
8 0.092 0.014 0.022 0.014 0.007
9 0.090 0.014 0.021 0.014 0.006
10 0.207 0.033 0.116 0.033 0.015
11 0.081 0.013 0.017 0.013 0.006
12 0.076 0.012 0.006 0.012 0.015
13 0.037 0.005 0.003 0.005 0.003

Cz Cy Cx Cry  Crx Ct

Beam ton/s ton/s ton/s ton*m2/s ton*m2/s ton*m2/s
1 340.8 182.8 192.4 0.5 0.3 0.4
2 2840.0 962.2 1539.5 5.7 95.9 33.1
3 841.5 449.0 427.6 14.0 0.8 3.1
4 631.1 336.8 320.7 5.9 0.6 1.4
5 631.1 336.8 320.7 5.9 0.6 1.4
6 631.1 336.8 320.7 5.9 0.6 1.4
7 4756.5 1421.9 2559.5 8.4 309.3 105.7
8 841.5 449.0 427.6 14.0 0.8 3.1
9 820.5 437.8 417.0 13.0 0.7 2.9
10 3032.5 1590.8 994.3 352.5 1.8 36.4
11 736.3 392.9 374.2 9.4 0.7 2.1
12 694.2 352.8 370.4 1.0 4.7 1.8
13 284.0 160.4 152.3 0.2 0.4 0.2
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3.1.1.6 Detached	house	“Dijkstraat”	

Figure	3.10 shows	the	position	of	the	8	foundation	beams	of	the	Dijkstraat	index	building,	with	
each	beam	modelled	by	a	macro-element.	The	foundations	of	the	main	walls	are	constituted	by	
60	cm	continuous	concrete	footings.	

 

 
Figure	3.10	Detached	house	“Dijkstraat”	–	position	of	beams	representing	single	macro-elements.	

For	each	of	the	macro-elements	considered,	Table	3.11	summarizes	their	initial	stiffness,	Table	
3.12	 summarizes	 the	 foundation	 capacities	 and	Table	3.13	 summarizes	 the	 radiation	damping	
equivalent	dashpot	coefficients.	

	
Table	3.11:	Initial	stiffness	of	the	macro-elements	of	Dijkstraat	index	building.	

 
 
 
 
 
 

 

	Vertical	
	Horizontal		
along	X	

Rotational		
around	Y

	Horizontal		
along	Y	

	Rotational		
around	X	 Torsional	

Kz	 Kx Kry	 Ky Krx	 Kt	
Beam MN/m MN/m 	MNm/rad MN/m 	MNm/rad 	MNm/rad
1 248.964 167.666 72.017 182.335 22.681 55.486
2 333.393 221.600 222.497 253.193 35.052 156.586
3 814.829 545.054 4122.694 683.839 113.404 4408.386
4 248.964 167.666 72.017 182.335 22.681 55.486
5 333.393 221.600 222.497 253.193 35.052 156.586
6 814.829 545.054 4122.694 683.839 113.404 4408.386
7 1789.963 1593.224 282.478 1223.130 37838.112 49109.092
8 1789.963 1593.224 282.478 1223.130 37838.112 49109.092
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Table	3.12:	Foundation	capacity	of	the	macro-elements	of	Dijkstraat	index	building.	

 
Table	3.13:	Radiation	damping	dashpot	coefficients	of	the	macro-elements	of	Dijkstraat	index	building.	

 

3.1.1.7 Detached	house	“De	Haver”	

Figure	 3.11	 shows	 the	 position	 of	 the	 28	 foundation	 beams	 of	 the	 De	 Haver	 index	 building,	
where	 each	 beam	 is	 modelled	 by	 a	 macro-element.	 The	 foundations	 of	 the	 main	 wall	 are	
constituted	by	60	cm	continuous	unreinforced	masonry	footings.	

 

 
Figure	3.11	Detached	house	“De	Haver”	–	position	of	beams	representing	single	macro-elements.	

Centred	vertica l 	
bearing	s trength	

Maximum	base	shear	
capaci ty	a long	X	

Maximum	base	moment	
capaci ty	around	Y	

Maximum	base	shear	
capaci ty	a long	X

Maximum	base	moment	
capaci ty	around	Y

QQ_N_MAX QQ_HX_MAX QQ_MY_MAX QQ_HY_MAX QQ_MX_MAX 

Beam MN MN MNm MN MNm
1 0.059 0.009 0.009 0.009 0.004
2 0.092 0.014 0.022 0.014 0.007
3 0.299 0.049 0.242 0.049 0.022
4 0.059 0.009 0.009 0.009 0.004
5 0.092 0.014 0.022 0.014 0.007
6 0.299 0.049 0.242 0.049 0.022
7 0.746 0.122 0.054 0.122 1.522
8 0.746 0.122 0.054 0.122 1.522

Cz Cy Cx Cry  Crx Ct

Beam ton/s ton/s ton/s ton*m2/s ton*m2/s ton*m2/s
1 499.6 267.3 267.3 3.4 0.5 0.9
2 883.6 470.4 427.6 14.0 0.8 3.1
3 4828.1 2597.9 1443.3 1078.3 2.6 110.5
4 499.6 267.3 267.3 3.4 0.5 0.9
5 883.6 470.4 427.6 14.0 0.8 3.1
6 4828.1 2597.9 1443.3 1078.3 2.6 110.5
7 13590.1 3635.0 7997.0 30.0 5167.8 1753.0
8 13590.1 3635.0 7997.0 30.0 5167.8 1753.0
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For	each	of	the	macro-elements	considered,	Table	3.14	summarizes	their	initial	stiffness,	Table	
3.15	 summarizes	 the	 foundation	 capacities	 and	Table	3.16	 summarizes	 the	 radiation	damping	
equivalent	dashpot	coefficients.	

	
Table	3.14:	Initial	stiffness	of	the	macro-elements	of	De	Haver	index	building.	

 
 

 

 

 

 

	Vertical	
	Horizontal		
along	X	

Rotational		
around	Y

	Horizontal		
along	Y	

	Rotational		
around	X	 Torsional	

Kz	 Kx Kry	 Ky Krx	 Kt	
Beam MN/m MN/m 	MNm/rad MN/m 	MNm/rad 	MNm/rad
1 308.990 205.844 167.760 232.428 31.390 118.411
2 421.749 279.465 511.195 329.755 48.718 384.877
3 432.353 286.480 556.332 339.060 50.392 423.913
4 403.001 267.096 437.162 313.358 45.774 322.574
5 457.021 302.844 670.767 360.784 54.310 526.032
6 308.990 205.844 167.760 232.428 31.390 118.411
7 421.749 279.465 511.195 329.755 48.718 384.877
8 432.353 286.480 556.332 339.060 50.392 423.913
9 403.001 267.096 437.162 313.358 45.774 322.574
10 457.021 302.844 670.767 360.784 54.310 526.032
11 314.466 237.070 32.207 209.369 179.188 126.231
12 388.543 300.764 43.518 257.588 384.962 280.062
13 417.533 326.062 48.054 276.680 493.910 370.133
14 418.345 326.773 48.182 277.217 497.212 372.940
15 393.496 305.073 44.289 260.842 402.372 294.103
16 325.850 246.754 33.914 216.718 204.517 143.846
17 1547.178 1364.856 239.855 1053.075 25472.965 32481.494
18 670.334 446.408 2286.512 552.020 89.156 2227.368
19 555.836 448.730 70.269 368.957 1271.725 1115.776
20 383.421 254.227 367.462 296.313 42.722 266.095
21 1317.376 1149.612 199.755 892.691 16352.469 20282.681
22 814.536 683.570 113.354 544.853 4118.298 4403.008
23 808.387 540.639 4026.609 677.935 112.315 4290.980
24 514.553 411.827 63.555 341.238 991.732 831.754
25 757.693 505.947 3317.879 631.554 103.770 3434.445
26 670.334 446.408 2286.512 552.020 89.156 2227.368
27 494.737 394.192 60.355 327.982 872.352 715.167
28 494.737 394.192 60.355 327.982 872.352 715.167
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Table	3.15:	Foundation	capacity	of	the	macro-elements	of	De	Haver	index	building.	

 
 

	

	

	

	

	

	

	

	

	

	

	

Centred	vertica l 	
bearing	s trength	

Maximum	base	shear	
capaci ty	a long	X	

Maximum	base	moment	
capaci ty	around	Y	

Maximum	base	shear	
capaci ty	a long	X

Maximum	base	moment	
capaci ty	around	Y

QQ_N_MAX QQ_HX_MAX QQ_MY_MAX QQ_HY_MAX QQ_MX_MAX 

Beam MN MN MNm MN MNm
1 0.082 0.013 0.017 0.013 0.006
2 0.128 0.020 0.043 0.020 0.009
3 0.132 0.021 0.047 0.021 0.010
4 0.120 0.019 0.038 0.019 0.009
5 0.143 0.023 0.054 0.023 0.010
6 0.082 0.013 0.017 0.013 0.006
7 0.128 0.020 0.043 0.020 0.009
8 0.132 0.021 0.047 0.021 0.010
9 0.120 0.019 0.038 0.019 0.009
10 0.143 0.023 0.054 0.023 0.010
11 0.084 0.013 0.006 0.013 0.018
12 0.114 0.018 0.008 0.018 0.034
13 0.126 0.020 0.009 0.020 0.042
14 0.126 0.020 0.009 0.020 0.042
15 0.116 0.018 0.008 0.018 0.036
16 0.089 0.014 0.006 0.014 0.021
17 0.633 0.104 0.046 0.104 1.096
18 0.235 0.038 0.149 0.038 0.017
19 0.185 0.030 0.013 0.030 0.092
20 0.112 0.018 0.033 0.018 0.008
21 0.527 0.086 0.038 0.086 0.758
22 0.299 0.049 0.022 0.049 0.242
23 0.296 0.048 0.237 0.048 0.021
24 0.167 0.027 0.012 0.027 0.075
25 0.273 0.044 0.202 0.044 0.020
26 0.235 0.038 0.149 0.038 0.017
27 0.159 0.025 0.011 0.025 0.067
28 0.159 0.025 0.011 0.025 0.067
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Table	3.16:	Radiation	damping	dashpot	coefficients	of	the	macro-elements	of	De	Haver	index	building.	

 
	

3.1.2 Calibration	of	the	equivalent	footing	macro-element	

The	employed	footing	macro-element	models	the	soil	under	a	single	footing	or	foundation	beam.	
However,	given	that	in	the	development	of	fragility	functions	a	simplified	SDOF	system	approach	
is	 used	 to	 represent	 the	 structural	 systems	 (Crowley	 et	 al.,	 2019),	 the	 derivation	 of	 an	
“equivalent”	macro-element	for	an	entire	building	was	needed.	

3.1.2.1 Terraced	index	building	

In	order	to	derive	an	equivalent	macro-element,	the	first	step	was	to	build	a	multiple-degrees-of	
freedom	 (MDOF)	model	 for	 the	 considered	 index	building	 (Figure	3.12),	 Zijlvest,	 a	 two-storey	
unreinforced	 masonry	 (URM)	 terraced	 index	 building	 with	 four	 units.	 Masonry	 piers	 and	
spandrels	are	introduced	as	columns	and	beams,	respectively,	to	model	the	transverse	walls	(y-
direction)	 and	 approximately	model	 the	 sequence	of	 openings	 in	 the	 two	 façades	 along	 the	x-

Cz Cy Cx Cry  Crx Ct

Beam ton/s ton/s ton/s ton*m2/s ton*m2/s ton*m2/s
1 748.1 418.2 380.2 9.9 0.7 2.2
2 1487.6 786.2 604.8 39.7 1.1 8.4
3 1541.0 814.5 626.5 44.1 1.1 9.3
4 1338.0 708.3 566.6 32.6 1.0 7.0
5 1732.5 880.5 677.3 55.7 1.2 11.7
6 748.1 418.2 380.2 9.9 0.7 2.2
7 1487.6 786.2 604.8 39.7 1.1 8.4
8 1541.0 814.5 626.5 44.1 1.1 9.3
9 1338.0 708.3 566.6 32.6 1.0 7.0
10 1732.5 880.5 677.3 55.7 1.2 11.7
11 768.9 390.8 429.8 1.2 6.4 2.4
12 1163.2 537.4 644.9 1.6 16.7 6.0
13 1466.4 596.2 775.0 1.8 22.8 8.1
14 1470.5 597.8 777.2 1.8 23.0 8.1
15 1238.7 547.4 656.9 1.6 17.6 6.3
16 812.5 412.9 454.2 1.2 7.6 2.8
17 10917.9 3082.5 6781.4 18.2 3151.3 1069.5
18 3665.5 1975.7 1129.0 516.1 2.0 53.1
19 2609.7 884.2 1326.2 2.6 74.4 25.7
20 1140.9 632.5 527.1 26.3 0.9 5.7
21 9076.8 2562.7 5637.9 15.1 1810.8 615.0
22 4825.9 1442.7 2596.8 8.5 323.1 110.3
23 4780.9 2572.5 1429.2 1047.0 2.5 107.3
24 2196.0 797.1 1116.0 2.4 54.5 18.9
25 4410.3 2373.2 1318.4 822.0 2.3 84.3
26 3665.5 1975.7 1129.0 516.1 2.0 53.1
27 2081.7 755.6 1057.9 2.2 46.4 16.2
28 2081.7 755.6 1057.9 2.2 46.4 16.2
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direction.	 Such	 façades	 are	 not	 identical,	 but	 were	 modelled	 with	 the	 same	 geometry	 for	
simplicity,	 in	 the	 assumption	 that	 small	 changes	 in	 the	 geometry	 do	 not	 affect	 the	
characterisation	 of	 the	 equivalent	 macro-element.	 The	 rigid	 reinforced	 concrete	 slabs	 are	
modelled	with	two	rigid	diaphragms	linking	the	column	nodes	at	the	two	floor	levels.		

A	total	of	27	footing	macro-elements	are	introduced	at	the	base	of	the	model	(where	grey	blocks	
are	 located	 in	 Figure	 3.12),	 in	 correspondence	 to	 the	 centroid	 of	 masonry	 piers.	 Reinforced	
concrete	foundation	beams	connect	the	upper	nodes	of	the	macro-elements.	Both	masonry	and	
reinforced	concrete	were	considered	as	 linear	elastic	materials,	 in	 the	MDOF	models,	with	 the	
actual	 values	 for	 the	 elastic	modulus	 and	 density.	 The	 total	mass	 of	 the	models,	 given	 by	 the	
superstructure	mass	plus	the	foundation	mass,	naturally	equates	to	the	actual	total	mass	values	
used	for	the	equivalent	single	macro-element	properties.	

	

	
Figure	3.12:	The	MDOF	model	used	for	the	terraced	index	buildings.	

The	equivalent	macro-element	calibration	requires	the	computation	of	 the	(elastic)	stiffnesses,	
bearing	capacity	and	damping	coefficients	along	the	six	directions.	Most	of	the	parameters	were	
computed	 analytically	 starting	 from	 the	 foundation	 geometry	 and	 properties	 of	 the	 single	
macro-elements,	 while	 the	 remaining	 ones	 required	 the	 output	 from	 the	 model.	 The	 model	
output	parameters	needed	 for	 the	calibration	are	 the	vertical	 reactions	of	 the	macro-elements	
and	the	base	shear	capacities	in	the	two	horizontal	directions	x	and	y:	both	output	results	were	
obtained	 from	 two	 pushover	 analyses,	 along	 x	 and	 y.	 The	 latter	were	 carried	 out	 pushing	 the	
structure	 in	 load	control	with	point	 forces	 located	at	 the	 floor	 levels,	according	 to	a	 triangular	
distribution.	

The	vertical	stiffness,	kV,	as	well	as	the	horizontal	stiffness	in	the	two	directions,	kHx	and	kHy,	were	
obtained	by	 simply	 summing	up	 the	 stiffness	values	of	 the	 single	macro-elements,	 assuming	a	
rigid	behaviour	of	 the	 foundation	plane.	The	 torsional	 stiffness,	kT,	 does	not	play	a	 role	 in	 the	
fragility	curve	derivation	since	the	models	represent	the	response	in	a	single	vertical	plane.	For	
the	rotational	stiffness	in	the	two	directions,	kMx	and	kMy,	the	lower	bound	would	be	simply	the	
sum	over	the	single	macro-elements,	as	done	for	the	other	stiffness	components,	while	adopting	
the	upper	bound	would	mean	accounting	for	both	the	rotational	stiffness	of	each	macro-element	
and	their	vertical	stiffness	contribution	for	a	rigid	rotation	of	the	foundation	plane.	For	the	case	
at	 hand,	 it	 was	 decided	 to	 employ	 the	 rotational	 stiffness	 upper	 bound,	 although	 sensitivity	
studies	 demonstrated	 the	 small	 influence	 of	 this	 stiffness	 in	 the	 overall	 response	 of	 these	
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buildings,	as	discussed	below.	The	rotational	 stiffness	around	 the	generic	horizontal	direction,	
kM,	was	thus	retrieved	for	a	unit	rotation	as	follows:	

	

𝑘! =  𝑘!,!!"#
!!! ∙ 𝑑!! + 𝑘!,!!"#

!!! 	 	 	 	 	 	 	 											(3.20)	

	

where	the	index	i	spans	all	the	nME	single	macro-elements	in	the	model	(i.e.,	27	in	the	terraced	
building	model),	while	di	is	the	distance	of	the	i-th	macro-element	from	the	foundation	centroid.	

Since	the	dynamic	behaviour	of	these	buildings	on	shallow	foundations	is	driven	more	by	sliding	
than	by	rocking,	this	choice	should	not	lead	to	important	variations	in	the	results.	To	verify	this,	
the	 fragility	curves	were	also	retrieved	by	using	a	 reduced	rotational	 stiffness,	 in	between	 the	
two	extreme	values.	In	particular,	based	on	expert	judgement,	rather	than	rigorous	mechanical	
considerations,	one	tenth	of	the	upper	bound	was	adopted,	a	value	that	is	of	course	larger	than	
the	lower	bound.	For	all	the	considered	buildings,	this	reduced	stiffness	led	to	small	to	negligible	
variations	 in	 the	 fragility	 curve	 with	 respect	 to	 the	 one	 obtained	 with	 the	 upper	 bound,	 as	
expected.	

Concerning	 the	bearing	capacity,	 the	vertical	 component,	Nmax,	was	computed	as	 the	sum	over	
the	 single	macro-elements,	while	 for	 the	other	 components	 the	 fully	 coupled	behaviour	of	 the	
macro-element	 in	 the	 six	 directions	was	 used	 for	 defining	 the	 size	 of	 its	 bounding	 surface.	 In	
particular,	the	bearing	capacity	in	the	horizontal	direction,	Hmax,	was	obtained	as	follows:	

	

𝐻!"# =  !!",!∙!!"#,!
!"#
!!!

!!"
	 	 	 	 	 	 	 	 											(3.21)	

	

where	 Hmax,i	 is	 the	 maximum	 horizontal	 capacity	 of	 each	 macro-element	 in	 the	 direction	
considered,	and	QNH	and	QNH,i	are	function	of	the	applied	vertical	load,	for	the	equivalent	macro-
element	 and	 for	 each	 of	 the	 single	macro-elements,	 respectively.	 This	 function	 of	 the	 applied	
vertical	 load	 relates	 the	 maximum	 horizontal	 capacity	 of	 the	 macro-element	 with	 its	 actual	
horizontal	 shear	 capacity.	 In	 undrained	 conditions	 with	 zero	 base	 suction,	 such	 function	
assumes	a	“scallop	shape”	and	depends	on	the	value	of	QN,	which	is	the	ratio	between	the	total	
vertical	reaction	of	the	building	and	its	vertical	bearing	capacity.	

	

𝑄!" =
4𝑄! 1 − 𝑄! !.!" ,𝑄! > 0.5
1 − 1 − 2𝑄! !"  ,𝑄! ≤ 0.5

 	 	 	 	 	 	 	 											(3.22)	

	

Further	details	on	the	involved	quantities	can	be	found	in	Correia	&	Paolucci	(2019).	

In	 order	 to	 obtain	 the	 rotational	 bearing	 capacity,	Mmax,	 the	 3D	 vertical-horizontal-rotational	
interaction	surface	for	the	capacity	was	used	to	derive	the	following	expression:		

	

𝑀!"# =
!!,!∙!!

!!
!!!

!!" !! !!
!!"∙!!"#

!
 	 	 	 	 	 	 	 	 											(3.23)	
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where	 Fu,k	 is	 the	 ultimate	 horizontal	 force	 at	 the	 k-th	 floor	 level,	 obtained	 from	 a	 pushover	
analysis	in	the	relevant	horizontal	direction	and	considering	a	triangular	distribution	along	the	
building	height,	Ns	is	the	number	of	storeys,	hk	is	the	height	of	the	k-th	floor	level,	and	Hu	is	the	
sum	 of	Fu,k	 for	 all	 storeys	 and	 corresponds	 to	 the	 ultimate	 base	 shear	 value.	QNH	 was	 already	
defined,	 while	 QNM	 is	 also	 a	 function	 of	 the	 applied	 vertical	 load	 that	 relates	 the	 maximum	
rotational	moment	capacity	of	the	macro-element	with	its	actual	moment	capacity.	The	torsional	
capacity	is	of	no	interest	for	the	2D	analyses	performed.	

The	 equivalent	 dashpot	 coefficients	modelling	 the	 radiation	 damping	 in	 the	 soil	 along	 the	 six	
directions	 were	 computed	 by	 summing	 up	 the	 values	 of	 the	 single	 macro-elements.	 In	 what	
concerns	the	rocking	response	this	corresponds	to	a	 lower	bound	assumption.	Nonetheless,	as	
mentioned	above,	the	response	of	the	buildings	considered	is	mainly	dominated	by	sliding	and	
not	by	rocking.	

Finally,	 the	 “model	 specific	 parameters”	 (see	 final	 sub-section	 of	 Section	 3.1.1.2)	 for	 the	
equivalent	footing	macro-element	in	SeismoStruct	were	set	equal	to	those	of	the	single	footing	
macro-elements.	 The	 latter	 assumed	 values	 consistent	with	 the	 calibration	procedure	 done	 in	
the	work	by	Pianese	(2018).	The	scallop	shape	was	assumed	for	the	bounding	surface,	since	the	
dynamic	analysis	is	performed	under	undrained	conditions.	

3.1.2.2 Detached	index	buildings	

Three	MDOF	models	(see	Figure	3.13,	Figure	3.14,	Figure	3.15,	and	Figure	3.16)	were	created	to	
derive	the	equivalent	 footing	macro-element	for	the	four	considered	detached	index	buildings;	
Kwelder,	 Badweg,	 Dijkstraat	 and	 De	 Haver.	 The	 same	 modelling	 strategy	 adopted	 for	 the	
terraced	building	was	used	here.	 The	 total	 number	of	 footing	macro-elements	 included	 in	 the	
models	 is	 16	 for	 Kwelder	 (one-storey),	 13	 for	 Badweg	 (one-storey),	 8	 for	 Dijkstraat	 (two-
storey),	and	28	for	De	Haver	(one-storey).	

	

	
Figure	3.13:	The	MDOF	model	used	for	Kwelder	detached	index	building.	
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Figure	3.14:	The	MDOF	model	used	for	Badweg	detached	index	building.	

	
Figure	3.15:	The	MDOF	model	used	for	Dijkstraat	detached	index	building.	

	
Figure	3.16:	The	MDOF	model	used	for	De	Haver	detached	index	building.	
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The	 mixed	 analytical	 and	 model-based	 procedure	 adopted	 for	 the	 equivalent	 macro-element	
calibration	is	the	same	used	for	the	terraced	index	building.	The	only	difference	for	the	first	two	
and	fourth	models	(Figure	3.13,	Figure	3.14	and	Figure	3.16)	is	that	the	number	of	stories,	Ns,	is	
equal	to	1,	and	thus	the	ultimate	horizontal	forces	in	the	two	horizontal	directions	coincide	with	
the	ultimate	base	shear	values	obtained	from	pushover	analyses.	

3.1.3 Properties	of	the	equivalent	footing	macro-elements	

The	 following	 tables,	 from	 Table	 3.17	 to	 Table	 3.21,	 report	 the	 retrieved	 properties	 of	 the	
equivalent	 footing	macro-elements	 for	 all	 terraced	 and	 detached	 index	 buildings,	 in	 terms	 of	
initial	stiffness,	foundation	capacity	and	radiation	damping	equivalent	dashpot	coefficients.		

	
Table	3.17:	Properties	of	the	equivalent	macro-element	for	Zijlvest	index	building.	

kV	(kN/m)	 kHx	(kN/m)	 kMy	(kNm/rad)	

1.521E+07	 1.167E+07	 8.514E+08	

Nmax	(kN)	 Hmax,x	(kN)	 Mmax,y	(kNm)	

4.653E+03	 6.634E+02	 2.188E+04	

	 cHx	(ton/s)	 cMy	(ton*m2/s)	

	 3.568E+04	 7.356E+02	

	
Table	3.18:	Properties	of	the	equivalent	macro-element	for	Kwelder	index	building.	

kV	(kN/m)	 kHx	(kN/m)	 kMy	(kNm/rad)	

7.613E+06	 5.664E+06	 1.480E+08	

Nmax	(kN)	 Hmax,x	(kN)	 Mmax,y	(kNm)	

2.429E+03	 3.739E+02	 7.219E+03	

	 cHx	(ton/s)	 cMy	(ton*m2/s)	

	 1.522E+04	 4.427E+02	

	
Table	3.19:	Properties	of	the	equivalent	macro-element	for	Badweg	index	building.	

kV	(kN/m)	 kHx	(kN/m)	 kMy	(kNm/rad)	

4.828E+06	 3.478E+06	 1.123E+08	

Nmax	(kN)	 Hmax,x	(kN)	 Mmax,y	(kNm)	

1.425E+03	 2.192E+02	 4.709E+03	

	 cHx	(ton/s)	 cMy	(ton*m2/s)	

	 8.417E+03	 4.364E+02	
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Table	3.20:	Properties	of	the	equivalent	macro-element	for	Dijkstraat	index	building.	

kV	(kN/m)	 kHx	(kN/m)	 kMy	(kNm/rad)	

6.374E+06	 5.055E+06	 1.585E+08	

Nmax	(kN)	 Hmax,x	(kN)	 Mmax,y	(kNm)	

2.392E+03	 2.967E+02	 6.415E+03	

	 cHx	(ton/s)	 cMy	(ton*m2/s)	

	 2.027E+04	 2.251E+03	

	
Table	3.21:	Properties	of	the	equivalent	macro-element	for	De	Haver	index	building.	

kV	(kN/m)	 kHx	(kN/m)	 kMy	(kNm/rad)	

1.533E+07	 1.147E+07	 2.969E+08	

Nmax	(kN)	 Hmax,x	(kN)	 Mmax,y	(kNm)	

5.145E+03	 7.619E+02	 3.582E+03	

	 cHx	(ton/s)	 cMy	(ton*m2/s)	

	 3.456E+04	 3.352E+03	

 

3.2 Pile	foundation	macro-element	
The	 pile-head	 macro-element	 developed	 by	 Correia	 &	 Pecker	 (2019)	 may	 be	 regarded	 as	 a	
lumped	model	located	at	the	base	of	the	superstructure	that	intends	to	represent	the	behaviour	
of	 the	 entire	 soil-foundation	 system.	 With	 the	 aim	 of	 realistically	 simulating	 the	 seismic	
response	of	the	structure,	the	main	sources	of	nonlinearity	for	laterally	loaded	piles,	related	to	
soil	and	pile	inelastic	response,	including	gap	opening	and	closure,	are	considered.	

The	 macro-element	 adopted	 herein	 is	 thus	 based	 on	 the	 three	 fundamental	 features	 of	 the	
response	 of	 laterally	 loaded	 piles:	 initial	 elastic	 behaviour,	 gap	 opening/closure	 effects	 and	
failure	 conditions.	 These	 three	 characteristic	 behaviours	 are	 all	made	 compatible	 by	 using	 an	
inelastic	model	 that	 accounts	 for	 the	 evolution	 from	 initial	 nonlinear	 elastic	 behaviour	 to	 full	
plastic	 flow	 at	 failure.	 Such	 inelastic	 model	 is	 based	 on	 a	 bounding	 surface	 plasticity	 theory	
formulation	 that	 ensures	 a	 smooth	 transition	 from	 the	 initial	 elastic	 pile-head	 response	 up	 to	
nonlinear	behaviour	and	collapse.	

This	 pile-head	macro-element	 model	 represents	 the	 lateral	 behaviour	 of	 single	 vertical	 piles,	
subjected	to	a	horizontal	load	and	a	moment,	from	the	initial	stages	of	loading	up	until	reaching	
failure.	 The	 effects	 of	 vertical	 loading	 are	 not	 directly	 considered	 in	 this	model	 except	 for	 its	
influence	 on	 the	 plastic	moment	 of	 the	 pile	 cross-section.	 Otherwise,	 it	 is	 considered	 that	 the	
upper	 zone	 of	 the	 soil	 profile,	 until	 the	 depth	 at	 which	 the	 plastic	 hinge	 will	 form,	 only	
contributes	to	the	 lateral	 load	resistance.	The	vertical	 load	 is	assumed	to	be	transferred	to	the	
surrounding	soil	below	that	depth,	where	there	is	no	influence	of	gap	opening	effects.	

The	adopted	system	for	nonlinear	dynamic	analyses,	as	modelled	in	SeismoStruct,	composed	of	
a	 nonlinear	 structural	 SDOF	 and	 a	 pile	 macro-element,	 is	 shown	 in	 Figure	 3.17.	 The	 same	
superstructure-related	remarks	made	in	the	case	of	footing	macro-element	apply	in	this	case.	All	
the	springs	and	dashpots	present	in	the	macro-element	implementation	are	visualised	in	the	2D	
scheme,	apart	from	the	torsional	ones,	which	do	not	play	a	role	in	the	analyses	of	interest.	
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Figure	3.17:	Adopted	system	with	structural	SDOF	and	pile	macro-element,	for	dynamic	analyses.	

3.2.1 Assessment	of	input	parameters	for	pile	foundation	macro-element	

This	 section	 describes	 the	 input	 parameters	 for	 pile	 macro-elements	 to	 be	 used	 for	 the	
calibration	step	of	MDOF	models	of	the	buildings.	At	this	stage,	the	parameters	are	derived	only	
for	 soil	 type	 A,	 being	 the	 median	 AF	 characterizing	 soil	 type	 A	 the	 most	 representative.	 The	
parameters	definition	is	preceded	by	the	description	of	the	foundation	typologies.	

Three	different	 cases	have	been	 considered	 combining	 two	 types	of	piles	 (see	 section	3.2.1.1)	
and	three	buildings	characterized	by	different	properties	and	loads.	Figure	3.18	shows,	for	half	
of	the	model,	the	pile	distribution	assumed	for	the	Apartment	index	buildings.	The	foundations	
of	all	the	buildings	have	the	same	number	(i.e.	67)	and	position	of	the	piles,	as	shown	in	Figure	
3.19.	Table	3.22	shows	the	main	characteristics	of	the	foundations	considered.		
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Figure	3.18	Typical	pile	distribution	in	an	Apartment	building	(note:	modelled	index	buildings	feature	twice	a	

number	of	spans,	hence	the	pile	pattern	shown	herein	has	been	doubled	-	see	Figure	3.19).	

	
Figure	3.19:	The	foundation	plan	used	for	all	apartment	index	buildings,	with	pile	numbering.	
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Table	3.22:	Main	characteristics	of	the	pile	foundations	considered.	

 
	

3.2.1.1 Foundation	typologies		

The	pile	foundations	of	two	of	the	Apartment	index	buildings	(“K-flat”	and	“Georg	van	S”)	consist	
of	 450	mm	solid	 circular	 concrete	bored	piles.	The	piles'	 length	 is	 equal	 to	16	m	and	 they	 are	
connected	by	reinforced	concrete	(RC)	capping	beams	with	height	equal	to	600mm,	and	a	width	
of	450	mm	or	650	mm	depending	on	the	beam	position	(e.g.	perimeter,	internal).	A	detail	of	the	
foundation	is	shown	in	Figure	3.20.	

Figure	 3.21	 shows	 the	 detailing	 of	 the	 pile	 with	 the	 characteristics	 of	 its	 materials	 and	
reinforcement.	 The	 concrete	 is	 a	 B25	 type,	 which	 is	 assumed	 equivalent	 to	 C25/30,	 and	 for	
which	 is	 assumed	 a	 Young’s	 modulus	 of	 31	 GPa.	 The	 main	 reinforcement	 is	 constituted	 by	
5φ12	mm,	the	transversal	reinforcement	is	constituted	φ8	mm@250	mm	hoops.	The	steel	type	is	
FeB500.	

	

	
Figure	3.20:	Typical	detail	of	circular	pile	foundation	head.	

	

Index	Building Vertical	load	(kN) N	pile Pile	type Section Size	(cm)
Drive	in 7640 67 Driven Square 25
K-Flat	 14930 67 Bored Circular 45

Georg	van	S 11400 67 Bored Circular 45
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Figure	3.21	Typical	material	properties	and	reinforcement	of	the	circular	pile	with	diameter	45	cm.	

For	the	“Drive-in”	index	building,	instead,	an	alternative	pile	typology	was	considered,	consisting	
of	 250x250	mm	 square	 section	 concrete	 piles.	 The	 piles'	 length	 is	 equal	 to	 16	m,	with	 a	 B25	
concrete	type,	which	is	assumed	equivalent	to	C25/30,	and	with	an	assumed	Young’s	modulus	of	
31	 GPa.	 The	main	 reinforcement	 is	 constituted	 by	 4φ12	mm,	 the	 transversal	 reinforcement	 is	
constituted	φ8	mm@250	mm	hoops.	The	steel	type	is	FeB500.	

3.2.1.2 Macro-element	parameters	

Soil-structure	 interaction	of	pile	 foundations	was	analysed	using	 the	macro-element	 approach	
proposed	by	Correia	(2011)	and	Correia	&	Pecker	(2019),	which	is	described	above.	This	Section	
describes	the	definition	of	the	parameters	for	macro-elements	of	pile	foundations	to	be	used	in	
the	 MDOF	model.	 The	 input	 parameters	 of	 the	macro-elements	 can	 be	 subdivided	 into	 three	
main	groups	described	 in	 the	 following	sections:	 foundation	capacity,	 foundation	stiffness	and	
model	specific	parameters.	

Foundation	capacity.	

Correia	(2011)	has	determined	the	failure	surface	and	mechanism	for	laterally	loaded	piles	(i.e.	
a	soil	passive	wedge	 failure	at	shallow	depths	and	flow-around	failure	at	 larger	depths,	with	a	
possible	gap	formation	on	the	back	of	the	pile,	see	Figure	3.22b)	through	the	kinematic	approach	
of	yield	design	theory.	Under	seismic	conditions,	a	saturated	soil	deposit	is	considered,	which	is	
assumed	to	be	impervious.	Consequently,	it	responds	with	undrained	behaviour	and	the	Tresca	
failure	criterion	may	be	adopted.	Figure	3.22a)	shows	the	two	simplified	geotechnical	scenarios	
in	terms	of	undrained	shear	strength	(Su)	considered	by	Correia	(2011),	which	includes	constant	
or	linear	distribution	along	the	depth	of	the	soil	deposit.	
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Figure	3.22	a)	Geotechnical	scenarios:	constant	and	linear	undrained	shear	strength	profiles;	b)	soil	response	

for	pile-head	lateral	loading	(Correia,	2011).	

Figure	3.23	shows	the	undrained	shear	strength	evaluated	in	the	shallow	part	of	the	deposit	of	
soil	 type	A	obtained	 in	 section	1.6.1,	 the	 values	 can	be	 interpolated	by	 linear	 relationship,	 for	
such	reason	the	evaluation	of	the	capacity	of	the	macro-element	has	been	estimated	considering	
the	linear	Su	distribution	proposed	by	Correia	(2011).		

 

 
Figure	3.23	Undrained	shear	strength	evaluated	in	the	shallow	part	of	the	deposit	of	soil	type	A.	

The	capacity	input	parameters	of	the	macro-elements	are:		

o the	maximum	horizontal	pile	head	force	(QHmax),	calculated	for	the	case	of	no	eccentricity	
of	the	horizontal	force;	

o the	pile	yield	moment	(QMmax=My);		
o the	flexural	stiffness	of	the	pile	section	(EpIp).		

The	 last	 two	parameters	have	been	calculated	 through	a	moment-curvature	analysis	using	 the	
software	CUMBIA	(Montejo	&	Kowalsky,	2007).		

The	soil-pile	plastic	mechanism	parameters	developed	by	Correia	(2011)	adopts	a	wedge-type	
of	 mechanism	 based	 on	 the	 one	 proposed	 by	 Klar	 &	 Randolph	 (2008),	 modified	 in	 order	 to	
include	a	possible	gap	opening	in	the	back	of	the	pile	and/or	an	active	conical	wedge	of	soil.	The	
wedge	thickness	is	identified	by	the	depth	zw.	Correia	(2011)	considers	piles	invariably	classified	
as	 long	or	 flexible	piles,	 the	 least	upper	bound	was	always	obtained	with	 the	deformed	shape	
that	includes	a	plastic	hinge,	forming	at	a	depth	zh,	with	almost	rigid	behaviour	of	the	remaining	
pile	 length.	 Soil	 inertia	effects	were	also	allowed	 for,	 although	 they	were	 shown	not	 to	have	a	
significant	influence	on	the	least	upper	bound	value	(Correia,	2011).	

Correia	(2011)	developed	a	nonlinear	constrained	optimisation	procedure	in	order	to	determine	
the	 minimum	 upper-bound	 failure	 mechanism	 parameters.	 The	 optimization	 procedure	 uses	
dimensionless	 parameters	 and	 equations,	 where	 D,	 Su,	 and	 γs	 are	 considered	 as	 fundamental	
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quantities.	A	dimensional	analysis	showed	that	the	independent	variables	were	the	normalised	
load	eccentricity,	en	=	e/D,	pile	yield	moment,	Myn	=	My	/	Su	D3,	and	soil	unit	weight,	γn	=	γs	D	/	Su.	

For	 a	 straightforward	 numerical	 implementation	 of	 the	 plasticity	 formulation,	 the	 pile-head	
failure	surface	was	approximated	by	a	rounded	curve	corresponding	to	a	distorted	superellipse.	
Figure	3.24	shows	a	normalized	superellipse	described	by	the	following	equation:	

	

𝐻!
𝐻!,!!!

− 𝛾
𝑀!

𝑀!

!!
+
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𝑀!

!!
= 1	 (3.24)	

	

The	parameters	γ,	nH	and	nM	are	discussed	later	in	the	section	about	model	specific	parameters.	

	

	
Figure	3.24	Normalized	superellipse.	

The	 evolution	 of	 the	maximum	 normalised	 horizontal	 pile-head	 load	 can	 be	 related	 with	 the	
normalised	 yield	 moment	 and	 with	 the	 normalised	 load	 eccentricity	 through	 the	 following	
equation,	with	coefficients	listed	in	Table	3.23.	
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	 	 	 	 	 	 																										(3.25)	

	
Table	3.23:	Coefficients	for	Hun	fitting	function		

	
	

The	soil	wedge	normalised	depth	(zwn)	 is	described	by	the	following	equation	with	coefficients	
listed	in	Table	3.24.	
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Table	3.24:	Coefficients	for	zwn	fitting	function		

	
	

Foundation	stiffness.	

Gazetas	(1991)	made	a	complete	survey	of	foundation	vibration	problems	and	included	detailed	
design	 charts	 and	 equations	 for	 direct	 computation	 of	 the	 pile-head	 lateral	 and	 axial	 stiffness	
and	damping	coefficients.	The	expressions	presented	in	Gazetas	(1991)	were	obtained	through	
calibration	 of	 numerical	 results	 and	 are	widely	 used	 in	 equivalent-linear	 analyses	 of	 soil-pile-
structure-interaction.	 His	 expressions	 for	 pile-head	 static	 stiffness	 have	 been	 adopted,	 with	
slight	 modifications,	 in	 EC	 8	 –	 Part	 5	 (2004).	 The	 approximate	 expressions	 for	 pile-head	
equivalent-linear	impedances	proposed	by	Gazetas	(1991)	and	adopted	in	EC8	–	Part	5	(2004),	
were	 assumed	 to	 be	 valid	 for	 representing	 the	 initial	 elastic	 dynamic	 stiffness	 of	 the	 macro-
element.	These	formulas	are	valid	for	soil	profiles	with	constant,	linear	or	parabolic	increase	of	
soil	 stiffness	with	depth.	Figure	3.25	represents	 the	soil	 stiffness	evolution	with	depth	 in	such	
idealised	soil	profiles.		

	

	
Figure	3.25	Idealized	soil	stiffness	profiles	(from	Correia,	2011).	

The	Gazetas	 (1991)	 formulas	 are	 valid	 for	 flexible	 or	 long	 piles	 and	 are	 summarised	 in	Table	
3.25.	 It	 also	 presents	 the	 pile	 active	 length	 for	 lateral	 loading	 in	 inertial	 response,	 which	 is	
somewhat	greater	than	its	static	counterpart,	defining	the	minimum	pile	length	for	the	pile	to	be	
considered	flexible.	In	those	expressions,	D	is	the	pile	diameter,	ESD	is	the	Young’	modulus	of	the	
soil	 a	 depth	 equal	 to	 the	 pile	 diameter	 and	 Ep	 is	 the	 Young’s	 modulus	 of	 the	 pile	 material	
(Correia,	 2011).	 The	 pile-head	 stiffness	 matrix	 components	 follow	 the	 sign	 convention	
expressed	in	Figure	3.26.	
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Table	3.25:	Pile-head	static	stiffness	coefficients	and	active	length	for	flexible	piles	(after	EC8	–	Part	5,	2004).	

	
	

	
Figure	3.26	Sign	convention	for	pile-head	loading	(from	Correia,	2011).	

Gazetas	(1991)	has	also	presented	the	corresponding	pile-head	damping	coefficients,	which	are	
computed	for	each	frequency	(f)	according	to	the	expressions	 in	Table	3.26.	These	correspond	
only	to	the	radiation	damping	component.	Moreover,	they	are	only	valid	for	frequencies	above	
the	fundamental	frequency	of	vibration	of	the	soil	deposit,	since,	if	the	bedrock	is	assumed	to	be	
rigid,	 no	 radiation	 damping	 exists	 below	 that	 frequency.	 The	 soil	 deposit	 fundamental	
frequencies	 (fS)	 associated	 to	 each	 idealised	 soil	 profile	 are	 also	 given	 in	 Table	 3.26,	 with	 LS	
being	the	soil	deposit	depth	and	VSD	and	VSLs	being	the	shear	wave	velocity	at	a	depth	of	one	pile	
diameter	 and	 at	 the	bottom	of	 the	 soil	 profile,	 respectively.	 In	 the	 formulas	of	Table	3.26,	 the	
frequency	 f	 is	assumed	for	soil	 type	A	equal	 to	1.67	Hz	(i.e.	0.6s),	 taking	 into	account	both	the	
period	 of	 the	 structures	 to	 be	 considered	 and	 the	 AF	 trend	 shown	 in	 Figure	 1.19,	 the	 latter	
having	peaks	of	almost	equal	value	between	0.4	and	1.67	Hz.	
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Table	3.26:	Pile-head	radiation	damping	coefficients	for	flexible	piles	and	fundamental	frequencies	of	soil	
deposit	(after	Gazetas,	1991).	

	
	

The	 radiation	damping	equivalent	dashpot	 coefficients	 in	Table	3.26	are	non-dimensional;	 the	
corresponding	dimensional	form	can	be	retrieved	using	the	following	expressions:	
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Figure	3.27	shows	the	shear	wave	velocity	profile	of	soil	 type	A.	Within	 the	pile	 length	(16m),	
the	 Vs	 profile,	 and	 consequently	 also	 the	 Young	 and	 shear	 modulus,	 are	 rather	 constant.	
Therefore,	the	pile-head	stiffness	and	damping	were	selected	considering	the	constant	profile.	

	

	
Figure	3.27	Shear	wave	velocity	profile	of	soil	type	A.	
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For	the	vertical	stiffness	component,	in	the	case	of	a	pile	in	a	homogenous	layer,	the	solution	of	
the	governing	equilibrium	equation	yields	the	vertical	stiffness	K	atop	the	pile	(see	for	instance	
Mylonakys	&	Gazetas,	1998):	

	

𝐾 = 𝐸!𝐴!𝜆
!!!"#$ !!
!!!!"#$ !!

	 	 	 	 	 	 	 	 	 											(3.30)	

 

in	which Ω and λ stand	 for	 the	dimensionless	pile-base	 stiffness	 and	 load	 transfer	 (Winkler)	
parameter	respectively:	
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From	the	simple	method	of	Randolph	&	Wroth	(1978),	it	follows	that	the	soil	around	a	pile	shaft	
can	be	represented	by	distributed	springs	(Winkler	assumption),	the	stiffness	of	which	(per	unit	
length	of	pile)	can	be	written	as:	

 

𝑘! = 𝛿𝐺!	 	 	 	 	 	 	 	 	 	 											(3.33)	

 

where:	
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and	 rm	 is	 a	 threshold	 radius	beyond	which	 soil	 settlement	 is	 vanishingly	 small.	 In	 the	 general	
case	of	an	inhomogeneous	soil,	rm	is	given	by:	

 

𝑟! ≈ 𝜒!𝜒!𝐿 1 − 𝜈! 	 	 	 	 	 	 	 	 	 											(3.35)	

 

in	which χ1 and χ2 are	empirical	factors	accounting	for	soil	inhomogeneity.	

	

In	 accordance	 with	 Gazetas	 (1991)	 the	 axial	 radiation	 dashpot	 coefficient	 for	 constant	 soil	
modulus	can	be	evaluated	with	the	following	formula:	

	

𝐶!! ≅ 𝑎!
!!/!𝜌𝑉!𝜋𝐷𝐿𝑟!     𝑓𝑜𝑟 𝑓 > 1.5𝑓! 	

                  𝑤𝑖𝑡ℎ     𝑟! ≅ 1 − 𝑒!(!!/!!)(!/!)!!  	
(3.36)	
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𝐶!! ≅ 0                              𝑓𝑜𝑟 𝑓 ≤ 𝑓! 	

	

Where	𝑓! ≅ 𝑉!"/4𝐻,	 with	𝑉!"	is	 the	 average	 VLa	 over	 the	 stratum	 depth	 H,	𝑎! = 𝜔𝐷/𝑉!.	 Linear	
interpolation	is	required	for	fr<f<1.5fr.	

Model	specific	parameters.	

The	pile	macro-element	accounts	for	the	three	major	features	of	the	response	of	laterally	loaded	
piles:	 initial	 elastic	 behaviour,	 gap	 influence	 and	 failure	 conditions.	 These	 three	 characteristic	
behaviours	 are	 all	 made	 compatible	 by	 using	 an	 inelastic	 model,	 which	 accounts	 for	 the	
evolution	 from	 initial	 elastic	 behaviour	 to	 full	 plastic	 flow	 at	 failure.	 Such	 inelastic	 model	 is	
based	on	bounding	 surface	plasticity	 theory,	 for	monotonic	 as	well	 as	 cyclic	pile-head	 loading	
conditions	(Correia,	2011).	A	more	detailed	description	of	the	theoretical	aspects	regarding	the	
formulation	of	the	pile	macro-element	can	be	found	in	Correia	&	Pecker	(2019).		

This	section	describes	the	model	specific	parameters	that	characterize	the	pile	macro-element.	
The	parameters	γ,	nH	and	nM	describe	the	shape	of	the	distorted	superellipse	that	approximates	
the	pile-head	failure	surface.	nH	is	equal	to	7.04	for	linear	undrained	shear	strength	profile,	nM	is	
always	equal	to	2,	and	γ	is	equal	to	-0.667	for	linear	undrained	shear	strength	profile.	

The	parameters	β 	and	η	are	two	calibration	parameters	describing	the	gapping	model,	β	is	equal	
to	1,	whereas	η	is	taken	equal	to	0.001.	

The	 parameters	 H0pl,	 nUR	 and	 δlim	 describe	 the	 evolution	 of	 the	 plastic	 modulus	 during	 cyclic	
response,	H0pl	is	the	reference	plastic	modulus	parameter	and	is	equal	to	0.2,	nUR	is	the	exponent	
for	plastic	modulus	evolution	and	is	equal	to	1,	δlim	is	the	lower	limit	value	for	the	similarity	ratio	
δ	between	the	loading	and	bounding	surfaces	in	unloading/reloading	and	is	equal	to	0.33.	

3.2.1.3 Apartment	block	“Drive-in”	

The	 Drive-in	 index	 building	 is	 founded	 on	 square	 driven	 piles	 of	width	 25	 cm;	 an	 equivalent	
diameter	of	28.2	cm	has	thus	been	computed	for	the	assessment	of	macro-element	parameters,	
using	a	 criterion	of	equal	 cross-section	area.	Material	parameters	of	 the	piles	are	described	 in	
section	3.2.1.1.	

The	 initial	 stiffness	 parameters	 of	 the	macro-element	 have	 been	 computed	 considering	 a	 soil	
profile	with	constant	Young’s	modulus	assuming	VsD	equal	to	215	m/s,	density	ρ	equal	to	1670	
kg/m3,	and	ν	equal	to	0.45.	

An	estimate	of	 the	 load	on	each	pile,	 to	be	used	for	the	computation	of	 the	moment–curvature	
relationship,	 is	 evaluated	dividing	 the	 total	 load	by	 the	number	 of	 piles;	 the	 resulting	 vertical	
load	 is	 equal	 to	 114	 kN.	 The	 ensuing	 moment-curvature	 plot	 (obtained	 using	 the	 software	
Cumbia)	is	shown	in	Figure	3.28.	

The	 eccentricity	 of	 the	 horizontal	 load	 (e)	 corresponds	 to	 the	 height	 of	 the	 equivalent	 SDOF	
model	and	is	equal	to	4.51	m.	

The	macro-element	parameters	for	each	pile	were	evaluated	based	on	the	formulas	described	in	
section	3.2.1.2.	Table	3.27	summarizes	the	macro-element	parameters	for	the	piles	of	the	Drive-
in	building.	



A	nonlinear	macro-element	for	SSI	analysis	in	the	Groningen	region	 71	

	

 

	
Figure	3.28	Moment-curvature	relationship	and	corresponding	bi-linear	approximation	for	pile	square	

section	B=25cm	for	vertical	load	equal	to	114	kN.	

	
Table	3.27:	Pile-head	macro-element	parameters	for	Drive-in	building.	
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Moment - Curvature Relation

Symbol Unit Description Value
D m 	Pile	diameter 0.282
KVV	 kN/m 	Vertical	pile	head	stiffness 430,957	

KHH	 kN/m 	Horizontal	pile	head	stiffness 192,087	

KMM	 kN	m 	Rotational	pile	head	stiffness 32,458			

KHM	 kN	 	Hor.-rot.	off-diagonal	pile	head	stiffness 46,120-			
QQ_H_MAX	 kN 	Maximum	horizontal	pile	head	force	with	no	eccentricity 35.7
QQ_M_MAX	 kNm 	Pile	head	yield	moment 32.3

nH	 [-] 	Exponent	for	horizontal	force	in	the	superellipse	BS 7.04

nM	 [-] 	Exponent	for	moment	in	the	superellipse	BS 2
γ [-] 	Distortion	of	the	superellipse	BS -0.667
ZW	 m 	Maximum	gap	depth	(soil	wedge	depth) 0

EpIp	 kN	m2 	Pile	flexural	stiffness 1638.1
β [-] 	Gap	evolution	parameter 1
η [-] 	Minimum	gap	depth	evolution	parameter 0.001
H0

pl [-] 	Reference	plastic	modulus	parameter 0.2

nUR	 [-] 	Exponent	for	plastic	modulus	evolution 1

δLIM	 [-] 	Lower	limit	value	for	DELTA	in	unloading/reloading. 0.33
CVV	 [N	s	/m]	o	[kg/s] 	Vertical	radiation	damping	 505,606	
CHH	 [N	s	/m]	o	[kg/s] 	Horizontal	damping 204,047	
CMM	 [N	m	s]	o	[kg	m2/s] 	Rotational	damping	 12,720			
CHM	 [N	s	]	o	[kg	m/s] 	Hor.-rot.	off-diagonal	damping 39,771-			
Qs [kN] Shaft	capacity 568.3
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3.2.1.4 Apartment	block	“K-flat”	

The	 K-flat	 index	 building	 is	 founded	 on	 circular	 bored	 piles	 of	 45	 cm	 diameter;	 the	material	
parameters	of	 the	piles	 are	described	 in	 section	3.2.1.1.	The	 initial	 stiffness	parameters	of	 the	
macro-element	 were	 computed	 considering	 a	 soil	 profile	 with	 constant	 Young’s	 modulus	
assuming	VsD	equal	to	215	m/s,	density	ρ	equal	to	1670	kg/m3,	and	ν	equal	to	0.45.	

An	estimate	of	 the	 load	on	each	pile,	 to	be	used	for	the	computation	of	 the	moment–curvature	
relationship,	 is	 evaluated	dividing	 the	 total	 load	by	 the	number	 of	 piles;	 the	 resulting	 vertical	
load	 is	 equal	 to	 222.8	 kN.	 The	 ensuing	 moment-curvature	 plot	 (obtained	 using	 the	 software	
Cumbia)	is	shown	in	Figure	3.29.	

The	 eccentricity	 of	 the	 horizontal	 load	 (e)	 corresponds	 to	 the	 height	 of	 the	 equivalent	 SDOF	
model	and	is	equal	to	6.28	m.	The	macro-element	parameters	for	each	pile	were	evaluated	based	
on	 the	 formulas	 described	 in	 section	 3.2.1.2;	 Table	 3.28	 summarizes	 the	 macro-element	
parameters	for	the	piles	of	the	K-flat	building.	

	

	
Figure	3.29	Moment-curvature	relationship	and	corresponding	bi-linear	approximation	for	pile	circular	

section	D=45cm	for	vertical	load	equal	to	222.8	kN.	

	

	

	

	

	

	

	

	

	

	

	

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

10

20

30

40

50

60

70

80

90

Curvature(1/m)

M
om

en
t (

kN
-m

)

Moment - Curvature Relation



A	nonlinear	macro-element	for	SSI	analysis	in	the	Groningen	region	 73	

	

 

Table	3.28:	Pile-head	macro-element	parameters	for	K-flat	building.	

	

3.2.1.5 Apartment	block	“Georg	van	S”	

The	Georg	van	S	 index	building	 is	 founded	on	circular	bored	piles	of	45	cm	diameter;	material	
parameters	of	 the	piles	 are	described	 in	 section	3.2.1.1.	The	 initial	 stiffness	parameters	of	 the	
macro-element	 were	 computed	 considering	 a	 soil	 profile	 with	 constant	 Young’s	 modulus	
assuming	VsD	equal	to	215	m/s,	density	ρ	equal	to	1670	kg/m3,	and	ν	equal	to	0.45.	

An	estimate	of	 the	 load	on	each	pile,	 to	be	used	for	the	computation	of	 the	moment–curvature	
relationship,	 is	 evaluated	dividing	 the	 total	 load	by	 the	number	 of	 piles;	 the	 resulting	 vertical	
load	 is	 equal	 to	 170.1	 kN.	 The	 ensuing	 moment-curvature	 plot	 (obtained	 using	 the	 software	
Cumbia)	is	shown	in	Figure	3.30.	

The	 eccentricity	 of	 the	 horizontal	 load	 (e)	 corresponds	 to	 the	 height	 of	 the	 equivalent	 SDOF	
model	and	is	equal	to	7.75	m.	The	macro-element	parameters	for	each	pile	were	evaluated	based	
on	 the	 formulas	 described	 in	 section	 3.2.1.2;	 Table	 3.29	 summarizes	 the	 macro-element	
parameters	for	the	piles	of	the	Georg	van	S	building.	

	

	

	

	

Symbol Unit Description Value
D m 	Pile	diameter 0.450
KVV	 kN/m 	Vertical	pile	head	stiffness 713,858						

KHH	 kN/m 	Horizontal	pile	head	stiffness 306,419						

KMM	 kN	m 	Rotational	pile	head	stiffness 131,758						

KHM	 kN	 	Hor.-rot.	off-diagonal	pile	head	stiffness 117,361-						
QQ_H_MAX	 kN 	Maximum	horizontal	pile	head	force	with	no	eccentricity 80.5
QQ_M_MAX	 kNm 	Pile	head	yield	moment 87.3

nH	 [-] 	Exponent	for	horizontal	force	in	the	superellipse	BS 7.04

nM	 [-] 	Exponent	for	moment	in	the	superellipse	BS 2
γ [-] 	Distortion	of	the	superellipse	BS -0.667
ZW	 m 	Maximum	gap	depth	(soil	wedge	depth) 0

EpIp	 kN	m2 	Pile	flexural	stiffness 6176.9
β [-] 	Gap	evolution	parameter 1
η [-] 	Minimum	gap	depth	evolution	parameter 0.001
H0

pl [-] 	Reference	plastic	modulus	parameter 0.2

nUR	 [-] 	Exponent	for	plastic	modulus	evolution 1

δLIM	 [-] 	Lower	limit	value	for	DELTA	in	unloading/reloading. 0.33
CVV	 [N	s	/m]	o	[kg/s] 	Vertical	radiation	damping	 1,809,033		
CHH	 [N	s	/m]	o	[kg/s] 	Horizontal	damping 519,237						
CMM	 [N	m	s]	o	[kg	m2/s] 	Rotational	damping	 82,365								
CHM	 [N	s	]	o	[kg	m/s] 	Hor.-rot.	off-diagonal	damping 161,441-						
Qs [kN] Shaft	capacity 796.1
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Table	3.29:	Pile-head	macro-element	parameters	for	Georg	van	S	building.	

	
	

	
Figure	3.30	Moment-curvature	relationship	and	corresponding	bi-linear	approximation	for	pile	circular	

section	D=45cm	for	vertical	load	equal	to	170.1	kN.	

Symbol Unit Description Value
D m 	Pile	diameter 0.450
KVV	 kN/m 	Vertical	pile	head	stiffness 713,858						

KHH	 kN/m 	Horizontal	pile	head	stiffness 306,419						

KMM	 kN	m 	Rotational	pile	head	stiffness 131,758						

KHM	 kN	 	Hor.-rot.	off-diagonal	pile	head	stiffness 117,361-						
QQ_H_MAX	 kN 	Maximum	horizontal	pile	head	force	with	no	eccentricity 77.0
QQ_M_MAX	 kNm 	Pile	head	yield	moment 81.7

nH	 [-] 	Exponent	for	horizontal	force	in	the	superellipse	BS 7.04

nM	 [-] 	Exponent	for	moment	in	the	superellipse	BS 2
γ [-] 	Distortion	of	the	superellipse	BS -0.667
ZW	 m 	Maximum	gap	depth	(soil	wedge	depth) 0.001

EpIp	 kN	m2 	Pile	flexural	stiffness 5691.3
β [-] 	Gap	evolution	parameter 1
η [-] 	Minimum	gap	depth	evolution	parameter 0.001
H0

pl [-] 	Reference	plastic	modulus	parameter 0.2

nUR	 [-] 	Exponent	for	plastic	modulus	evolution 1

δLIM	 [-] 	Lower	limit	value	for	DELTA	in	unloading/reloading. 0.33
CVV	 [N	s	/m]	o	[kg/s] 	Vertical	radiation	damping	 1,809,033		
CHH	 [N	s	/m]	o	[kg/s] 	Horizontal	damping 519,237						
CMM	 [N	m	s]	o	[kg	m2/s] 	Rotational	damping	 82,365								
CHM	 [N	s	]	o	[kg	m/s] 	Hor.-rot.	off-diagonal	damping 161,441-						
Qs [kN] Shaft	capacity 796.1
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3.2.2 Calibration	of	the	equivalent	pile	macro-element	

As	 discussed	 already	 for	 the	 buildings	 on	 shallow	 foundations,	 given	 that	 the	 development	 of	
fragility	 functions	 is	 based	 on	 dynamic	 analyses	 of	 SDOF	 systems	 (Crowley	 et	 al.,	 2019),	 the	
calibration	 of	 an	 equivalent	 pile	macro-element	was	 needed	 also	 for	 this	 second	 set	 of	 index	
buildings.	As	 for	 the	other	 index	buildings,	 the	 first	 step	was	 thus	 to	 create	 a	MDOF	model	 in	
SeismoStruct	for	each	index	building.	Apartment	buildings	have	a	layout	that	is	similar	to	that	of	
the	terraced	buildings,	but	compared	to	the	latter	they	are	taller	(three	or	four	stories)	and	more	
massive.	Given	the	similarity	of	geometric	properties	for	all	the	considered	index	buildings,	the	
foundation	 plane	 was	 assumed	 to	 be	 same	 for	 all	 of	 them,	 comprising	 a	 total	 of	 67	 piles	
distributed	along	the	perimeter	and	five	transversal	axes	along	the	y-direction	(see	Figure	3.19).	

Also,	 again	 considering	 the	 similar	 geometric	 properties	 for	 the	 three-storey	 URM	 apartment	
index	buildings	included	in	this	study,	namely	Drive-in,	K-Flat	and	Georg	van	S,	the	same	MDOF	
model	 (displayed	 in	 Figure	 3.31)	 was	 used	 for	 all	 of	 them,	 only	 changing	 the	 total	 mass	
accordingly.	

	

	
Figure	3.31:	The	three-storey	MDOF	model	used	for	Drive-in,	K-Flat	and	Georg	van	S	apartment	index	

buildings.	

As	for	terraced	and	detached	buildings,	masonry	piers	and	spandrels	are	introduced	as	columns	
and	beams,	 respectively,	 to	model	 the	 transverse	walls	 (y-direction)	and	approximately	model	
the	 sequence	 of	 openings	 in	 the	 two	 identical	 façades	 along	 the	 x-direction.	 A	 total	 of	 67	 pile	
macro-elements	are	introduced	at	the	base	of	the	model,	in	correspondence	to	the	pile	positions	
(see	 Figure	 3.19).	 Similarly	 to	 terraced	 and	 detached	 buildings,	 the	 analyses	were	 performed	
along	the	(weaker)	x-direction	of	the	buildings.	

Three	 types	of	pile	 alignments	 are	present,	 and	 in	 each	of	 them	piles	have	different	distances	
between	 each	 other.	 In	 order	 to	 model	 the	 vertical	 masonry	 piers	 in	 the	 y-direction	 without	
introducing	overlapping	or	openings	between	 them,	 instead	of	 creating	a	masonry	pier	on	 the	
top	of	each	macro-element,	as	done	for	terraced	and	detached	buildings,	the	following	modelling	
strategy	 was	 adopted.	 For	 each	 pile	 row,	 a	 centroid	 node	 at	 zero	 elevation	 was	 created,	 not	
restrained	and	connected	to	the	upper	nodes	of	the	macro-elements	through	a	rigid	link.	In	this	
way,	only	one	pier	per	storey	was	created	on	the	top	of	this	centroid	node.	Then,	to	be	able	to	
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introduce	 the	 beams,	 two	 lateral	 nodes	 at	 each	 storey	 and	 for	 each	 pile	 row	 were	 created,	
connected	via	rigid	links	to	the	centroid	wall	nodes.	

The	rigid	reinforced	concrete	slabs	are	modelled	with	rigid	diaphragms	linking	the	column	and	
beam	nodes	at	the	floor	levels.	Reinforced	concrete	foundation	beams	connect	the	upper	nodes	
of	the	macro-elements.	Both	masonry	and	reinforced	concrete	were	introduced	as	linear	elastic	
materials,	 with	 the	 actual	 values	 for	 the	 elastic	 modulus	 and	 density.	 The	 total	 mass	 of	 the	
model,	given	by	the	superstructure	mass	plus	the	foundation	mass,	is	approximately	equal	to	the	
actual	total	mass,	which	was	used	in	the	derivation	of	the	single	macro-element	properties.	

Two	 variants	 of	 the	 described	 MDOF	 model	 were	 produced.	 The	 first	 one,	 whose	 output	 is	
needed	 to	 retrieve	 one	 stiffness	 component	 (as	 explained	 below),	 has	 an	 additional	 rigid	
diaphragm	at	the	foundation	level	connecting	the	upper	nodes	of	the	macro-elements.	The	latter	
nodes	have	their	rotations	restrained	and	a	relatively	small	horizontal	force	(to	stay	in	the	initial	
elastic	 domain)	 along	 x	 applied.	 The	 second	 variant	 of	 the	model,	whose	 output	 is	 needed	 to	
retrieve	 the	 rotational	 bearing	 capacity,	 is	 for	 pushover	 analysis	 along	 the	 x-direction,	 i.e.	 the	
only	 direction	 of	 interest	 for	 pile	 macro-elements	 (which	 work	 in	 only	 one	 direction);	 the	
pushover	 was	 carried	 out	 pushing	 the	 structure	 in	 load	 control	 with	 forces	 located	 at	 the	
centroids	of	floor	levels,	according	to	a	triangular	distribution.	

The	 equivalent	 macro-element	 calibration	 requires	 the	 computation	 of	 the	 stiffness,	 capacity	
and	 damping	 along	 several	 directions.	 Most	 of	 the	 parameters	 were	 computed	 analytically	
starting	 from	the	 foundation	geometry	and	properties	of	 the	single	macro-elements,	while	 the	
remaining	ones	required	the	output	from	the	model.	

The	vertical	stiffness,	kV,	as	well	as	the	horizontal	stiffness,	kH,	were	obtained	by	simply	summing	
up	 the	 stiffness	 values	 of	 the	 single	 macro-elements,	 assuming	 a	 rigid	 behaviour	 of	 the	
foundation	plane.	The	torsional	stiffness,	kT,	does	not	play	a	role	in	the	fragility	curve	derivation	
since	the	models	represent	the	response	in	a	single	vertical	plane.	

For	the	rotational	stiffness,	kM,	a	more	rigorous	approach	than	the	one	followed	for	terraced	and	
detached	buildings	was	adopted,	since	the	dynamic	behaviour	of	apartment	buildings	is	driven	
more	 by	 rocking	 than	 by	 sliding:	 this	 is	 basically	 because	 they	 are	 taller	 than	 terraced	 and	
detached	buildings.	The	 approach	 consisted	 in	 comparing	 the	 initial	 rotational	 stiffness	 of	 the	
MDOF	model	with	the	one	of	the	simplified	system	composed	of	a	nonlinear	structural	SDOF	and	
an	 equivalent	 pile	 macro-element	 (see	 Figure	 3.17	 above).	 The	 following	 steps	 were	
implemented:	

• A	pushover	analysis	is	carried	out	on	the	MDOF	model;	
• The	average	displacement	of	the	foundation	plane	and	of	the	upper	floors	are	computed	

at	an	early	stage	of	loading,	so	to	be	in	the	macro-element	linear	elastic	phase;	
• An	 equivalent	 floor	 displacement	 is	 computed	 summing	 up	 the	 single	 floor	

displacements	 squared	and	 then	dividing	by	 the	 sum	of	 floor	displacements,	 assuming	
equal	floor	masses;	

• The	 equivalent	 drift	 ratio	 is	 obtained	 by	 subtracting	 the	 base	 displacement	 from	 the	
equivalent	floor	displacement	and	dividing	by	the	building	centroid	height;	

• Another	pushover	analysis	is	carried	out	on	the	simplified	SDOF	system;	
• At	 the	 same	 early	 stage	 of	 loading,	 the	 SDOF	drift	 ratio	 is	 obtained	 by	 subtracting	 the	

foundation	 node	 displacement	 from	 the	 structural	mass	 displacement	 and	 dividing	 by	
the	building	centroid	height;	
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• The	equivalent	drift	ratio	(retrieved	from	the	MDOF	model)	and	the	SDOF	drift	ratio	are	
compared,	and	consequently	the	SDOF	rotational	stiffness,	kM,	is	changed	iteratively	until	
the	two	drifts	are	close	enough.	

The	described	approach	gives	the	analyst	an	idea	of	the	error	due	to	using	the	upper	or	 lower	
bounds	for	the	rotational	stiffness,	and	is	a	guide	to	select	the	most	suitable	value.	

Finally,	 using	 the	 first	 variant	 of	 the	 MDOF	 model,	 the	 horizontal-rotational	 off-diagonal	
stiffness,	 kHM,	 corresponds	 to	 the	 sum	 of	 reaction	 moments	 in	 the	 rotation-restrained	 upper	
nodes	of	macro-elements	divided	by	the	horizontal	displacement	of	the	base	rigid	plane.	

Concerning	the	bearing	capacity,	the	horizontal	component,	Hmax,	was	computed	as	the	sum	over	
the	 single	macro-elements,	while	 for	 the	 rotational	 component,	Mmax,	 the	 following	 procedure	
was	employed.	

The	pile-head	failure	surface	is	approximated	by	a	rounded	curve	corresponding	to	a	distorted	
superellipse	(shown	in	Figure	3.24),	of	equation	(Correia	et	al.,	2012):		
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where	Hu	 is	 the	 ultimate	 base	 shear	 obtained	 from	 the	 pushover	 analysis,	Fu,k	 is	 the	 ultimate	
horizontal	 force	at	the	k-th	floor	 level,	obtained	considering	a	triangular	distribution	along	the	
building	height,	while	nH,	nM	and	γ	were	set	to	7.04,	2	and	-0.667	(assumption	of	linear	variation	
of	undrained	shear	strength),	respectively.	In	Eq.	(3.37),	the	only	unknown	is	Mmax:	the	latter	is	
derived	 from	 the	 ratio	Mu	/Mmax,	 which	 is	 obtained	 by	 interpolation	 in	 correspondence	 of	 the	
actual	Hu	/Hmax	value.		

Concerning	 the	 radiation	 damping	 coefficients	 for	 the	 equivalent	 macro-element,	 they	 are	
defined	 in	 the	 vertical	 (cV),	 horizontal	 (cH)	 and	 rotational	 (cM)	 directions.	 Similarly	 to	 the	
stiffness,	a	horizontal-rotational	off-diagonal	damping	coefficient,	cHM,	is	also	included	in	the	set	
of	 damping	 parameters	 and	 requires	 a	 physical	 damper	with	 coupled	 behaviour	 between	 the	
horizontal	 force	and	moment.	Since	 in	 the	case	of	SeismoStruct	such	coupled	element	was	not	
available	 at	 the	 time	 of	 running	 the	 analyses,	 an	 equivalent	 set	 of	 uncoupled	 (horizontal	 and	
rotational)	dampers	must	be	introduced,	as	follows	(Correia,	2011):	

	

𝐶!!∗ = 𝐶!!
𝐶!!∗ = 𝐶!! − 𝐶!"! 𝐶!!

	 	 	 	 	 	 	 	 											(3.38)	

	

where	all	coefficients	were	computed	by	summing	up	the	values	of	the	single	macro-elements.	
Such	set	defines	an	equivalent	diagonal	damping	matrix,	which	must	be	eccentric	in	order	to	be	
equivalent	 to	 the	damping	 coefficients	 at	 the	pile-head.	The	eccentricity,	 corresponding	 to	 the	
length	of	a	rigid	lever	arm	connecting	the	macro-element	head	to	the	two	dampers,	is	computed	
as	the	following	depth:	

	

𝑧!"#$ = −𝐶!" 𝐶!! 	 	 	 	 	 	 	 	 	 											(3.39)	
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The	“model	specific	parameters”	(see	final	sub-section	of	Section	3.2.1.2)	for	the	equivalent	pile-
head	 macro-element	 in	 SeismoStruct	 were	 set	 equal	 to	 those	 of	 the	 single	 pile-head	 macro-
elements.	

3.2.3 Properties	of	the	equivalent	pile	macro-elements	

Table	3.30,	Table	3.31	and	Table	3.32	report	the	retrieved	properties	of	the	equivalent	pile-head	
macro-elements	 for	 the	 considered	 apartment	 index	 buildings,	 in	 terms	 of	 initial	 stiffness,	
foundation	capacity	and	radiation	damping	equivalent	dashpot	coefficients.	Although	only	one	
MDOF	model	was	built,	three	different	equivalent	pile-head	macro-elements	were	calibrated	for	
the	three	apartment	buildings	considered,	starting	from	the	same	MDOF	model	and	varying	the	
actual	total	weight	of	the	building	(which	affects	the	moment	capacity	of	the	single	piles).	

	

Table	3.30:	Properties	of	the	equivalent	macro-element	for	Drive-in	index	building.			

kV	(kN/m)	 kH	(kN/m)	 kM	(kNm/rad)	 kHM	(kN)	

2.887E+07	 1.287E+07	 2.610E+06	 -3.090E+06	

Hmax	(kN)	 Mmax	(kNm)	 	 	

2.391E+03	 9.979E+05	 	 	

cH	(ton/s)	 cM	(ton*m2/s)	 cHM	(ton*m/s)	 	

1.367E+04	 8.522E+02	 -2.665E+03	 	

	

Table	3.31:	Properties	of	the	equivalent	macro-element	for	K-Flat	index	building.	

kV	(kN/m)	 kH	(kN/m)	 kM	(kNm/rad)	 kHM	(kN)	

4.783E+07	 2.053E+07	 8.828E+06	 -7.863E+06	

Hmax	(kN)	 Mmax	(kNm)	 	 	

5.396E+03	 2.388E+06	 	 	

cH	(ton/s)	 cM	(ton*m2/s)	 cHM	(ton*m/s)	 	

3.479E+04	 5.518E+03	 -1.082E+04	 	

	

Table	3.32:	Properties	of	the	equivalent	macro-element	for	Georg	van	S	index	building.	

kV	(kN/m)	 kH	(kN/m)	 kM	(kNm/rad)	 kHM	(kN)	

4.783E+07	 2.053E+07	 8.828E+06	 -7.863E+06	

Hmax	(kN)	 Mmax	(kNm)	 	 	

5.160E+03	 2.826E+06	 	 	

cH	(ton/s)	 cM	(ton*m2/s)	 cHM	(ton*m/s)	 	

3.479E+04	 5.518E+03	 -1.082E+04	 	
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4 Linear	substructure	approach	
In	this	work,	SSI	was	also	analysed	by	the	linear	substructure	approach,	which	allows	splitting	
kinematic	and	inertial	interaction	in	different	sub-steps	and	considering	their	combined	effects	
using	the	principle	of	superposition	(Mylonakis	et	al.,	2006).	

Kinematic	 interaction	 causes	 a	modification	 of	 the	 free-field	motion	 due	 to	 the	 geometry	 and	
stiffness	 of	 the	 foundation,	 on	 which	 a	 different	 motion	 is	 applied,	 called	 Foundation	 Input	
Motion	 (FIM).	 In	 practical	 applications,	 structural	 engineers	 commonly	 neglect	 the	 effects	 of	
kinematic	 interaction	 (Dezi	 et	 al.,	 2010).	 Arup	 (2015a,	 2015b)	 also	 determined	 kinematic	
interaction	 to	 be	 negligible	 in	 the	 response	 of	 the	 simplified	 models	 used	 for	 definition	 of	
fragility	 curves.	 As	 a	 consequence,	 the	 free-field	 motion	 was	 used	 as	 input	 motion	 for	 the	
nonlinear	dynamic	analyses	in	this	study.	

Inertial	 interaction	 includes	 the	 dynamic	 response	 of	 the	 coupled	 soil-foundation-structure	
system	 due	 to	 the	 input	 motion	 and	 is	 characterised	 predominantly	 by	 a	 shift	 of	 structural	
frequencies	 to	 lower	 soil-structure	 frequencies,	 due	 to	 soil	 compliance,	 and	 by	 an	 increase	 of	
damping,	due	to	radiation	damping.	Within	the	coupled	system,	the	soil	is	replaced	by	a	lumped	
parameter	model	(including	a	set	of	springs	and	dashpots,	as	well	as	masses	in	some	cases)	at	
the	foundation	level,	representing	the	foundation	dynamic	 impedance.	The	latter	 is	a	complex-
valued	frequency	 function,	whose	real	and	 imaginary	parts	depend	on	the	stiffness	and	on	the	
energy	dissipation	properties	of	the	soil	substratum,	respectively.	

Two	different	models	 following	 the	substructure	approach	were	 implemented	 in	SeismoStruct	
for	 derivation	 of	 fragility	 functions,	 namely	 a	 one-dimensional	 frequency-independent	 model	
and	 a	 herein	 called	 Lumped-Parameter	Model	 (LPM)	 accounting	 for	 frequency-dependence	 of	
the	impedance	functions.	These	models,	described	in	Sections	4.4	and	4.5,	require	the	definition	
of	the	impedance	functions	of	the	equivalent	foundations	of	the	buildings	(see	Sections	4.2	and	
4.3).	Impedance	functions	were	evaluated	only	for	soil	Type	A	(see	Section	1)	using	the	software	
DYNA6.1	(GRC,	2015)	for	both	shallow	and	pile	foundations,	as	briefly	outlined	in	Section	4.1.	

4.1 Overview	of	the	software	code	for	calculation	of	impedance	functions	
DYNA6.1	computes	the	frequency-dependent	stiffness	and	damping	constants	of	either	surface	
foundations,	embedded	foundations	or	piles,	as	well	as	pile	interaction	in	a	pile	group	and	other	
features.	The	program	returns	 the	 response	of	 rigid	 foundations	 to	different	 types	of	dynamic	
loads;	for	rigid	footings,	all	six	degrees	of	freedom	are	considered	as	coupled.	

The	 computation	 of	 impedance	 functions	 for	 shallow	 footings	 is	 evaluated	 using	 simplified	
approaches,	which	consider	three	categories	of	idealized	soil	profiles	(Figure	4.1):		

a) half-space;		
b) uniform	stratum	on	rigid	base;	
c) layer	on	top	of	a	half-space	(composite	medium).		

	

a) 	
b) 	 c) 	

Figure	4.1:		Soil	profiles:	a)	half-space;	b)	uniform	stratum	on	rigid	base;	c)	layer	on	top	of	a	half-space	(from	
DYNA6.1	User’s	manual).	
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Moreover,	 for	 a	 composite	 medium	 the	 soil	 profile	 can	 be	 either	 uniform	 or	 non-uniform	 in	
accordance	 with	 the	 schematization	 shown	 in	 Figure	 4.2.	 These	 models	 represent	 a	 wide	
spectrum	of	actually	encountered	soil	profiles.		

	

	 	
Figure	4.2:		Soil	velocity	profile	for	composite	medium	(from	DYNA6.1	User’s	manual)	

For	 pile	 foundations	 it	 is	 possible	 to	 consider	 a	 layered	medium,	 for	 each	 layer	 the	 following	
input	 parameters	 being	 required:	 thickness,	 shear	 wave	 velocity,	 soil	 unit	 weight,	 Poisson’s	
ratio,	damping	ratio.	

4.1.1 Software	constraints	

The	 software	 includes	 some	 limitations	 that	 shall	 be	 taken	 into	 account	 for	 definition	 of	 the	
input	 parameters.	 For	 composite	medium,	 the	 impedance	 functions	 are	 exact	 for	 the	 ratio	 of	
layer	thickness	to	half-width	of	the	square	footing	(H/a)	equal	to	0.5,	1,	2,	3	and	4	for	uniform	
layers	and	equal	 to	2,	3,	4,	5	and	10	for	non-uniform	layers.	 If	 the	ratio	(H/a)	doesn’t	coincide	
with	one	of	the	above	values	the	program	chooses	the	closest	(H/a)	ratio	available,	interpolation	
is	not	implemented	because	of	the	strong	non-monotonic	variations	at	high	frequencies.	

In	 the	 composite-medium	 option,	 accurate	 values	 of	 stiffness	 and	 damping	 are	 used	 at	
frequencies	equal	to	0.10,	0.25,	0.50...,	4.75	and	5.0	times	(Vs,in/a)	where	Vs,in	 is	the	shear	wave	
velocity	 at	 footing	 base	 level	 (see	 Figure	 4.3)	 and	 “a”	 is	 half	width	 of	 the	 square	 base	 (or	 the	
equivalent	square	base).	For	a	frequency	less	than	0.10	Vs,in/a,	the	program	uses	the	minimum	
value	 (0.10	Vs,in/a)	 and	 for	 frequencies	 in	 the	 range	 (0.10÷5.0)	Vs,in/a,	 a	 linear	 interpolation	 is	
implemented.	If	the	frequency	is	greater	than	5	(Vs,in/a)	the	program	uses	the	maximum	value	of	
5	(Vs,in/a).	

For	 composite	 medium,	 Poisson's	 ratio	 of	 the	 half-space	 is	 assumed	 equal	 to	 0.33.	 Material	
damping	 of	 soil	 is	 assumed	 0.03	 and	 0.05	 for	 the	 layer	 and	 the	 half-space,	 respectively.	 Two	
values	for	Poisson's	ratio	of	the	layer	are	available	0.33	and	0.45.	If	a	different	value	is	entered	
the	program	sets	it	to	the	closest	one	(interpolation	is	not	implemented	in	the	program	because	
of	 non-monotonic	 variations).	 Three	 values	 of	 the	 ratio	 between	 the	 shear	 wave	 velocity	 at	
footing	base	and	at	half-space	are	available	0.8,	0.6,	and	0.3	(see	Figure	4.3),	if	a	different	value	is	
entered	the	program	sets	it	to	the	closest	one.	The	ratio	of	unit	weight	of	the	half-space	to	that	of	
the	layer	is	assumed	1.13.	

Finally,	 for	 rectangular	 shallow	 foundations	 the	 code	 provides	 equal	 values	 of	 horizontal	
dynamic	stiffness	in	x	and	y	direction.			

4.2 Impedance	functions	for	shallow	foundations	
The	 foundations	of	 the	buildings	considered	consist	of	a	grid	of	 continuous	beams	oriented	 in	
two	orthogonal	directions.	Conversely,	 the	 structural	model	used	 for	definition	of	 the	 fragility	
curves	 is	 a	 SDOF	 system	 in	 which	 the	 contact	 with	 the	 soil	 is	 limited	 to	 a	 single	 point.	 The	



A	nonlinear	macro-element	for	SSI	analysis	in	the	Groningen	region	 81	

	

 

geometry	 of	 grid	 foundations	 does	 not	 allow	 a	 simple	 and	 unique	 definition	 of	 equivalent	
dimensions	 for	 impedance	 function	 calculation.	 	 In	 fact,	 the	 latter	 depends	 on	 the	 degree	 of	
freedom	analysed	(e.g.	translational	or	rotational)	or	on	the	component	under	consideration	(i.e.	
stiffness	 or	 damping),	 and	 consequently	 the	 characteristics	 of	 the	 real	 foundation	 to	 be	
preserved	 are	 different	 (contact	 area,	 inertia,	 etc.).	 For	 such	 reason,	 in	 order	 to	 properly	
consider	 the	 real	 foundation	geometry,	 the	definition	of	 the	equivalent	 footing	dimensions	 for	
impedance	calculation	made	use	of	the	calibration	step	carried	out	for	the	macro-element	(see	
Section	3.1.2),	which	employs	a	3D	MDOF	model	of	the	buildings.	For	each	building,	equivalent	
dimensions	 were	 evaluated	 independently	 for	 stiffness	 and	 damping,	 as	 well	 as	 for	 the	
translational	 and	 rotational	 degrees	 of	 freedom,	 in	 order	 to	 reproduce	 the	 static	 stiffness	 and	
damping	evaluated	 for	 the	equivalent	macro-element	of	 the	SDOF	system	described	 in	Section	
3.1.2.		

Five	index	building	were	considered	for	impedance	functions	calculation,	one	terraced	building	
with	4	units	(Zijlvest),	and	four	detached	buildings	(Kwelder,	Badweg,	Dijkstraat	and	De	Haver).	

4.2.1 Soil	model	

The	soil	model	selected	for	the	computation	of	the	impedance	functions	of	shallow	foundations	
is	the	composite	medium	(i.e.	soil	 layer	with	defined	thickness	on	top	of	a	half-space).	Because	
the	reference	shear	wave	velocity	profile	has	an	increment	that	is	rather	linear	in	the	upper	part,	
the	non-uniform	soil	profile	 is	preferred	to	the	uniform	in	order	to	avoid	 impedance	functions	
dominated	by	 the	main	 frequency	of	 the	uniform	soil.	A	 composite	medium	with	non-uniform	
shear	wave	velocity	profile	 is	characterized	by	a	 linear	shear	wave	velocity	profile	 in	the	 layer	
and	 constant	 value	 on	 the	 half	 space;	 particularly,	 there	 are	 a	 set	 of	 fixed	 ratios	 between	 the	
initial	 shear	wave	velocities	of	 the	 layer	and	half-space	(see	Section	4.1.1	and	Figure	4.3).	The	
model	allows	considering	also	a	different	shear	wave	velocity	for	the	embedment;	however,	this	
is	neglected	due	to	its	limited	thickness.		

	

	
Figure	4.3:	Shear	wave	velocity	profile	input	parameters	for	composite	medium.	

The	layer	properties	(e.g.	 thickness,	shear	wave	velocity)	were	defined	taking	 into	account	the	
software	 limitations	 (see	 section	 4.1.1),	 which	 considers	 fixed	 values	 of	 the	 ratio	 of	 layer	
thickness	(H)	to	the	half-width	of	the	equivalent	square	footing	(a).	Moreover,	the	fitting	of	the	
shear	wave	velocity	profile	was	carried	out	 for	a	ratio	between	 the	shear	wave	velocity	at	 the	
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base	of	the	footing	(Vs,in)	and	at	the	half-space	(Vs,HS)	equal	to	0.6.	Given	the	different	equivalent	
dimensions	considered	for	stiffness	and	damping,	as	well	as	for	different	degrees	of	freedom,	the	
VS	 profile	 fitting	 needs	 to	 be	 repeated	 for	 each	 of	 the	 four	 cases	 accounted	 for.	 The	 resulting	
parameters	of	the	fitting	procedure	are	summarized	in	the	following	sections.	

The	 impedance	 functions	 depend	 on	 the	 shear	 modulus	 G;	 in	 order	 to	 account	 for	 its	 non-
linearity,	 a	 reasonable	 approximation	 of	 the	 impedance	 functions	 may	 be	 obtained	 from	 the	
available	 linear	 viscoelastic	 solutions,	 provided	 that	 the	 ‘‘effective’’	 values	 of	G	 (i.e.	 the	 secant	
modulus	estimated	based	on	the	strain	level	reached	during	strong	motion)	is	used	(Mylonakis	
et	al.,	2006).		

Based	on	the	results	of	site	response	analysis	(Rodriguez-Marek	et	al.,	2017,	Kruiver	et	al.,	2017a)	
a	 procedure	was	 developed	 to	 obtain	 the	 VS	 scaling	 factor	 versus	 PGA.	 For	 different	 levels	 of	
strong	 motion	 considered,	 associated	 to	 the	 related	 PGA	 values,	 the	 shear	 strain	 level	 is	
evaluated	below	the	foundation	depth.	In	particular,	for	soil	Type	A	there	are	5	m	of	fine	sand,	
which	 is	 subdivided	 into	 two	 sublayers,	 characterized	 by	 different	 degradation	 curves	 of	 the	
shear	modulus.	Considering	1	m	in	sublayer	1	and	2	m	in	sublayer	2,	the	average	shear	strain	is	
evaluated	 for	 different	 levels	 of	 PGA.	 For	 each	 of	 these	 values	 of	 shear	 strain	 the	 G/Gmax	 is	
estimated,	with	Figure	4.4	showing	the	obtained	values.	

	

 
Figure	4.4	G/Gmax	scaling	factors	obtained	from	site	response	analysis	for	different	levels	of	shear	strain	in	the	
fine	sand	layer	of	soil	type	A	characterised	by	two	shear	modulus	degradation	curves	(Raw	results	from	site	

response	analyses	provided	by	Deltares,	2019).	

The	G/Gmax	scaling	factors	are	converted	into	VS	scaling	factors	considering	the	relationship:	

	

𝐺!"# = 𝜌 ∙ 𝑉!!	 	 	 	 	 	 	 	 	 	 														(4.1)	

	

For	 each	 of	 the	 two	 sublayers,	 the	 VS	 scaling	 factors	 were	 interpolated	 using	 an	 exponential	
relationship,	as	shown	in	Figure	4.5.	
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a) b) 

Figure	4.5	Relationship	between	PGA	and	VS	scaling	factors	for	soil	type	A:	a)	Sublayer	1;	b)	Sublayer	2.	

Five	PGA	 levels	 ranging	 from	0.05	g	 to	0.43	g	were	 considered	 in	 the	derivation	of	 impedance	
functions.	For	these	PGA	values,	the	exponential	relationships	shown	in	Figure	4.5	were	used	for	
the	 computation	 of	 the	 corresponding	 VS	 scaling	 factors.	 Finally,	 the	 VS	 profiles	 were	 scaled	
considering	the	mean	VS	scaling	factor	of	the	two	sublayers	considered,	with	the	resulting	values	
summarized	in	Table	4.1.	

	

Table	4.1:	VS	scaling	factors	for	soil	type	A	obtained	using	the	exponential	relationship	shown	in	Figure	4.5.	

 
 

4.2.2 Procedure	for	impedance	functions	calculation	

As	described	above,	the	foundations	of	the	buildings	considered	consist	of	a	grid	of	continuous	
beams	oriented	 in	 two	orthogonal	 directions.	With	 reference	 to	 the	 equivalent	 SDOF	used	 for	
fragility	 analysis,	 the	 geometry	 of	 the	 grid	 foundations	 does	 not	 allow	 a	 simple	 and	 unique	
definition	 of	 equivalent	 dimensions	 for	 impedance	 function	 calculation.	 In	 order	 to	 properly	
consider	 the	 real	 foundation	geometry,	 the	definition	of	 the	equivalent	 footing	dimensions	 for	
impedance	calculation	made	use	of	the	calibration	step	carried	out	for	the	macro-element	(see	
Sections	3.1.2	and	3.2.2),	which	employs	a	3D	MDOF	model	of	the	buildings.	For	each	building,	
equivalent	dimensions	were	evaluated	 independently	 for	 stiffness	and	damping,	 as	well	 as	 for	
the	translational	and	rotational	degrees	of	freedom,	in	order	to	reproduce	the	static	stiffness	and	
damping	evaluated	for	the	equivalent	macro-element	of	the	SDOF	system	described	in	Sections	
3.1.2	and	3.2.2.	

Impedance	 functions	 are	 evaluated	 for	 rigid	 and	 massless	 foundations	 and	 considering	 a	
Poisson’s	 ratio	 equal	 to	 0.45	 due	 to	 the	 high-water	 table	 level.	 Considering	 the	 limited	
embedment	of	the	footings,	the	coupling	swaying-rocking	term	is	neglected.	The	software	DYNA	
6.1,	 for	 the	 composite	 medium	 (i.e.	 layer	 over	 half-space),	 considers	 fixed	 values	 of	 material	
damping,	equal	to	0.03	for	the	upper	layer	and	0.05	for	the	half-space.		

The	impedance	of	a	foundation,	representing	its	force-displacement	or	moment-rotation	ratio,	is	
a	complex	number	typically	represented	in	the	form:	
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Κ∗ = Κ + 𝑖𝜔𝐶	 	 	 	 	 	 	 	 	 	 														(4.2)	

	

in	which	 both	 K	 and	 C	 are,	 in	 general,	 functions	 of	 frequency.	 The	 spring	 constant	 K,	 termed	
dynamic	 stiffness,	 reflects	 the	 stiffness	 and	 inertia	 of	 the	 supporting	 soil;	 its	 dependence	 on	
frequency	 relates	 solely	 to	 the	 influence	 that	 frequency	 exerts	 on	 inertia,	 since	 soil	 material	
properties	 are	 to	 a	 good	 approximation	 frequency-independent.	 The	 dashpot	 coefficient	 C	
reflects	the	two	types	of	damping	(radiation	and	material)	generated	in	the	system;	the	former	
due	to	energy	carried	by	the	waves	spreading	away	from	the	foundation,	and	the	 latter	due	to	
energy	dissipated	in	the	soil	through	hysteretic	action	(Mylonakis	et	al,	2006).	

The	 effect	 of	 material	 damping	 is	 approximately	 (this	 approximation	 is	 accurate	 at	 low	
dimensionless	 frequency)	 taken	 into	 account	 by	 multiplying	 the	 complex	 stiffness	 evaluated	
from	a	solution	derived	without	consideration	of	material	damping	by	the	factor	(1+i2β),	where	
β	represents	the	material	damping	coefficient:	

	

Κ∗ = 𝑘 + 𝑖𝜔𝑐 1 + 𝑖2𝛽 = 𝑘 − 2𝛽𝑐 + 𝑖𝜔(𝑐 + !!"
!
)		 	 	 	 	 														(4.3)	

	

from	which	it	is	possible	to	separate	the	real	and	imaginary	part	of	the	impedance	function:	

	

𝐾 = 𝑘 − 2𝛽𝑐	 	 	 	 	 	 	 	 	 	 														(4.4)	

𝐶 = 𝑐 + !!"
!
	 	 	 	 	 	 	 	 	 	 														(4.5)	

	

Where	 k	 is	 the	 static	 stiffness,	 c	 is	 the	 constant	 of	 equivalent	 viscous	 damping	 and	ω	 is	 the	
circular	frequency.	

Eq.	(4.5)	allows	to	separate	the	contribution	of	material	and	radiation	damping,	and	is	used	for	
the	definition	of	 the	equivalent	dimension	of	 the	 foundation,	because	 the	damping	defined	 for	
the	macro-element	included	only	the	radiation	damping	contribution.	

For	 the	 reasons	 explained	 above,	 the	 computation	 of	 the	 impedance	 functions	 is	 performed	
independently	 for	 stiffness	 and	 damping,	 as	 well	 as	 for	 horizontal	 translation	 and	 rocking,	
resulting	in	four	independent	calculations.		

An	iterative	procedure	was	developed	to	fit	the	impedance	evaluated	for	the	macro-element	and	
obtained	through	the	calibration	using	the	MDOF	model	of	the	buildings;	such	model	considers	
the	real	geometry	of	the	foundation	beams.	

For	each	of	the	four	cases	considered,	the	first	step	was	the	definition	of	equivalent	dimensions	
of	 the	 footing	 considering	 a	 closed-form	 solution	 for	 half-space,	 in	 order	 to	 reproduce	 the	
impedance	used	for	the	macro-element.		

For	 the	 stiffness	 terms	 (horizontal	 translation	and	rocking)	 the	 formulas	proposed	by	Gazetas	
(1991)	 for	 rectangular	 foundations	 were	 used	 (see	 above);	 conversely,	 for	 damping	 terms	 a	
closed-form	solution	for	circular	footings	was	adopted,	particularly	for	the	horizontal	translation	
component	the	Veletsos	and	Verbic	(1973)	solution,	whereas	for	the	rotational	component	the	
Veletsos	 and	Wei	 (1971)	 solution.	 The	 fragility	 study	 analysed	 the	 response	 in	 one	 direction	
only,	therefore	the	use	of	a	circular	foundation	shape	does	not	affect	the	results.	
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As	already	mentioned,	 the	 impedance	 functions	calculated	by	DYNA6.1	 for	 composite	medium	
are	exact	for	fixed	values	of	the	ratio	of	layer	thickness	(H)	to	half-width	of	the	square	footing	(a)	
(see	Figure	4.3).	Based	on	 the	preliminary	equivalent	dimensions	estimated	using	closed-form	
solutions,	the	Vs	profile	is	fitted	considering	the	available	H/a	and	VS,in/VS,HS	ratios.	Based	on	the	
input	 parameters	 described	 above,	 the	 impedance	 functions	 were	 evaluated	 using	 DYNA6.1	
considering	 the	 composite	 medium,	 with	 the	 obtained	 values	 being	 compared	 with	 the	 set	
obtained	for	the	macro-element.	Afterwards,	an	iteration	is	performed	in	the	calculation,	scaling	
the	 footing	 dimensions	 by	 the	 ratio	 between	 the	 impedance	 evaluated	 by	 the	 closed-form	
solution	 and	 DYNA6.1	 (although	 some	 differences	may	 arise	 due	 to	 the	 different	 soil	 models	
considered).	With	respect	to	damping,	the	radiational	contribution	was	separated	from	DYNA6.1	
results	 making	 use	 of	 Eq.	 (4.5).	 In	 accordance	 with	 section	 2,	 a	 frequency	 of	 1.667Hz	 was	
considered.	 It	 is	 worth	 to	 notice	 that	 this	 frequency	 value	 does	 not	 affect	 too	 much	 the	
evaluation	of	damping.	

The	 following	 sections,	 for	 each	 building	 considered,	 summarize	 the	 input	 parameters	
considered,	as	well	as	the	resulting	impedance	functions.	

4.2.3 Terraced	house	“Zijlvest”	

The	scheme	of	 the	 foundations	of	 this	 terraced	 index	building	with	4	units	 is	 shown	 in	Figure	
3.7.	Impedance	functions	were	evaluated	in	accordance	with	the	procedure	described	in	section	
4.2.2.	Table	4.2	summarizes	the	input	parameters	used	for	impedance	calculations	in	DYNA6.1,	
with	 four	 cases	 being	 considered	 because	 stiffness	 and	 damping,	 as	 well	 as	 horizontal	
translation	and	rocking,	are	evaluated	independently.	Figure	4.6	shows,	for	a	scaling	factor	equal	
to	1,	 the	 fitting	of	 the	Vs	profile	obtained	considering	 the	 limitations	of	 the	software	DYNA6.1,	
which	considers	 fixed	values	of	 the	ratios	H/a	and	VS,in/VS,HS	(with	the	meaning	of	 the	symbols	
described	in	section	4.2.1).	
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Stiffness horizontal translation Stiffness rocking 

  
Damping horizontal translation Damping rocking 

Figure	4.6	Terraced	house	“Zijlvest”:	Fitting	of	the	shear	wave	velocity	profile	type	A	using	the	composite	
medium	(i.e.	layer	over	half-space)	depending	on	the	degree	of	freedom	considered	(i.e.	horizontal	

translation	or	rocking)	and	component	(i.e.	stiffness	and	damping)	for	a	scaling	factor	equal	to	1	(SF0).	

	
Table	4.2:	Terraced	house	“Zijlvest”	-	input	parameters	for	DYNA6.1	considering	soil	type	A:	soil	model	and	

equivalent	footing	dimensions	for	different	scaling	factors.	

 
	

The	following	figures	show	the	impedance	functions	(in	terms	of	frequency-dependent	stiffness	
and	damping)	 of	 horizontal	 translation	 and	 rocking	 considering	 the	 soil	 profile	 type	A,	 taking	
into	account	the	five	scaling	factors	summarized	in	Table	4.1.	
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Figure	4.7	Impedance	functions	for	Terraced	house	“Zijlvest”:	horizontal	translation	and	rocking	–	Soil	type	A,	

Scaling	factor	SF1.	
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Figure	4.8	Impedance	functions	for	Terraced	house	“Zijlvest”:	horizontal	translation	and	rocking	–	Soil	type	A,	

Scaling	factor	SF2.	
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Figure	4.9	Impedance	functions	for	Terraced	house	“Zijlvest”:	horizontal	translation	and	rocking	–	Soil	type	A,	

Scaling	factor	SF3.	
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Figure	4.10	Impedance	functions	for	Terraced	house	“Zijlvest”:	horizontal	translation	and	rocking	–	Soil	type	

A,	Scaling	factor	SF4.	
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Figure	4.11	Impedance	functions	for	Terraced	house	“Zijlvest”:	horizontal	translation	and	rocking	–	Soil	type	

A,	Scaling	factor	SF5.	

4.2.4 Detached	house	“Kwelder”		

The	scheme	of	the	foundations	of	the	detached	“Kwelder”	index	building	is	shown	in	Figure	3.8.	
Impedance	 functions	 were	 evaluated	 in	 accordance	 with	 the	 procedure	 described	 in	 section	
4.2.2.	Table	4.3	summarizes	the	input	parameters	used	for	impedance	calculations	in	DYNA6.1,	
with	 four	 cases	 being	 considered	 because	 stiffness	 and	 damping,	 as	 well	 as	 horizontal	
translation	 and	 rocking,	 are	 evaluated	 independently.	 Figure	 4.12	 shows,	 for	 a	 scaling	 factor	
equal	 to	 1,	 the	 fitting	 of	 the	 Vs	 profile	 obtained	 considering	 the	 limitations	 of	 the	 software	
DYNA6.1,	which	considers	fixed	values	of	the	ratios	H/a	and	VS,in/VS,HS	(with	the	meaning	of	the	
symbols	described	in	section	4.2.1).	
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Table	4.3:	Detached	house	“Kwelder”	-	input	parameters	for	DYNA6.1	considering	soil	type	A:	soil	model	and	
equivalent	footing	dimensions	for	different	scaling	factors.	

 
 

  
Stiffness horizontal translation Stiffness rocking 

  
Damping horizontal translation Damping rocking 

Figure	4.12	Detached	house	“Kwelder”:	Fitting	of	the	shear	wave	velocity	profile	type	A	using	the	composite	
medium	(i.e.	layer	over	half-space)	depending	on	the	degree	of	freedom	considered	(i.e.	horizontal	
translation	or	rocking)	and	component	(i.e.	stiffness	and	damping)	for	a	scaling	factor	equal	to	1.	

The	following	figures	show	the	impedance	functions	(in	terms	of	frequency-dependent	stiffness	
and	damping)	 of	 horizontal	 translation	 and	 rocking	 considering	 the	 soil	 profile	 type	A,	 taking	
into	account	the	five	scaling	factors	summarized	in	Table	4.1.	
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Figure	4.13	Impedance	functions	for	Detached	house	“Kwelder”:	horizontal	translation	and	rocking	–	Soil	type	

A,	Scaling	factor	SF1.	
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Figure	4.14	Impedance	functions	for	Detached	house	“Kwelder”:	horizontal	translation	and	rocking	–	Soil	type	

A,	Scaling	factor	SF2.	
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Figure	4.15	Impedance	functions	for	Detached	house	“Kwelder”:	horizontal	translation	and	rocking	–	Soil	type	

A,	Scaling	factor	SF3.	
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Figure	4.16	Impedance	functions	for	Detached	house	“Kwelder”:	horizontal	translation	and	rocking	–	Soil	type	

A,	Scaling	factor	SF4.	
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Figure	4.17	Impedance	functions	for	Detached	house	“Kwelder”:	horizontal	translation	and	rocking	–	Soil	type	

A,	Scaling	factor	SF5.	

4.2.5 Detached	house	“Badweg”		

The	scheme	of	the	foundations	of	the	detached	“Badweg”	index	building	is	shown	in	Figure	3.9.	
Impedance	 functions	 were	 evaluated	 in	 accordance	 with	 the	 procedure	 described	 in	 section	
4.2.2.	Table	4.4	summarizes	the	input	parameters	used	for	impedance	calculations	in	DYNA6.1,	
with	 four	 cases	 being	 considered	 because	 stiffness	 and	 damping,	 as	 well	 as	 horizontal	
translation	 and	 rocking,	 are	 evaluated	 independently.	 Figure	 4.18	 shows,	 for	 a	 scaling	 factor	
equal	 to	 1,	 the	 fitting	 of	 the	 Vs	 profile	 obtained	 considering	 the	 limitations	 of	 the	 software	
DYNA6.1,	which	considers	fixed	values	of	the	ratios	H/a	and	VS,in/VS,HS	(with	the	meaning	of	the	
symbols	described	in	section	4.2.1). 

 

2 4 6 8 10
1.2

1.4

1.6

1.8

2
x 106

Frequency (Hz)

K x (R
ea

l p
ar

t) 
(k

N/
m

)

KwelderSF5

2 4 6 8 10
0

2

4

6
x 107

Frequency (Hz)

K ry
 (R

ea
l p

ar
t) 

(k
N 

m
)

2 4 6 8 10
0

5

10
x 105

Frequency (Hz)

ω.
C x (I

m
m

. p
ar

t) 
(k

N/
m

)

2 4 6 8 10
0

5

10

15
x 105

Frequency (Hz)

ω.
C

ry
 (I

m
m

. p
ar

t) 
(k

N 
m

)

2 4 6 8 10
0

1

2

3
x 104

Frequency (Hz)

C x  (
kN

 s
/m

)

 

 
Total
Hysteretic
Radiational

2 4 6 8 10
0

5

10

15
x 104

Frequency (Hz)

C ry
 (k

N 
m

 s
)

 

 
Total
Hysteretic
Radiational



A	nonlinear	macro-element	for	SSI	analysis	in	the	Groningen	region	 98	

	

 

Table	4.4:	Detached	house	“Badweg”		-	input	parameters	for	DYNA6.1	considering	soil	type	A:	soil	model	and	
equivalent	footing	dimensions	for	different	scaling	factors.	

	
	

  
Stiffness horizontal translation Stiffness rocking 

  
Damping horizontal translation Damping rocking 

Figure	4.18	Detached	house	“Badweg”:	Fitting	of	the	shear	wave	velocity	profile	type	A	using	the	composite	
medium	(i.e.	layer	over	half-space)	depending	on	the	degree	of	freedom	considered	(i.e.	horizontal	
translation	or	rocking)	and	component	(i.e.	stiffness	and	damping)	for	a	scaling	factor	equal	to	1.	

The	following	figures	show	the	impedance	functions	(in	terms	of	frequency-dependent	stiffness	
and	damping)	 of	 horizontal	 translation	 and	 rocking	 considering	 the	 soil	 profile	 type	A,	 taking	
into	account	the	five	scaling	factors	summarized	in	Table	4.1.	
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Figure	4.19	Impedance	functions	for	Detached	house	“Badweg”:	horizontal	translation	and	rocking	–	Soil	type	

A,	Scaling	factor	SF1.	
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Figure	4.20	Impedance	functions	for	Detached	house	“Badweg”:	horizontal	translation	and	rocking	–	Soil	type	

A,	Scaling	factor	SF2.	
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Figure	4.21	Impedance	functions	for	Detached	house	“Badweg”:	horizontal	translation	and	rocking	–	Soil	type	

A,	factor	SF3.	
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Figure	4.22	Impedance	functions	for	Detached	house	“Badweg”:	horizontal	translation	and	rocking	–	Soil	type	

A,	Scaling	factor	SF4.	
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Figure	4.23	Impedance	functions	for	Detached	house	“Badweg”:	horizontal	translation	and	rocking	–	Soil	type	

A,	Scaling	factor	SF5.	

4.2.6 Detached	house	“Dijkstraat”	

The	 scheme	of	 the	 foundations	 of	 the	 detached	 “Dijkstraat”	 index	building	 is	 shown	 in	 Figure	
3.10.	 Impedance	 functions	 were	 evaluated	 in	 accordance	 with	 the	 procedure	 described	 in	
section	 4.2.2.	 Table	 4.5	 summarizes	 the	 input	 parameters	 used	 for	 impedance	 calculations	 in	
DYNA6.1,	with	four	cases	being	considered	because	stiffness	and	damping,	as	well	as	horizontal	
translation	 and	 rocking,	 are	 evaluated	 independently.	 Figure	 4.24	 shows,	 for	 a	 scaling	 factor	
equal	 to	 1,	 the	 fitting	 of	 the	 Vs	 profile	 obtained	 considering	 the	 limitations	 of	 the	 software	
DYNA6.1,	which	considers	fixed	values	of	the	ratios	H/a	and	VS,in/VS,HS	(with	the	meaning	of	the	
symbols	described	in	section	4.2.1).	
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Table	4.5:	Detached	house	“Dijkstraat”	-	input	parameters	for	DYNA6.1	considering	soil	type	A:	soil	model	and	
equivalent	footing	dimensions	for	different	scaling	factors.	

 
	

  
Stiffness horizontal translation Stiffness rocking 

  
Damping horizontal translation Damping rocking 

Figure	4.24	Detached	house	“Dijkstraat”:	Fitting	of	the	shear	wave	velocity	profile	type	A	using	the	composite	
medium	(i.e.	layer	over	half-space)	depending	on	the	degree	of	freedom	considered	(i.e.	horizontal	
translation	or	rocking)	and	component	(i.e.	stiffness	and	damping)	for	a	scaling	factor	equal	to	1.	

The	following	figures	show	the	impedance	functions	(in	terms	of	frequency-dependent	stiffness	
and	damping)	 of	 horizontal	 translation	 and	 rocking	 considering	 the	 soil	 profile	 type	A,	 taking	
into	account	the	five	scaling	factors	summarized	in	Table	4.1.	
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Figure	4.25	Impedance	functions	for	Detached	house	“Dijkstraat”:	horizontal	translation	and	rocking	–	Soil	

type	A,	Scaling	factor	SF1.	
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Figure	4.26	Impedance	functions	for	Detached	house	“Dijkstraat”:	horizontal	translation	and	rocking	-	Soil	

type	A,	Scaling	factor	SF2.	

 

 

 

2 4 6 8 10
2.5

3

3.5

4
x 106

Frequency (Hz)

K x (R
ea

l p
ar

t) 
(k

N/
m

)
DijkstraatSF2

2 4 6 8 10
0.5

1

1.5
x 108

Frequency (Hz)

K ry
 (R

ea
l p

ar
t) 

(k
N 

m
)

2 4 6 8 10
0

0.5

1

1.5

2
x 106

Frequency (Hz)

ω.
C x (I

m
m

. p
ar

t) 
(k

N/
m

)

2 4 6 8 10
0

5

10

15
x 106

Frequency (Hz)

ω.
C

ry
 (I

m
m

. p
ar

t) 
(k

N 
m

)

2 4 6 8 10
0

2

4

6
x 104

Frequency (Hz)

C x  (
kN

 s
/m

)

 

 
Total
Hysteretic
Radiational

2 4 6 8 10
0

5

10
x 105

Frequency (Hz)

C ry
 (k

N 
m

 s
)

 

 
Total
Hysteretic
Radiational



A	nonlinear	macro-element	for	SSI	analysis	in	the	Groningen	region	 107	

	

 

 
Figure	4.27	Impedance	functions	for	Detached	house	“Dijkstraat”:	horizontal	translation	and	rocking	–	Soil	

type	A,	Scaling	factor	SF3.	
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Figure	4.28	Impedance	functions	for	Detached	house	“Dijkstraat”:	horizontal	translation	and	rocking	–	Soil	

type	A,		Scaling	factor	SF4.	

 

 

 

2 4 6 8 10
1.5

2

2.5

3
x 106

Frequency (Hz)

K x (R
ea

l p
ar

t) 
(k

N/
m

)
DijkstraatSF4

2 4 6 8 10
2

4

6

8

10
x 107

Frequency (Hz)

K ry
 (R

ea
l p

ar
t) 

(k
N 

m
)

2 4 6 8 10
0

0.5

1

1.5

2
x 106

Frequency (Hz)

ω.
C x (I

m
m

. p
ar

t) 
(k

N/
m

)

2 4 6 8 10
0

5

10

15
x 106

Frequency (Hz)

ω.
C

ry
 (I

m
m

. p
ar

t) 
(k

N 
m

)

2 4 6 8 10
0

2

4

6
x 104

Frequency (Hz)

C x  (
kN

 s
/m

)

 

 
Total
Hysteretic
Radiational

2 4 6 8 10
0

2

4

6

8
x 105

Frequency (Hz)

C ry
 (k

N 
m

 s
)

 

 
Total
Hysteretic
Radiational



A	nonlinear	macro-element	for	SSI	analysis	in	the	Groningen	region	 109	

	

 

 
Figure	4.29	Impedance	functions	for	Detached	house	“Dijkstraat”:	horizontal	translation	and	rocking	–	Soil	

type	A,	Scaling	factor	SF5.	

4.2.7 Detached	house	“De	Haver”		

The	 scheme	 of	 the	 foundations	 of	 the	 detached	 “De	Haver”	 index	 building	 is	 shown	 in	 Figure	
3.11.	 Impedance	 functions	 were	 evaluated	 in	 accordance	 with	 the	 procedure	 described	 in	
section	 4.2.2.	 Table	 4.6	 summarizes	 the	 input	 parameters	 used	 for	 impedance	 calculations	 in	
DYNA6.1,	with	four	cases	being	considered	because	stiffness	and	damping,	as	well	as	horizontal	
translation	 and	 rocking,	 are	 evaluated	 independently.	 Figure	 4.30	 shows,	 for	 a	 scaling	 factor	
equal	 to	 1,	 the	 fitting	 of	 the	 Vs	 profile	 obtained	 considering	 the	 limitations	 of	 the	 software	
DYNA6.1,	which	considers	fixed	values	of	the	ratios	H/a	and	VS,in/VS,HS	(with	the	meaning	of	the	
symbols	described	in	section	4.2.1). 
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Table	4.6:	Detached	house	“De	haver”	-	input	parameters	for	DYNA6.1	considering	soil	type	A:	soil	model	and	
equivalent	footing	dimensions	for	different	scaling	factors.	

	
 

  
Stiffness horizontal translation Stiffness rocking 

  
Damping horizontal translation Damping rocking 

Figure	4.30	Detached	house	“De	Haver”:	Fitting	of	the	shear	wave	velocity	profile	type	A	using	the	composite	
medium	(i.e.	layer	over	half-space)	depending	on	the	degree	of	freedom	considered	(i.e.	horizontal	
translation	or	rocking)	and	component	(i.e.	stiffness	and	damping)	for	a	scaling	factor	equal	to	1.	

The	following	figures	show	the	impedance	functions	(in	terms	of	frequency-dependent	stiffness	
and	damping)	 of	 horizontal	 translation	 and	 rocking	 considering	 the	 soil	 profile	 type	A,	 taking	
into	account	the	five	scaling	factors	summarized	in	Table	4.1.	
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Figure	4.31	Impedance	functions	for	Detached	house	“De	Haver”:	horizontal	translation	and	rocking	–	Soil	

type	A,	Scaling	factor	SF1.	
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Figure	4.32	Impedance	functions	for	Detached	house	“De	Haver”:	horizontal	translation	and	rocking	-	Soil	

type	A,	Scaling	factor	SF2.	
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Figure	4.33	Impedance	functions	for	Detached	house	“De	Haver”:	horizontal	translation	and	rocking	–	Soil	

type	A,	Scaling	factor	SF3.	
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Figure	4.34	Impedance	functions	for	Detached	house	“De	Haver”:	horizontal	translation	and	rocking	–	Soil	

type	A,	Scaling	factor	SF4.	
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Figure	4.35	Impedance	functions	for	Detached	house	“De	Haver”:	horizontal	translation	and	rocking	–	Soil	

type	A,	Scaling	factor	SF5.	
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4.3 Impedance	functions	for	pile	foundations	
A	typical	pile	distribution	 in	an	Apartment	building	has	been	shown	 in	Figure	3.18,	whilst	 the	
pile	 foundations	 typologies	 considered	 are	 described	 in	 Section	 3.2.1.1.	 The	 same	 building	
superstructures	studied	before	are	considered	here,	recalling	that	their	foundations	feature	the	
same	 number	 (67),	 position	 and	 length	 of	 piles	 (16	 m).	 As	 discussed	 before,	 the	 piles	 are	
connected	by	reinforced	concrete	(RC)	capping	beams	with	height	equal	 to	600	mm,	while	the	
width	can	be	450	mm	or	650	mm	depending	on	the	beam	position	(perimeter	or	internal).	

Always	as	noted	before,	the	index	buildings	considered	differ	with	respect	to	the	characteristics	
of	piles:	

- “K-flat”	and	“Georg	van	S”	have	circular	reinforced	concrete	piles	with	45	cm	diameter;	
- “Drive-in”	has	square	reinforced	concrete	piles	with	25	cm	width.	

4.3.1 Soil	model	

For	 pile	 foundations,	 the	 software	 DYNA6.1	 allows	 the	 use	 of	 a	 layered	 medium.	 For	 each	
stratum,	 the	 input	 parameters	 are:	 thickness,	 shear	 wave	 velocity,	 weight	 of	 unit	 volume,	
Poisson’s	 coefficient	 and	 damping	 factor.	 The	 depth	 interested	 by	 the	 presence	 of	 piles	 (i.e.	
16	m)	is	subdivided	into	three	layers	(namely	M1,	M2	and	M3),	while	the	soil	with	thickness	of	
4	m	below	the	pile	tip	is	considered	as	a	base	layer	(namely	M4).	The	shear	wave	velocity	and	
the	weight	 for	 unit	 volume	 (γ)	 of	 each	 layer	 is	 equal	 to	 the	 average	 value	within	 the	 stratum,	
Table	4.7	summarizes	the	layers'	thicknesses	and	the	resulting	VS	and	γ	values,	whereas	Figure	
4.36	represents	the	VS	profile,	corresponding	to	soil	Type	A,	of	the	layered	medium	considered.	
For	each	 layer,	 the	Poisson’s	 ratio	 is	 taken	equal	 to	0.45	and	 the	material	damping	 coefficient	
considered	is	assumed	equal	to	0.02.			

	

 
Figure	4.36	VS	profile	of	the	upper	20	m	of	soil	type	A	(dashed	red	line)	and	VS	profile	considered	for	the	

layered	medium	used	for	computation	of	impedance	functions	of	pile	foundations.	
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Table	4.7:	Soil	characteristics	of	the	four	layers	used	for	computation	
	of	impedance	functions	of	pile	foundations.	

 
 

To	account	for	soil	nonlinearity,	the	same	approach	to	define	the	VS	scaling	factors	versus	PGA	
described	in	section	4.2.1	was	considered.	The	average	shear	strain	is	evaluated	for	each	layer	
within	 the	 first	 20	 m	 of	 soil	 type	 A.	 Table	 4.8	 summarizes	 the	 layer’s	 number,	 thickness,	
stratigraphy	 and	 lithology.	 In	 the	 upper	 20	 m	 of	 soil	 layers,	 nine	 different	 shear	 modulus	
degradations	 curves	were	 considered	 in	 site	 response	 analysis	 (Rodriguez-Marek	 et	 al.,	 2017,	
Kruiver	2019).		

	
Table	4.8:	Layering	of	the	upper	20	m	of	Soil	type	A	used	for	pile	foundations	(legend	of	stratigraphy	

acronyms:	AAOP	Anthropogenic	deposits;	BXWI	Boxtel	Formation,	Wierden	Member;	BX	Boxtel	Formation;	
DR	Drente	Formation;	DRGI	Drente	Formation,	Gieten	Member;	PE	Peelo	Formation).	

 
 

Figure	 4.37	 shows,	 for	 different	 levels	 of	 PGA,	 the	 G/Gmax	 scaling	 factors	 evaluated	 for	 the	
average	strain	levels	of	the	layers	within	the	upper	20	m	of	the	soil	type	A	deposit.	

The	G/Gmax	scaling	 factors	are	 converted	 into	VS	 scaling	 factors	 considering	Eq.	 (4.1).	For	each	
layer,	 the	 VS	 scaling	 factors	 were	 interpolated	 using	 an	 exponential	 relationship,	 which	 are	
shown	in	Figure	4.38.	

Five	 PGA	 levels	 ranging	 from	 0.05g	 to	 0.43g	were	 considered	 in	 the	 derivation	 of	 impedance	
functions.	For	these	PGA	values,	the	exponential	relationships	shown	in	Figure	4.38	were	used	
for	the	computation	of	the	corresponding	VS	scaling	factors.	Finally,	the	VS	profiles	were	scaled	
considering	the	mean	VS	scaling	factors	of	the	four	layers	(i.e.	M1,	M2,	M3	and	M4)	identified	in	
Figure	4.36,	with	the	resulting	values	summarized	in	Table	4.9.	

	

	

	

	

Thickness	 VS	 γ

(m) (m/s) (kN/m3)
M1 6 200.9 18.7
M2 6 211.0 16.7
M3 4 259.1 19.2
M4 4 230.5 18.1

Layer Thickness	(m) Stratigraphy Lithology
1 2 	AAOP Fine	Sand
2 3 	BXWI Fine	Sand
3 1 	BX Clayey	sand	and	sandy	clay
4 3 	DR Clayey	sand	and	sandy	clay
5 2 	DR Clayey	sand	and	sandy	clay
6 1 	DRGI Clayey	sand	and	sandy	clay
7 3 	PE Fine	Sand
8a 1 	PE Clayey	sand	and	sandy	clay
8b 2 	PE Clayey	sand	and	sandy	clay
9 2 	PE Clayey	sand	and	sandy	clay
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Table	4.9:	VS	scaling	factors	for	soil	type	A	obtained	using	the	exponential	relationships	shown	in	Figure	4.38.	

 
 

 

 
Figure	4.37	G/Gmax	scaling	factors	obtained	from	site	response	analysis	for	different	levels	of	shear	strain	in	
the	upper	20	m	of	soil	layers,	for	the	different	shear	modulus	degradation	curves	considered	(Raw	results	

from	site	response	analysis	provided	by	Deltares,	2019).	
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Figure	4.38	Relationships	between	PGA	and	VS	scaling	factors	considering	the	layers	in	the	upper	20	m	of	the	
soil	type	A.	

4.3.2 Procedure	for	impedance	functions	calculation	

The	 foundation	 typology	 considered	 for	 a	 typical	 apartment	 house	 is	 constituted	 by	 67	 piles	
connected	 by	 cap	 beams	 (see	 Figure	 3.19).	 A	 detailed	 description	 of	 the	 foundation	
characteristics	can	be	found	in	Section	3.2.1.1.	Cap	beams	for	piles	aligned	in	the	y-direction	are	
assumed	rigid;	conversely,	in	the	x-direction	the	spacing	between	the	beams,	about	7.5	m,	does	
not	 allow	 considering	 the	 rigid	 hypothesis	 valid,	 especially	 for	 rocking.	 For	 such	 reason,	 the	
resulting	 behaviour	 of	 the	 whole	 foundation	 cannot	 be	 considered	 rigid.	 To	 account	 for	 this	
aspect,	the	impedance	functions	of	the	two	typical	piles	alignments	(i.e.	a	perimeter	row	with	8	
piles	and	an	internal	row	with	11	piles)	has	been	evaluated	independently,	considering	the	rigid-
massless	 foundations	 hypothesis.	 Afterwards,	 the	 total	 foundation	 impedance,	 for	 different	
degrees	of	freedom,	was	evaluated	as	the	sum	of	the	different	rows	of	piles,	namely:	

	

3 ∙ 𝐾! !"#$%
∗ + 4 ∙ 𝐾!! !"#$%

∗ 	 	 	 	 	 	 	 	 														(4.6)	

	

Impedance	functions	were	computed	considering	floating	piles	and	a	fixed	pile	condition	at	the	
top.	Group	effects	within	each	row	were	incorporated	through	frequency-dependent	pile-to-pile	
interaction	 factors.	 The	 embedment	 of	 the	 cap	 foundation	 was	 neglected	 due	 to	 its	 reduced	
value.	For	the	high-water	table	level,	a	Poisson’s	ratio	equal	to	0.45	was	assumed.	

4.3.3 Apartment	block	“Drive-in”	

The	 scheme	 of	 the	 foundations	 of	 the	 “Drive-in”	 index	 building	 is	 shown	 in	 Figure	 3.19.	
Impedance	 functions	 were	 evaluated	 in	 accordance	 with	 the	 procedure	 described	 in	 section	
4.3.2.	 The	 following	 figures	 show	 the	 impedance	 functions	 (in	 terms	 of	 frequency	 dependent	
stiffness	and	damping)	of	horizontal	translation,	rocking	and	cross	swaying-rotational	stiffness,	
considering	the	soil	profile	type	A	and	taking	into	account	the	five	scaling	factors	summarized	in	
Table	4.9.	
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Figure	4.39	Impedance	functions	for	Apartment	block	“Drive-in”	–	Fixed	head	conditions,	floating	piles:	

horizontal	translation,	rocking	and	coupling	term	–	Soil	type	A,	Scaling	factor	SF1.	
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Figure	4.40	Impedance	functions	for	Apartment	block	“Drive-in”	–	Fixed	head	conditions,	floating	piles:	

horizontal	translation,	rocking	and	coupling	term	–	Soil	type	A,	Scaling	factor	SF2.	
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Figure	4.41	Impedance	functions	for	Apartment	block	“Drive-in”	–	Fixed	head	conditions,	floating	piles:	

horizontal	translation,	rocking	and	coupling	term	–	Soil	type	A,	Scaling	factor	SF3.	
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Figure	4.42	Impedance	functions	for	Apartment	block	“Drive-in”	–	Fixed	head	conditions,	floating	piles:	

horizontal	translation,	rocking	and	coupling	term	–	Soil	type	A,	Scaling	factor	SF4.	
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Figure	4.43	Impedance	functions	for	Apartment	“Drive-in”	on	pile	foundations	–	Fixed	head	conditions,	

floating	piles:	horizontal	translation,	rocking	and	coupling	term	–	Soil	type	A,	Scaling	factor	SF5.	
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4.3.4 Apartment	blocks	“K-flat”	and	“Georg	Van	S”		

The	 scheme	 of	 the	 foundations	 of	 the	 “K-flat”	 and	 “Georg	 van	 S”	 index	 buildings	 is	 shown	 in	
Figure	3.19.	Impedance	functions	were	evaluated	in	accordance	with	the	procedure	described	in	
section	 4.3.2.	 The	 following	 figures	 show	 the	 impedance	 functions	 (in	 terms	 of	 frequency	
dependent	 stiffness	 and	 damping)	 of	 horizontal	 translation,	 rocking	 and	 cross	 swaying-
rotational	 stiffness,	 considering	 the	 soil	profile	 type	A	and	 taking	 into	account	 the	 five	 scaling	
factors	summarized	in	Table	4.9.	

 
Figure	4.44	Impedance	functions	for	Apartment	blocks	“K-flat”	and	“Georg	Van	S”	–	Fixed	head	conditions,	

floating	piles:	horizontal	translation,	rocking	and	coupling	term	–	Soil	type	A,	Scaling	factor	SF1.	
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Figure	4.45	Impedance	functions	for	Apartment	blocks	“K-flat”	and	“Georg	Van	S”	–	Fixed	head	conditions,	

floating	piles:	horizontal	translation,	rocking	and	coupling	term	–	Soil	type	A,	Scaling	factor	SF2.	
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Figure	4.46	Impedance	functions	for	Apartment	blocks	“K-flat”	and	“Georg	Van	S”	–	Fixed	head	conditions,	

floating	piles:	horizontal	translation,	rocking	and	coupling	term	–	Soil	type	A,	Scaling	factor	SF3.	
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Figure	4.47	Impedance	functions	for	Apartment	blocks	“K-flat”	and	“Georg	Van	S”	–	Fixed	head	conditions,	

floating	piles:	horizontal	translation,	rocking	and	coupling	term	–	Soil	type	A,	Scaling	factor	SF4.	
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Figure	4.48	Impedance	functions	for	Apartment	blocks	“K-flat”	and	“Georg	Van	S”	–	Fixed	head	conditions,	

floating	piles:	horizontal	translation,	rocking	and	coupling	term	–	Soil	type	A,	Scaling	factor	SF5.	
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4.4 One-dimensional	frequency-independent	model	
The	 first	 SSI	 model	 following	 the	 substructure	 approach	 in	 this	 work	 is	 a	 one-dimensional	
frequency-independent	 model,	 having	 a	 lateral	 spring	 with	 stiffness	 kx	 and	 a	 dashpot	 with	
viscous	damping	coefficient	cx.	The	values	of	the	stiffness	and	viscous	damping	coefficient	were	
obtained	 using	 the	 fundamental	 frequency	 of	 the	 fixed-base	 SDOF	 model	 together	 with	 the	
impedance	 functions	 derived	 for	 the	 Groningen	 field.	 The	 seismic	 excitation	 is	 input	 to	 the	
system	as	an	acceleration	time	history,	a(t),	applied	to	the	fixed	support	at	the	base.	

	

	
Figure	4.49:	The	adopted	one-dimensional	frequency-independent	model.	

4.4.1 Properties	of	the	SSI	elastic	1-D	systems	for	all	index	buildings	

This	section	summarises	the	properties	of	the	SSI	1-D	systems	that	were	used	in	the	derivation	
of	 fragility	 functions	 for	 all	 index	 buildings.	 Such	 properties	 were	 obtained	 by	 using	 the	
impedance	functions	presented	in	Sections	4.2	and	4.3,	for	footings	and	piles	respectively.	Since	
the	 computation	of	 these	 impedances	was	based	on	 the	 equivalent	macro-element	properties,	
some	 sets	 of	 functions	 were	 used	 for	 more	 than	 one	 building,	 characterised	 by	 the	 same	
equivalent	macro-element.	However,	for	each	index	building	a	unique	set	of	SSI	1-D	properties	
was	derived,	because	the	calibration	is	based	on	the	building’s	first	natural	frequency.	

The	following	tables,	from	Table	4.10	to	Table	4.17,	report	the	retrieved	properties	of	the	SSI	1-
D	 systems	 for	 terraced,	 detached	 and	 apartment	 index	 buildings,	 in	 terms	 of	 stiffness	 and	
damping	coefficient,	for	all	five	scaling	factors	considered.	

	
Table	4.10:	Properties	of	the	SSI	1-D	system	for	Zijlvest	index	building.	

	 SF1	 SF2	 SF3	 SF4	 SF5	

kx	(kN/m)	 7.199E+06	 5.710E+06	 4.545E+06	 3.679E+06	 2.575E+06	

cx		(ton/s)	 8.590E+04	 7.693E+04	 7.014E+04	 6.502E+04	 5.613E+04	

	
Table	4.11:	Properties	of	the	SSI	1-D	system	for	Kwelder	index	building.	

	 SF1	 SF2	 SF3	 SF4	 SF5	

kx	(kN/m)	 2.960E+06	 2.383E+06	 1.977E+06	 1.682E+06	 1.223E+06	

cx		(ton/s)	 2.447E+04	 2.204E+04	 2.001E+04	 1.842E+04	 1.580E+04	
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Table	4.12:	Properties	of	the	SSI	1-D	system	for	Badweg	index	building.	

	 SF1	 SF2	 SF3	 SF4	 SF5	

kx	(kN/m)	 2.347E+06	 1.887E+06	 1.592E+06	 1.353E+06	 9.741E+05	

cx		(ton/s)	 1.466E+04	 1.307E+04	 1.191E+04	 1.100E+04	 9.373E+03	

	
Table	4.13:	Properties	of	the	SSI	1-D	system	for	Dijkstraat	index	building.	

	 SF1	 SF2	 SF3	 SF4	 SF5	

kx	(kN/m)	 3.650E+06	 2.911E+06	 2.380E+06	 1.991E+06	 1.404E+06	

cx		(ton/s)	 3.408E+04	 3.019E+04	 2.731E+04	 2.506E+04	 2.118E+04	

	
Table	4.14:	Properties	of	the	SSI	1-D	system	for	De	Haver	index	building.	

	 SF1	 SF2	 SF3	 SF4	 SF5	

kx	(kN/m)	 4.737E+06	 3.834E+06	 3.180E+06	 2.705E+06	 1.969E+06	

cx		(ton/s)	 1.208E+05	 1.077E+05	 9.800E+04	 8.944E+04	 7.540E+04	

	
Table	4.15:	Properties	of	the	SSI	1-D	system	for	Drive-in	index	building.	

	 SF1	 SF2	 SF3	 SF4	 SF5	

kx	(kN/m)	 7.488E+06	 6.576E+06	 5.868E+06	 5.321E+06	 4.394E+06	

cx		(ton/s)	 6.205E+04	 5.911E+04	 5.653E+04	 5.456E+04	 5.020E+04	

Table	4.16:	Properties	of	the	SSI	1-D	system	for	K-Flat	index	building.	

	 SF1	 SF2	 SF3	 SF4	 SF5	

kx	(kN/m)	 9.545E+06	 8.295E+06	 7.319E+06	 6.570E+06	 5.302E+06	

cx		(ton/s)	 1.188E+05	 1.133E+05	 1.085E+05	 1.047E+05	 9.733E+04	

	
Table	4.17:	Properties	of	the	SSI	1-D	system	for	Georg	van	S	index	building.	

	 SF1	 SF2	 SF3	 SF4	 SF5	

kx	(kN/m)	 9.849E+06	 8.607E+06	 7.643E+06	 6.900E+06	 5.647E+06	

cx		(ton/s)	 1.136E+05	 1.085E+05	 1.042E+05	 1.005E+05	 9.423E+04	
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4.5 Lumped-Parameter	Model	(LPM)	
The	second	SSI	model	following	the	substructure	approach	in	this	work	is	a	Lumped-Parameter	
Model	(LPM)	accounting	for	frequency	dependence	of	the	impedance	functions.	

Even	though	techniques	are	available	to	describe	frequency	dependence	of	any	type	through	a	
generalised	LPM	whose	form	is	not	known	in	advance	(Lesgidis	et	al.,	2015),	this	work	adopted	
the	simplest	LPM	capable	of	describing	approximately,	over	the	frequency	range	of	interest,	the	
features	of	two	components	of	impedance,	namely	the	translational	and	rotational	terms.	

The	LPM	model	proposed	by	the	RINTC	Workgroup	(2018),	which	is	an	extension	of	the	model	
by	Dezi	 et	 al.	 (2009)	 and	 Carbonari	 et	 al.	 (2011,	 2012,	 2018),	was	 taken	 as	 a	 reference.	 Two	
variants	of	such	model	were	implemented,	related	to	shallow	and	pile	foundations,	respectively.	
They	are	described	in	Sections	4.5.1	and	4.5.2.	

4.5.1 LPM	for	shallow	foundations	

For	shallow	foundations,	the	model	proposed	by	the	RINTC	Workgroup	was	simplified	in	order	
to	neglect	the	rocking-sway	coupling.	The	adopted	system	is	shown	in	Figure	4.50.		

	

	
Figure	4.50:	The	adopted	Lumped-Parameter	Model	for	shallow	foundations.	

The	 crucial	 feature	 of	 this	 LPM	 is	 the	 introduction	 of	 a	 translational	 fictitious	 (non-physical)	
mass	 mx	 in	 the	 interface	 node	 (representing	 the	 foundation),	 linked	 to	 the	 ground	 by	 a	
translational	 spring	 (of	 constant	 kx)	 and	 by	 a	 dashpot	 (of	 constant	 cx).	 This	 system	 is	
characterised	 by	 a	 frequency-dependent	 response	 to	 an	 input	 and	 thus	 allows	 for	 an	
approximate	 description	 of	 the	 frequency	 dependence	 of	 the	 impedance.	 Expressing	 the	
equation	of	motion	of	the	system	without	the	superstructure	in	the	frequency	domain,	it	can	be	
easily	 seen	 that	 the	 dynamic	 impedance	 decreases	 parabolically	 (kx	 –	mx	ω2)	 with	 frequency,	
whereas	the	imaginary	part	increases	linearly	(cx	ω)	with	frequency.	In	case	the	foundation	mass	
is	taken	into	account,	it	is	added	to	the	fictitious	mass	in	the	same	node.	

In	 order	 to	 model	 the	 foundation	 rotation,	 the	 LPM	 includes	 a	 rotational	 mass	 mry	 in	 the	
interface	 node,	 linked	 to	 the	 ground	 by	 a	 rotational	 spring	 (of	 constant	 kry)	 and	 dashpot	 (of	
constant	cry).	

The	soil	portion	of	the	LPM	is	thus	characterised	by	two	independent	degrees	of	 freedom.	The	
mass	matrix	takes	the	form:	

mx ,mry

ms

ks ,cs

Heff ·�f

�f

kry

cry

kx

cx

Heff
Interface node

x

z
y

f(t) = ms·a(t)



A	nonlinear	macro-element	for	SSI	analysis	in	the	Groningen	region	 134	

	

 

𝐌 = 𝑀!! 𝑀!"
𝑀!" 𝑀!!

=
𝑚! 0
0 𝑚!"

	 	 	 	 	 	 	 														(4.7)	

	

The	stiffness	and	damping	matrices,	K	and	C,	are	written	similarly.	The	six	diagonal	terms	of	the	
matrices,	namely	M11,	M22,	K11,	K22,	C11,	C22,	which	are	coincident	with	the	parameters	of	the	soil	
portion	of	the	LPM,	are	obtained	by	fitting	the	two	components	of	impedance	(i.e.,	translational	
and	rotational)	with	parabolic	and	linear	functions	for	the	real	and	imaginary	parts,	respectively.	
Figure	4.51	shows	an	example	of	such	fit,	 for	a	structural	SDOF	with	 first	natural	 frequency	of	
7.6	Hz.	As	done	 for	 the	macro-element	case,	 in	order	 to	capture	 the	 inertial	 interaction	effects	
between	 the	 superstructure	 and	 the	 foundation,	 the	 superstructure	mass	 is	 placed	 above	 the	
ground	at	 the	building	centroid	height,	Heff.	 Similarly,	 the	seismic	acceleration,	a(t),	 is	 input	 to	
the	 system	 as	 an	 inertia	 force	 history,	 f(t),	 applied	 to	 the	 superstructure	mass:	 this	 approach	
properly	 considers	 the	 inertial	 components	 in	 the	 presence	 of	 the	 structure	 (structure	 and	
foundation	 masses	 and	 their	 interaction),	 resulting	 in	 a	 response	 in	 terms	 of	 relative	
displacements	with	respect	to	the	ground	motion.	

	

	
Figure	4.51:	Sample	fit	of	real	and	imaginary	parts	of	two	impedance	components,	in	the	0	-	10	Hz	frequency	

range.	

4.5.1.1 Properties	of	the	LPM	systems	for	buildings	with	shallow	foundations	

This	section	summarises	the	properties	of	the	LPM	systems	that	were	used	in	the	derivation	of	
fragility	 functions	 for	 shallow	 foundation	 index	 buildings.	 Such	 properties	 were	 obtained	 by	
fitting	 the	 impedance	 functions	 presented	 in	 Section	 4.2.	 Since	 the	 computation	 of	 these	
impedances	was	based	on	the	equivalent	macro-element	properties,	some	sets	of	functions	were	
used	 for	 more	 than	 one	 building,	 characterised	 by	 the	 same	 equivalent	 macro-element.	
However,	 for	 each	 index	 building	 a	 unique	 set	 of	 LPM	 properties	 was	 derived,	 because	 the	
impedance	fit	is	based	on	the	building’s	first	natural	frequency.	

The	following	tables,	from	Table	4.18	to	Table	4.22,	report	the	retrieved	properties	of	the	LPM	
systems	for	all	 terraced	and	detached	index	buildings,	 in	terms	of	mass,	stiffness	and	damping	
coefficients,	for	all	five	scaling	factors	considered.	
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Table	4.18:	Properties	of	the	LPM	for	Zijlvest	index	building.			

	 SF1	 SF2	 SF3	 SF4	 SF5	

mx	(ton)	 7.282E+03	 5.808E+03	 4.999E+03	 4.580E+03	 3.793E+03	

mry	(ton*m2)	 4.740E+05	 4.508E+05	 4.215E+05	 3.950E+05	 3.413E+05	

kx	(kN/m)	 9.709E+06	 7.788E+06	 6.407E+06	 5.406E+06	 3.848E+06	

kry		(kNm/rad)	 7.683E+08	 6.216E+08	 5.154E+08	 4.377E+08	 3.172E+08	

cx	(ton/s)	 8.050E+04	 7.207E+04	 6.545E+04	 6.052E+04	 5.207E+04	

cry		(ton*m2/s)	 7.059E+04	 5.817E+04	 4.913E+04	 4.249E+04	 3.202E+04	

	
Table	4.19:	Properties	of	the	LPM	for	Kwelder	index	building.	

	 SF1	 SF2	 SF3	 SF4	 SF5	

mx	(ton)	 2.727E+02	 2.209E+02	 1.811E+02	 1.520E+02	 1.069E+02	

mry	(ton*m2)	 1.435E+04	 1.296E+04	 1.190E+04	 1.114E+04	 9.903E+03	

kx	(kN/m)	 4.695E+06	 3.780E+06	 3.123E+06	 2.644E+06	 1.899E+06	

kry		(kNm/rad)	 1.329E+08	 1.074E+08	 8.903E+07	 7.585E+07	 5.509E+07	

cx	(ton/s)	 2.414E+04	 2.177E+04	 1.976E+04	 1.819E+04	 1.559E+04	

cry		(ton*m2/s)	 2.947E+04	 2.769E+04	 2.624E+04	 2.494E+04	 2.259E+04	

	

Table	4.20:	Properties	of	the	LPM	for	Badweg	index	building.	

	 SF1	 SF2	 SF3	 SF4	 SF5	

mx	(ton)	 2.926E+02	 2.403E+02	 1.826E+02	 1.529E+02	 1.135E+02	

mry	(ton*m2)	 1.470E+04	 1.332E+04	 1.216E+04	 1.123E+04	 9.553E+03	

kx	(kN/m)	 3.013E+06	 2.427E+06	 2.006E+06	 1.703E+06	 1.230E+06	

kry		(kNm/rad)	 8.948E+07	 7.230E+07	 5.996E+07	 5.107E+07	 3.703E+07	

cx	(ton/s)	 1.452E+04	 1.293E+04	 1.179E+04	 1.088E+04	 9.275E+03	

cry		(ton*m2/s)	 2.513E+04	 2.317E+04	 2.152E+04	 2.030E+04	 1.849E+04	

	
Table	4.21:	Properties	of	the	LPM	for	Dijkstraat	index	building.	

	 SF1	 SF2	 SF3	 SF4	 SF5	

mx	(ton)	 2.350E+03	 1.998E+03	 1.733E+03	 1.564E+03	 1.222E+03	

mry	(ton*m2)	 4.901E+04	 4.798E+04	 4.749E+04	 4.653E+04	 4.345E+04	

kx	(kN/m)	 4.355E+06	 3.511E+06	 2.900E+06	 2.460E+06	 1.770E+06	

kry		(kNm/rad)	 1.550E+08	 1.254E+08	 1.040E+08	 8.853E+07	 6.442E+07	

cx	(ton/s)	 3.402E+04	 3.013E+04	 2.725E+04	 2.501E+04	 2.114E+04	

cry		(ton*m2/s)	 2.403E+05	 1.989E+05	 1.702E+05	 1.530E+05	 1.245E+05	
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Table	4.22:	Properties	of	the	LPM	for	De	Haver	index	building.	

	 SF1	 SF2	 SF3	 SF4	 SF5	

mx	(ton)	 1.897E+03	 1.509E+03	 1.230E+03	 1.029E+03	 7.140E+02	

mry	(ton*m2)	 5.448E+04	 4.891E+04	 4.454E+04	 4.118E+04	 3.545E+04	

kx	(kN/m)	 9.530E+06	 7.647E+06	 6.288E+06	 5.305E+06	 3.773E+06	

kry		(kNm/rad)	 2.721E+08	 2.199E+08	 1.821E+08	 1.550E+08	 1.125E+08	

cx	(ton/s)	 1.208E+05	 1.077E+05	 9.797E+04	 8.942E+04	 7.538E+04	

cry		(ton*m2/s)	 2.454E+05	 2.310E+05	 2.183E+05	 2.081E+05	 1.887E+05	

 

4.5.2 LPM	for	pile	foundations	

For	 pile	 foundations,	 the	model	 proposed	 by	 the	RINTC	Workgroup	was	 implemented	 “as	 is”,	
thus	accounting	for	the	rocking-sway	coupling.	The	latter	 is	achieved	by	adding	a	translational	
mass,	spring	and	dashpot	(mx,ry,	kx,ry,	cx,ry),	connected	to	the	interface	node	by	three	rigid	links	of	
length	hm,	hk	and	hc,	respectively.	The	adopted	system	is	shown	in	Figure	4.52.	

	

	
Figure	4.52:	The	adopted	Lumped-Parameter	Model	for	deep	foundations.	

The	soil	portion	of	the	LPM	is	characterised	by	three	degrees	of	freedom,	but	only	two	of	them	
are	independent,	due	to	the	presence	of	rigid	links.	The	mass	matrix	thus	takes	the	form:	

	

𝐌 = 𝑀!! 𝑀!"
𝑀!" 𝑀!!

=
𝑚! +𝑚!,!" ℎ! ∙𝑚!,!"

ℎ! ∙𝑚!,!" 𝑚!" + ℎ!! ∙𝑚!,!"
	 	 	 	 	 														(4.8)	

	

mx ,mry

ms

ks ,cs

Heff ·�f

�f

kry

cry

kx

cx

Heff
Interface node

mx,ry

kx,ry

cx,ry

hc
hk

hm

x

z
y

f(t) = ms·a(t)



A	nonlinear	macro-element	for	SSI	analysis	in	the	Groningen	region	 137	

	

 

The	stiffness	and	damping	matrices,	K	and	C,	are	written	similarly.	The	following	relationships	
hold	for	mass:	

	

𝑚!,!" = 𝑀!" ℎ!
𝑚! = 𝑀!! −𝑀!" ℎ!
𝑚!" = 𝑀!! − ℎ! ∙𝑀!"

	 	 	 	 	 	 	 	 														(4.9)	

	

and	similarly	for	stiffness	and	damping,	for	a	total	of	nine	equations.	Such	equations	have	twelve	
unknowns	and	hence	 the	heights	hm,	hk	 and	hc	must	be	assigned	arbitrarily.	 Since	all	matrices	
must	be	positive	definite,	nine	inequalities	must	be	satisfied.	For	masses	it	is	possible	to	write:	

	

𝑀!! > 0,  𝑀!! > 0,   𝑀!"
! < 𝑀!! ∙𝑀!!	 	 	 	 	 	 	 											(4.10)	

	

and	similarly	for	stiffness	and	damping.	Likewise,	the	LPM	parameters	must	be	positive	definite,	
resulting	in	further	conditions,	here	reported	only	for	the	mass	terms:	

	

𝑚!,!" > 0,    𝑚! > 0,   𝑚!" > 0,   ℎ! > 𝑀!" 𝑀!! ,   ℎ! < 𝑀!! 𝑀!"	 	 	 											(4.11)	

	

The	nine	 terms	of	 the	matrices,	namely	M11,	M22,	M12,	K11,	K22,	K12,	C11,	C22,	C12,	are	obtained	by	
fitting	 the	 available	 three	 components	 of	 impedance	 (translational,	 rotational	 and	 roto-
translational)	with	parabolic	and	linear	functions	for	the	real	and	imaginary	parts,	respectively.	
Figure	4.53	shows	an	example	of	such	fit,	 for	a	structural	SDOF	with	 first	natural	 frequency	of	
5.6	Hz.	It	can	be	noted	that	some	components	of	the	real	part,	in	particular	the	translational	and	
roto-translational,	 are	 increasing	 in	 the	 low	 frequency	range.	This	 is	 somehow	expected,	 since	
these	 functions	 are	 related	 not	 to	 the	 single	 pile	 but	 to	 groups	 of	 piles:	 in	 this	 case	 the	
impedance	 is	 function	 of	 the	 spacing	 over	 diameter	 ratio	 and	 can	 be	 actually	 increasing	 in	 a	
given	frequency	range.	For	these	components,	the	same	parabolic	decreasing	function	had	to	be	
adopted	for	consistency	with	the	employed	LPM	model,	but	it	was	set	to	be	almost	constant	in	
order	to	be	as	close	as	possible	to	the	target	impedance.	

Given	 the	 three	matrices,	 the	parameters	of	 the	 soil	 portion	of	 the	LPM	are	 then	 retrieved	by	
assigning	the	three	heights	and	using	Eq.	(4.9)	and	the	inequalities	above.	

The	seismic	acceleration,	a(t),	 is	 input	to	the	system	as	an	 inertia	 force	history,	 f(t),	applied	to	
the	 superstructure	 mass:	 this	 approach	 properly	 considers	 the	 inertial	 components	 in	 the	
presence	of	the	structure	(structure	and	foundation	masses	and	their	interaction),	resulting	in	a	
response	in	terms	of	relative	displacements	with	respect	to	the	ground	motion.	
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Figure	4.53:	Sample	fit	of	real	and	imaginary	parts	of	three	impedance	components,	in	the	0	-	10	Hz	frequency	

range.	

4.5.2.1 Properties	of	the	LPM	systems	for	buildings	with	pile	foundations	

This	section	summarises	the	properties	of	the	LPM	systems	that	were	used	in	the	derivation	of	
fragility	functions	for	pile	foundation	index	buildings.	Such	properties	were	obtained	by	fitting	
the	impedance	functions	presented	in	Section	4.3.	

The	following	tables,	from	Table	4.23	to	Table	4.25,	report	the	retrieved	properties	of	the	LPM	
systems	for	all	apartment	index	buildings,	 in	terms	of	mass,	stiffness,	damping	coefficients	and	
length	of	rigid	links,	for	all	five	scaling	factors	considered.	

	
Table	4.23:	Properties	of	the	LPM	for	Drive-in	index	building.			

	 SF1	 SF2	 SF3	 SF4	 SF5	

mx	(ton)	 5.810E-03	 5.100E-03	 4.540E-03	 4.110E-03	 3.390E-03	

mry	(ton*m2)	 6.512E+02	 7.806E+02	 9.060E+02	 1.011E+03	 1.214E+03	

mx,ry	(ton)	 2.300E-04	 2.100E-04	 1.900E-04	 1.800E-04	 1.500E-04	

hm	(m)	 16	 16	 16	 16	 16	

kx	(kN/m)	 6.325E+06	 5.527E+06	 4.907E+06	 4.429E+06	 3.622E+06	

kry		(kNm/rad)	 7.587E+06	 7.271E+06	 6.930E+06	 6.588E+06	 5.831E+06	

kx,ry	(kN/m)	 1.144E+06	 1.032E+06	 9.427E+05	 8.732E+05	 7.532E+05	

hk	(m)	 4	 4	 4	 4	 4	

cx	(ton/s)	 2.619E+04	 2.420E+04	 2.249E+04	 2.130E+04	 1.860E+04	

cry		(ton*m2/s)	 8.521E+03	 4.700E+03	 4.124E+03	 4.409E+03	 7.417E+03	

cx,ry	(ton/s)	 3.473E+04	 3.385E+04	 3.304E+04	 3.231E+04	 3.077E+04	

hc	(m)	 1	 1	 1	 1	 1	
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Table	4.24:	Properties	of	the	LPM	for	K-Flat	index	building.	

	 SF1	 SF2	 SF3	 SF4	 SF5	

mx	(ton)	 3.110E-02	 2.698E-02	 2.376E-02	 2.130E-02	 1.713E-02	

mry	(ton*m2)	 1.935E+03	 2.378E+03	 2.824E+03	 3.232E+03	 4.132E+03	

mx,ry	(ton)	 1.650E-03	 1.480E-03	 1.350E-03	 1.240E-03	 1.060E-03	

hm	(m)	 16	 16	 16	 16	 16	

kx	(kN/m)	 7.619E+06	 6.565E+06	 5.745E+06	 5.119E+06	 4.066E+06	

kry		(kNm/rad)	 1.652E+07	 1.572E+07	 1.488E+07	 1.407E+07	 1.232E+07	

kx,ry	(kN/m)	 1.925E+06	 1.729E+06	 1.573E+06	 1.449E+06	 1.235E+06	

hk	(m)	 4	 4	 4	 4	 4	

cx	(ton/s)	 2.365E+04	 1.980E+04	 1.653E+04	 2.113E+04	 1.592E+04	

cry		(ton*m2/s)	 2.819E+04	 1.930E+04	 1.295E+04	 1.596E+04	 1.174E+04	

cx,ry	(ton/s)	 9.466E+04	 9.295E+04	 9.152E+04	 8.306E+04	 8.097E+04	

hc	(m)	 1	 1	 1	 1	 1	

	
Table	4.25:	Properties	of	the	LPM	for	Georg	van	S	index	building.	

	 SF1	 SF2	 SF3	 SF4	 SF5	

mx	(ton)	 9.470E-03	 8.260E-03	 7.320E-03	 6.600E-03	 5.380E-03	

mry	(ton*m2)	 1.575E+03	 1.873E+03	 2.133E+03	 2.303E+03	 2.498E+03	

mx,ry	(ton)	 5.100E-04	 4.600E-04	 4.200E-04	 3.900E-04	 3.400E-04	

hm	(m)	 16	 16	 16	 16	 16	

kx	(kN/m)	 7.845E+06	 6.793E+06	 5.980E+06	 5.355E+06	 4.307E+06	

kry		(kNm/rad)	 1.532E+07	 1.443E+07	 1.351E+07	 1.262E+07	 1.070E+07	

kx,ry	(kN/m)	 2.000E+06	 1.809E+06	 1.658E+06	 1.540E+06	 1.335E+06	

hk	(m)	 4	 4	 4	 4	 4	

cx	(ton/s)	 2.646E+04	 2.292E+04	 1.990E+04	 2.112E+04	 1.639E+04	

cry		(ton*m2/s)	 3.146E+04	 3.034E+04	 3.182E+04	 3.802E+04	 4.700E+04	

cx,ry	(ton/s)	 8.657E+04	 8.509E+04	 8.379E+04	 7.890E+04	 7.735E+04	

hc	(m)	 1	 1	 1	 1	 1	
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5 Impact	of	SSI	on	fragility	functions	
The	development	of	fragility	functions	for	buildings	in	the	Groningen	region	is	beyond	the	scope	
of	this	work	and	interested	readers	are	instead	referred	to	Crowley	et	al.	(2019).	Nonetheless,	in	
order	to	gain	confidence	on	the	results	that	were	obtained	using	the	different	SSI	methodologies	
described	 above,	 in	 particular	 that	 using	 the	 nonlinear	 macro-element,	 it	 was	 felt	 to	 be	
important	to	assess	how	these	influenced	the	fragility	functions	of	the	considered	buildings.	

The	 obtained	 fragility	 curves	 for	 the	 collapse	 limit	 state	 and	 for	 the	 five	 investigated	 index	
buildings	 on	 shallow	 foundations	 are	 shown	 in	 Figure	 5.1.	 Each	 subplot	 displays	 the	 curves	
related	to:	i)	one-dimensional	frequency	independent	model,	ii)	Lumped	Parameter	Model,	and	
iii)	 the	 nonlinear	 macro-element.	 The	 curve	 for	 the	 fixed-base	 case	 is	 also	 displayed	 for	
reference.	 It	 can	 be	 noted,	 in	 general,	 that	 for	 these	 buildings	 with	 shallow	 foundations	 the	
influence	of	SSI	is	small	to	negligible,	and	leads	the	curves	to	be	shifted	to	the	right	with	respect	
to	 the	 fixed-base	 case;	 this	 means	 that	 SSI	 may	 have	 a	 beneficial	 effect	 on	 the	 seismic	
vulnerability	of	these	buildings.	

It	 is	 also	 interesting	 to	 notice	 how,	 for	 the	 stiffer	 and	 stronger	 Kwelder	 detached	 house,	 the	
response	of	the	relatively	weak	soil	plays	a	more	determinant	role	in	the	overall	fragility	of	the	
system,	and	hence	not	only	the	impact	of	the	SSI	modelling	becomes	more	evident,	but	so	does	
also	 the	 significance	 of	 explicitly	 considering	 the	 nonlinear	 response	 of	 the	 soil-foundation	
system.	

 
Figure	5.1:	Proposed	fragility	curves	for	the	investigated	index	buildings	on	shallow	foundations	and	the	

different	SSI	models.	

Figure	 5.2	 presents	 the	 obtained	 collapse	 fragility	 curves	 for	 the	 three	 investigated	 index	
buildings	 on	 pile	 foundations.	 These	 taller	 and	 stronger	 buildings	 are	 more	 affected	 by	 the	
rocking	 response	 of	 the	 foundation	 system,	 which	 is	 visible	 in	 the	 different	 SSI	 modelling	
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approaches.	 A	 beneficial	 effect	 of	 SSI	 is	 also	 quite	 visible	 for	 the	Drive-in	 and	Koeriersterweg	
buildings,	 with	 the	 fragility	 curves	 shifted	 to	 the	 right.	 Moreover,	 taking	 into	 account	 the	
nonlinear	response	of	the	foundation	system,	through	the	use	of	the	macro-elements,	is	shown	
to	have	a	non-negligible	influence	on	the	seismic	vulnerability	of	these	buildings.	

For	 the	 GeorgVanS	 building,	 a	 trend	 opposite	 to	 that	 observed	 for	 K-flat,	 which	 has	 similar	
values	of	foundation	impedances	and	capacity	(and	which	are	larger	than	the	ones	of	Drive-in),	
is	 observed.	Being	GeorgVanS	 a	 stiffer	 and	 taller	 building,	 it	 is	 indeed	 expected	 that	 SSI	 has	 a	
larger	influence	in	its	dynamic	response,	as	visible	in	the	elastic	SSI	fragility	curves	(which	for	K-
flat	coincide	instead	with	the	fixed-base	case).	This	effect	can	also	be	observed	in	Drive-in,	which	
is	also	a	stiffer	building	(albeit	not	as	tall),	and	for	which	the	elastic	SSI	fragility	functions	also	
deviate	 from	 the	 fixed-base	 case.	 One	 can	 also	 note	 that	 the	 SSI	 1-D	 model	 leads	 to	 smaller	
changes	than	the	LPM	one,	because	it	does	not	include	a	rocking	response,	which	is	dominant	for	
these	buildings.	

In	 addition,	 the	 period	 elongation	 experienced	 by	 the	 GeorgVanS	 building	 during	 its	 dynamic	
response	proves	to	be	detrimental	in	terms	of	SSI	effects,	as	clearly	indicated	by	an	LPM	fragility	
curve	shifted	to	the	left.	Still,	the	beneficial	effect	of	considering	soil	nonlinearity	in	the	macro-
element	model	 is	visible	also	 in	 this	case,	with	 the	corresponding	 fragility	curve	shifted	 to	 the	
right	of	the	LPM	one.	

	

 
Figure	5.2:	Proposed	fragility	curves	for	the	investigated	index	buildings	on	pile	foundations	and	the	different	

SSI	models.	
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Closing	remarks	
This	 work	 described	 the	 calibration	 of	 an	 SSI	 nonlinear	 macro-element	 to	 be	 used	 in	 the	
development	of	fragility	functions	for	buildings	in	the	Groningen	region.	Further,	in	order	to	gain	
confidence	 on	 the	 latter,	 calibration	 of	 two	 alternative	 SSI	 approaches	 (one-dimensional	
frequency	 independent	 model	 and	 Lumped	 Parameter	 Model)	 was	 also	 carried	 out,	 and	 the	
results	compared	in	terms	of	their	impact	on	fragility	functions.		

It	was	shown	that	the	results	obtained	with	the	three	different	models	presented	similar	trends,	
which	 is	 reassuring.	 In	 some	 cases,	 the	 nonlinear	 macro-element	 led	 to	 slight	 variations	 in	
fragility,	mostly	for	stiffer	and	stronger	structures	where	the	response	of	the	relatively	weak	soil	
inevitably	plays	a	more	determinant	role	in	the	overall	fragility	of	the	system.	This	lends	further	
weight	to	the	selection	of	this	approach	for	the	development	of	the	v6	fragility	functions.		

Considering	 also	 that	 the	 definition	 of	 modelling	 input	 for	 the	 macro-element	 case	 is	 not	 so	
dependent	on	 the	development	of	 impedance	 functions,	 since	 its	 response	easily	departs	 from	
the	 linear	 elastic	 case,	 this	 is	 an	 SSI	 methodology	 that	 we	 would	 recommend	 for	 future	
applications,	including	parametric	studies	involving	the	variation	of	soil	parameters.		
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ABSTRACT 

During the last two decades, seismic design philosophy has increasingly focused its attention on 
performance-based design issues related to maximum and residual strains and displacements. 
However, performance-based earthquake engineering in geotechnical design has its main barrier in 
the reliable estimation of soil displacements due to the uncertainty on soil properties, its complex and 
highly nonlinear behaviour and due to the difficulty in assessing soil-structure interaction effects. In 
order to correctly estimate such displacements, the development of simplified, yet reliable, analysis 
tools that can be used in seismic design practice is of critical importance. 

Macro-element models for shallow foundations are cost-effective tools suitably representing both the 
nonlinear soil behaviour at near-field and the ground substratum dynamic characteristics at far-field. 
Hence, all aspects of elastic and inelastic behaviour of the foundation system are encompassed into 
one computational entity and are described by the behaviour of a single point at the centre of the 
foundation. No detailed information about the behaviour of the soil mass or individual soil elements is 
needed nor is available, making the macro-element approach primarily intended to be a design tool. 
Nevertheless, despite their growing popularity, existing dynamic macro-elements for shallow 
foundations are not exempt of criticism and improvement: namely, they are not fully consistent and 
are usually developed for planar loading cases only. For that reason, their innovative concepts and 
formulations are herein readdressed and further extended. 

In this work, a significantly enhanced uplift model is introduced which corrects some inconsistencies 
of previous approaches. It is based on a nonlinear elastic-uplift response which also considers the 
cyclic degradation of the contact at the soil/footing interface due to irrecoverable changes in its 
geometry through a damage model coupled to the inelastic deformations. An improved bounding 
surface plasticity model is also proposed which builds on the preceding ones in order to reproduce a 
more general and realistic behaviour, namely in what refers to dynamic loading and 
unloading/reloading cycles. It includes a new mapping rule for defining the image point and its 
corresponding directions of plastic deformations, allowing for a better simulation of the evolution of 
displacements. An innovative cutting-plane type of return mapping algorithm is devised which, unlike 
previous models, correctly takes into account the simultaneous elastic-uplift and plastic nonlinear 
responses. Finally, the proposed macro-element formulation is fully applicable to three-dimensional 
loading cases. 

A set of validation analyses is presented, based on results from experimental tests in order to assess 
and establish the accuracy and capabilities of the proposed model. The encouraging outcome of such 
validation shows that macro-element models have reached a stage where their application to seismic 
design is straightforward, leading to a more efficient design and to higher confidence in the predicted 
structural response. The validation tests are also used for calibrating adequate default values for the 
small number of parameters of the macro-element. 

Keywords: nonlinear macro-element; soil-foundation-structure interaction; shallow foundation; three-
dimensional; uplift; bounding surface plasticity. 



1. INTRODUCTION 

Under earthquake actions, foundation systems are expected to rotate, translate and potentially move 
vertically (settlement and/or uplift depending on the seismic action and on the structural system). This 
added flexibility is also related to an added energy dissipation capacity due to soil hysteretic response 
and due to radiation damping effects. The ensemble of these phenomena is known as soil-structure 
interaction (SSI) effects, which are well known to be significant for stiff structures on soft soil and 
negligible for flexible structures on stiff soil. 

Typically, the approaches proposed in literature to treat the nonlinear dynamic SSI problems can be 
broadly divided into direct methods and hybrid methods. Direct methods treat the soil-structure 
interaction as a global problem, namely with the soil and the structure included within the same 
numerical model and analysed as a complete system, without decomposing it into subdomains 
(Lysmer et al., 1975; Prévost, 1999; Anastasopoulos et al., 2011). Analyses with direct methods, such 
as the finite element method (FEM), are considered to be rigorous and accurate, capable of taking into 
account foundations of arbitrary complexity, as well as soil heterogeneities and nonlinearities at the 
foundation level (such as foundation sliding and uplift), but involving exhaustive computational effort 
and difficulties in the calibration of its parameters, in particular when sophisticated constitutive laws 
are adopted for the soil behaviour and soil/foundation interface. Hybrid methods have thus been 
developed as more approachable and less time-consuming analysis, such as the ones based on Winkler 
and macro-element models. They exploit all the advantages of subdomain decomposition, taking into 
account the effects of soil heterogeneities and nonlinearities in an approximate way.  

Hybrid methods combine the features of both substructure methods and of FEM. Their basic concept 
is to divide the soil medium into a far-field region and the near-field. The far-field is a domain 
sufficiently distant from the foundation, and it is governed by the propagation of seismic waves, 
assuming that nonlinear effects do not occur. It can be modelled by dynamic impedances (Gupta et al., 
1980), absorbing boundaries (Bielak and Christiano, 1984), integral equation method (Aubry, 1986), 
spectral element method (Faccioli et al., 1998), etc. The near-field takes into account all the 
nonlinearities occurring in the system, as well as all soil heterogeneities. It can be modeled through 
FEM, Winkler-based models and macro-element models. 

In literature, various Winkler-based approaches have been proposed for modelling the rocking 
response of shallow foundations on either an elastic or inelastic soil medium, and which consider the 
inelastic actions through the effect of uplift of the foundation (e.g. Wiessing, 1979; Psycharis, 1983; 
Chopra and Yim, 1984; Yim and Chopra, 1985; Houlsby et al., 2005; Harden et al., 2005; Allotey and 
El Naggar, 2008; Harden and Hutchinson, 2009). The main advantage of such formulations is that 
they allow the derivation of a global system response by integration of the local spring responses, 
which can even be achieved analytically in case the soil behaviour is linear. On the other side, these 
Beam on Nonlinear Winkler Foundation (BNWF) models are subject to the major limitation of its 
inability to account correctly for the coupling of vertical, moment and shear deformations of the soil 
and, in general, its inability to deal with arbitrary computations of loading from vertical and horizontal 
forces and overturning moments, which is a typical situation during seismic excitation. Besides, 
difficulties in parameters' calibration and in model discretization (namely spacing between springs) 
are other critical issues of BNWF approaches. 

In the category of hybrid approaches, the macro-element concept has been introduced to model the 
near-field soil-foundation behaviour by condensing the entire soil-foundation system into a single 
nonlinear element at the base of the superstructure. Such element aims at reproducing the nonlinear 
SSI effects taking place at the vicinity of the foundation. The linear response of the soil at the far-field 
is governed by the propagation of seismic waves and modelled with the concept of dynamic 
impedances, which, through the use of spring and dashpot elements, represent the global elastic 



stiffness of the system and the radiation of seismic waves away from the foundation. The general 
structure of such model is shown in Figure 1. 

The macro-element framework has been developed by the earthquake engineering community during 
the last 20 years, and is now frequently adopted in research studies, because seismic design 
philosophy has increasingly focused its attention on performance-based design issues related to 
maximum and residual strains and displacements. These are directly related to the level of structural 
damage and subsequent repair and strengthening effort, as well as to the evermore important 
downtime of critical facilities and lifelines. However, performance-based earthquake engineering in 
geotechnical design has its main barrier in the reliable estimation of soil displacements due to the 
uncertainty on soil properties, its complex and highly nonlinear behaviour and due to the difficulty in 
assessing SSI effects. In order to correctly estimate such displacements, the development of 
simplified, yet reliable, analysis tools that can be used in everyday practice of structural and 
geotechnical design is of critical importance. 

Macro-element models for shallow foundations have previously shown to be a cost-effective and 
reliable tool for such type of analysis, since they suitably represent both the nonlinear soil behaviour 
at near-field and the ground substratum dynamic characteristics at far-field, as well as the interaction 
with the seismic response of the structure. Hence, all aspects of elastic and inelastic behaviour of the 
foundation system are encompassed into one computational entity and are described by the behaviour 
of a single point at the centre of the foundation. No detailed information about the behaviour of the 
soil mass or individual soil elements is needed nor is available, making the macro-element approach 
primarily intended to be a design tool. 

Therefore, the macro-element approach reduces the size of the problem significantly, since the footing 
and the soil are considered as a single macro-element characterized by six degrees-of freedom 
(6 DOFs), in the 3D case, whose formulation is based on the resultant forces and displacements. The 
basic assumption in shallow foundations macro-elements is that the footing is considered as a rigid 
body, with the main advantage with respect to the BNWF approach being the coupling between all the 
macro-element DOFs and its definition as a single zero-length link element. 

 

Figure 1. Example of domain decomposition in a hybrid approach using a nonlinear macro-element 



The concept of a macro-element to model the nonlinear response of shallow foundations was first 
developed by Nova and Montrasio (1991). It consisted of an elastoplastic model with isotropic 
hardening for the entire soil-foundation system during quasi-static monotonic loading. The model, 
written in terms of generalized force and displacement variables (e.g. Roscoe and Schofield, 1957), 
was used to predict the vertical settlement of strip footings on sand. In that model, the bearing 
capacity of the foundation under combined loading was represented as a surface in the space of the 
resultant forces acting on the foundation (e.g. Salençon, 1990; Butterfield, 1980). The rugby-ball-
shaped surface of ultimate loads of the system, shown in Figure 2, was identified as the yield surface 
of the plasticity model. That model was later extended by Pedretti (1998) and subsequently by di 
Prisco et al. (2003) to cyclic loading. Based on the isotropic hardening rule of Nova and Montrasio 
(1991) for the case of virgin loading, they introduced a bounding surface formulation (e.g. Dafalias, 
1986) for the case of unloading/reloading that allows obtaining a continuous plastic response of the 
footing during the loading history. 

In parallel, Paolucci (1997) adopted the model by Nova and Montrasio (1991) and its elasto-perfectly 
plastic formulation for studying the response of simple structures subjected to dynamic loading. This 
modelling procedure was followed by subsequent works for different soil conditions (clay, loose or 
dense sand) and different foundation geometries (strip, rectangular, circular shallow foundations), 
leading to accurate formulations of the ultimate surface, the hardening rule and the flow rule (e.g. 
Gottardi et al., 1999; Houlsby and Cassidy, 2002; Cassidy et al., 2005). 

Cremer et al. (2001, 2002) proposed an original approach by introducing the foundation uplift in the 
formulation, modelling independently the two sources of footing nonlinearity: uplift and plasticity. 
Such model considers the coupling between the material and geometrical nonlinearity, as well as their 
coupling with the response of the superstructure. The model was developed for strip foundations on 
cohesive soils under seismic loading and adopted a multi-surface plasticity model. However, it was 
verified that the kinematic and/or isotropic evolution of the inner yield surfaces may become 
numerically intensive and time consuming, especially for complex geometries of the yield surfaces. 

In the last few years, numerous updated macro-element formulations were proposed, as summarized 
in Table 1. The main features, the experimental benchmarks on which they have been validated, as 
well as the corresponding references are indicated therein. The plasticity macro-element model 
proposed by Cremer et al. (2001, 2002) was modified by Grange et al. (2008) and it was tentatively 
extended to circular footings and three-dimensional loading. 

Paolucci et al. (2008) proposed to treat the coupling between uplift and soil yielding using a 
formulation inspired in damage mechanics. A stiffness degradation model was introduced through a 
damage parameter using an ad hoc analytical expression that takes into account the reduction of soil-
footing contact area due to cumulative damage in the soil beneath the footing edges. Shirato et al. 
(2008b) also presented a macro-element formulation based on an original uplift model included in the 
Nova and Montrasio (1991) plasticity model. 

 

Figure 2. Rugby-ball-shaped surface of ultimate loads in Nova and Montrasio (1991) 



Gajan (2006) proposed a contact interface model that allowed tackling the evolution of soil-footing 
contact area, described through the introduction of a critical contact area ratio parameter. Several 
contact interface model simulations were carried out and they were compared with large-scale and 
reduced-scale test results (see Table 1). 

Chatzigogos et al. (2009) firstly combined the nonlinear elastic uplift model proposed by Cremer et al. 
(2001, 2002) with a bounding surface plasticity model for circular footings on cohesive soils under 
cyclic loading. Then, Chatzigogos et al. (2011) generalized the original formulation presenting a 
multi-mechanism macro-element model, for both circular and strip shallow foundations. The 
modelling of the uplift mechanism followed the one proposed by Wolf (1988) and Wolf and Song 
(2002). This model includes both cohesive and frictional soils, two-dimensional or three-dimensional 
foundation geometries and interface conditions allowing for foundation uplift or not.  

Figini et al. (2012) presented a novel formulation of a macro-element for dynamic analysis of 
structures lying on shallow foundations. This macro-element combines the main features of the two 
macro-element models by Paolucci et al. (2008) and Chatzigogos et al. (2011). An uplift-plasticity 
coupling is now described through the concept of footing effective width, with distinction between 
transient and permanent reduction of the soil-foundation contact area. Moreover, the vertical mapping 
rule was introduced in order to better fit the loading path under seismic loading. This macro-element 
model was carefully validated based on experimental results of three large-size tests (see Table 1). 

Nevertheless, despite their growing popularity in the earthquake engineering community, existing 
dynamic macro-elements for shallow foundations are not exempt of criticism and improvement. 
Namely, they are not fully consistent and are usually developed for planar loading cases only. Their 
innovative concepts and formulations, as described by Chatzigogos et al. (2011) and by Figini et al. 
(2012), are herein readdressed and further extended. 

In this work, a significantly enhanced uplift model is introduced which corrects some inconsistencies 
of previous approaches. It is based on a nonlinear elastic-uplift response which also considers some 
degradation of the contact at the soil/footing interface due to irrecoverable changes in its geometry. 
An improved bounding surface plasticity model is also proposed which builds on the preceding ones 
in order to reproduce a more general and realistic behaviour, namely in what refers to dynamic 
loading and evolution of displacements. Furthermore, a new cutting-plane type of return mapping 
algorithm is devised which, unlike the previous models, correctly takes into account the simultaneous 
elastic-uplift and plastic nonlinear responses. Finally, this superior macro-element formulation is fully 
applicable to three-dimensional loading cases, thus extending the scope of earlier planar-loading 
models. Moreover, the proposed macro-element is now also applicable to rectangular footings and not 
only to strip and circular footings as previous models. Figure 3 schematically represents the type of 
phenomena intended to be modelled with the macro-element. 

 

Figure 3. Schematic footing response in 3D case, accounting for uplift, inelasticity and contact degradation 



Table 1. Overview of recent macro-element models for shallow foundations 

Reference Main Characteristics 
Experimental 
validations 

Grange et al. (2008) Uplift included into plasticity model. Extension of Cremer et 
al. (2001, 2002) model to circular footings and 3D loading 
case 

- TRISEE 

- CAMUS 

- UCDavis 

Paolucci et al. (2008) Uplift-plasticity coupling though a stiffness degradation model - PWRI 

Shirato et al. (2008b) Introduction of uplift model in the Nova and Montrasio (1991) 
plasticity model  

- PWRI 

Gajan and Kutter 
(2008) 

Evolution of the soil-footing contact area though a contact 
interface model. Introduction of a critical contact area ratio 
parameter. Cremer (2001) bounding surface 

 

Chatzigogos et al. 
(2011) 

Bounding surface plasticity combined with the uplift model by 
Cremer (2001). Multi-mechanism macro-element (sliding, 
uplift, plasticity). Radial mapping rule 

 

Figini et al. (2012) Bounding surface plasticity combined with Wolf (1988) uplift 
formulation. Nova and Montrasio (1991) bounding surface. 
Vertical mapping rule. Uplift-plasticity coupling through a 
stiffness degradation model 

- TRISEE 

- PWRI 

- CAMUS 

Proposed model Bounding surface plasticity combined with uplift formulation. 
Uplift-plasticity coupling through uplift initiation and damage 
parameter. Evolutionary mapping rule. Approximate extension 
to 3D behaviour. Implemented in a FEM code available online 

- TRISEE 

- PWRI 

- CAMUS 

- UCDavis 

 

After introducing the macro-element formulation, a set of validation analyses is presented. These are 
based on results from experimental tests in order to assess and establish the accuracy and capabilities 
of the proposed model. The encouraging outcome of such validation shows that this type of macro-
element models has reached a stage where their application to seismic design is straightforward, 
leading to a more efficient design and to higher confidence in the predicted structural response. The 
validation tests are also used for calibrating adequate default values for the small number of 
parameters of the macro-element. 

 

2. MACRO-ELEMENT MODEL 

A footing macro-element model is proposed to represent the dynamic behaviour of isolated rigid 
footings, subjected to three-dimensional inertial loading, from the initial stages of loading up until 
reaching failure. The proposed macro-element is based on the three major features of the response of 
footings, namely: 

 Initial elastic response, 

 Uplift in rocking response, 

 Failure loading conditions. 

The bounding surface plasticity model is used to represent a continuous transition between the initial 
elastic response and the plastic flow at failure, for monotonic, cyclic and dynamic loading conditions. 
The uplift phenomenon is represented by a nonlinear elastic model which, however, takes into 
account and is influenced by the plastic deformation state in the underlying soil. 



The failure surface, and all other quantities of interest, will be described in the space of generalised 
forces or displacements. It should be pointed out that, for dimensional consistency when formulating a 
plasticity model in the loading space instead of the usual stress space, the generalised forces should 
either have the same dimensions or be dimensionless. The same applies to the corresponding 
generalised displacements. Throughout this work, the variables employed in the plasticity formulation 
are dimensionless, unless explicitly stated otherwise. The normalisation adopted for the macro-
element is based on using the footing width, B, and the maximum vertical bearing capacity, Nmax, as 
the normalising variables. 

The geometry considered herein corresponds to a rigid footing of width B and length L. Considering a 
planar loading, for simplicity of notation and visualisation, the footing will be subjected to a rocking 
moment and to both vertical and horizontal forces (Mx, N and Hy respectively), as depicted in Figure 
4. The static and kinematic variables are normalised according to expression (1): 
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where �� and �� are the vertical and horizontal displacements of the foundation centre of mass, and 

�� is its rotation. 

 

Figure 4. Static and kinematic variables (from Chatzigogos, 2009) 

An additive decomposition of the total displacements vector is assumed, resulting in its linear elastic, 
nonlinear elastic (uplift) and plastic components: 

� = ��� + ��� + ��� = ��� + ��� = ���� (2) 

where ���� is the elastic-uplift-plastic displacement vector and ��� = ��� + ��� is the elastic-uplift 
displacement component. The following paragraphs describe the different features of the macro-
element formulation. 

A generalized stiffness matrix,  ���, relating displacement and load increments and whose elements 

are normalised, is introduced as follows: 

�̇ =  ����̇ (3) 

 

2.1 INITIAL ELASTIC RESPONSE 

The initial elastic response of isolated rigid footings has been extensively studied through several 
sophisticated numerical methods, and for the purpose of this macro-element model, the impedances 



available in literature are deemed to represent such behaviour with sufficient accuracy (e.g. Gazetas, 
1991). 

The evolution of the footing loading is assumed to obey the rate form of the elastic constitutive 
relationships: 

�̇ = ����̇�� = ���(�̇�� − �̇��) = �����̇��� − �̇�� − �̇��� (4) 

In this equation, the dimensionless components of the footing load and displacement vectors are given 
by expression (1). 

The initial elastic stiffness matrix is assumed, with sufficient accuracy, to be constant and diagonal. 
The terms on the diagonal represent the foundation static impedances, functions of footing geometry 
and of the soil elastic properties. The diagonal terms in can be determined from standard formulas, 
while the radiation damping response of the foundations was assumed to be well approximated by 
frequency-independent dashpot coefficients based on the literature (e.g. Gazetas, 1991). 

The elastic displacements are always assumed to be related to the current loading by the initial elastic 
stiffness matrix, which may be rendered dimensionless, consistently with expression (1), resulting in: 
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2.2 UPLIFT AND DAMAGE MODELS 

There are two mechanisms contributing to a partial detachment between the footing and the soil: i) a 
gradual degradation of the contact around the edges of the footing due to rocking motion and 
expressed by a damage parameter, D; ii) uplift of the footing for an increasing vertical load 
eccentricity, e. These are discussed in the following paragraphs. 

The uplift mechanism model starts from the formulation of Chatzigogos et al. (2011). It is well known 
that the uplift is a phenomenon of a geometric nature, which leads to a reduction of the soil-footing 
contact area (Figure 5a), corresponding to a reduction of the foundation elastic-uplift tangent stiffness. 
Due to its reversibility, the soil-footing contact area is fully recovered once the load eccentricity 
decreases below the value of uplift initiation, which corresponds to point (��,� − ��,�) in Figure 5b. 

The uplift on elastic soil is put in evidence in the moment-rotation plane by a characteristic S-shape 
curve (Figure 5b). 

 

 

 

 

 

 



a) 

 

b) 

 

Figure 5. a) Geometric configurations before and after uplift initiation; b) behaviour in the moment-rotation plane 
(�� − ��) upon foundation uplift on an elastic soil 

(a)  Statics.  Many interesting results can be obtained by simple statics considerations. For instance, 
considering the geometric configurations represented in Figure 5, the uplift initiation occurs for a load 
eccentricity �� given by: 
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The uplift initiation parameter α in expression (6) is only dependent on the assumed stress distribution 
below the footing and can be determined from simple static considerations. Cremer et al. (2001) 
considered � equal to 2 for nonlinear stress distributions; Wolf (1988) used a value of � equal to 3 for 
a linear stress distribution. On the other hand, Chatzigogos et al. (2009) used � equal to 2 or 3 for 
strip and circular foundations, respectively. In this formulation, the values of � range from 2 to +∞, 
depending on the assumed stress distribution, as shown in Table 1. 

Table 1. Stress distribution below the footing and the corresponding value of uplift initiation parameter (�) 

Stress distribution 
below the footing     

� 2 3 4 +∞ 

� 2 3/2 4/3 1 

 

The calculation of the reduced base width contact after uplift, ��, is related to the parameter �, that 
denotes the percentage of footing area being detached from the soil (Figure 5a), as follows: 

�� = �(1 − �) (7) 

�′ may also be defined through the contact width parameter, �, as follows: 

�� = � (� − 2�), with � ≥ �� (8) 

The � values are also summarised in Table 1 as function of the stress distribution below the 
foundation. It is interesting to note that Wolf (1988) used � equal to 3/2 and Cremer et al. (2001) 
equal to 2, coherently with the value of �. These expressions show that the uplift initiation and �� are 
expressed only as function of the stress distribution, overcoming the confusion regarding stress 
distribution and footing shape of previous approaches (e.g. Chatzigogos et al., 2009). 



Considering � = �� in expression (8), and the definition of �� in expression (6), it results in: 
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Therefore � and � are linked by: 
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Consequently, based only on static considerations, the evolution of the rocking moment for the 
elastic-uplift mechanism can be summarised in the following way: 
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(b)  Kinematics.  Based on static and kinematic considerations, namely considering that: 
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for a rotation around the current centre of gravity (s) of the uplifted footing (Figure 6), for �̇� = 0, 
the increment of generalised forces and displacements at the current centre of gravity (s) can be 
expressed as follows: 
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Figure 6. Foundation uplift on an elastic soil: equivalent foundation width B’, the point s representing the current 
centre of gravity of the uplifted footing 

(c)  Diagonal stiffness matrix at the current centre of gravity.  Assuming that � is constant during a 
loading increment, the elastic-uplift constitutive relationship between generalised forces and 
displacements is written as follows: 
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This corresponds to a diagonal elastic-uplift stiffness matrix when evaluated with respect to the 
current centre of gravity (s), and it is the correct interpretation of Wolf’s (1988) diagonal matrix 
approach. When the elastic-uplift tangent stiffness matrix is evaluated at the geometric footing centre, 
by joining expressions (13) and (14), it thus becomes equal to: 
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Differently from the Chatzigogos et al. (2009) model, in which the stiffness matrix diagonal terms do 
not explicitly depend on the reduced base width and they are taken constant in the vertical and 
horizontal directions, in this macro-element all three diagonal terms are dependent on B’, through the 
percentage of uplifted footing, �. The latter, as well as the total relation �� = �(��

��), for the case of 
constant vertical load, can be obtained by integrating expression (15), resulting in: 
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Moreover, differently from Figini et al. (2012), in which the second order cross-coupling effects, 
���, are considered by adding the geometric terms in the post-processing phase of the displacement 
results, herein they are considered throughout the analysis, as a result of kinematic considerations.  

Replacing expression (17) in (11), the following elastic-uplift moment-rotation relationship is 
obtained: 
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This corresponds to the typical S-shaped moment-rotation curve upon uplift response, shown in  



 

Figure 7. S-shaped moment-rotation response due to uplift phenomenon 

It is worth noting that, if � = 3, the same expression adopted by Chatzigogos et al. (2011), without a 
solid basis, is obtained; on the other hand, if � = 2, the corresponding expression differs from the one 
used in Cremer et al. (2001), revealing another inconsistency of previous formulations. 

(d)  Coupling uplift-plasticity and damage model.  The coupling between footing uplift and soil 
plasticity is treated based on the Cremer (2001, 2002) formulation, together with the stiffness 
degradation model introduced by Paolucci (2008) and adopted in Figini et al. (2012). In this 
formulation, the uplift mechanism is coupled with inelasticity in the soil, through: 

 Eccentricity value for uplift initiation – which is no longer constant, as in expression (6), but 
now interpreted as an evolution towards the one corresponding to a uniform stress distribution 
with increasing vertical load: 
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with �� = � ∙ ����  (19) 

On can note that if �� = 0 →  �� = �; while if �� = 1 →  �� ≈ 5 � to 12 � for values of � between 
1.5 and 2.5 (Figini et al, 2012). A value of 1.5 was assumed in this work. 

 Damage parameter – which takes into account the “rounding” of the contact surface due to 
inelastic soil deformations during rocking response, resulting in a decrease of the contact area. 
The damage parameter in 2D is defined as follows: 
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(20) 

where D is a function of the vertical load N, of the soil/footing contact degradation parameter due to 
rocking, ��, whereas ���,��� is the cumulative plastic foundation rotation at a specific instant of time. 
This parameter can be further generalised in order to take into account a possible recovery of the 
contact due to inelastic settlement: 
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In this work �� was not considered. For the 3D case, separate �� and �� are defined. 
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 Reduction of the effective foundation width, ��, taking into account the nonlinear soil 
behaviour and the uplift: 

�� = � (1 − �)(1 − �) (22) 

All previous equations can still be used but now using ��� instead of �: 

���= 
��

���
=

�

���
����= ������  (23) 

Moreover, due to the coupling between uplift and plasticity, the effective foundation width (22) 
should now be considered instead of (7) in the elastic-uplift stiffness matrix of expression (16). In this 
way, the tangent stiffness matrix correctly considers the evolution of the current centre of gravity, and 
thus of the point of resultant forces, due to both the uplift and damage evolution. It results in a non-
symmetric elastic-uplift tangent stiffness matrix with a dependence on the plastic multiplier. 

 

2.3 FAILURE AND PLASTIC POTENTIAL SURFACES 

The bounding surface adopted in this macro-element depends on the type of soil and its drainage 
conditions during a seismic event. Therefore, different 3D failure surfaces are considered for drained 
and undrained conditions. 

The ultimate surface adopted to describe the drained behaviour is a combination of the one described 
by Butterfield and Gottardi (1994), the one adopted by Nova and Montrasio (1991) and the extension 
to 3D by Bienen et al. (2006). It thus corresponds to the typical “rugby-ball” shape, extended to the 
3D loading space and with an inclination of the ellipse between the horizontal force and the 
corresponding rotational moment for a given constant vertical force. It is expressed as: 
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(24) 

where: 

��� = ��� = [4��(1 − ��)]�.�� (25) 

for the drained case. The peak values of horizontal forces and moments are always attained at �� =
0.5. The ellipse inclination factors are herein taken as zero, although they can also be used to reflect 
the effect of footing embedment.  

For undrained loading the ultimate surface (24) is also adopted, but now ��� reflects the cohesive 
nature of the soil response at lower values of ��: 

��� = 1 − (1 − 2��)��, if 0 ≤ �� < 0.5 (26) 

This undrained failure surface corresponds to the so-called "scallop" shape, which is represented in 
Figure 8 in terms of its intersection in the H-N and M-N planes of loading. It is based on the works of 
Chatzigogos et al. (2007), Ukritchon et al. (1998) and Gourvenec (2007). 



 

Figure 8. Scallop-shaped failure surface for undrained conditions 

The macro-element implementation also considers another undrained loading surface in the case 
where no uplift is allowed, i.e. with unlimited base suction capacity. This failure surface corresponds 
to an ellipsoid as the one adopted by Chatzigogos et al. (2009) 

Regarding the plastic potential surface, also an ellipsoid centred at the origin is adopted, following the 
Butterfield and Gottardi (1994) and Bienen et al. (2006) formulations, which implies a non-
associative flow rule. This surface is represented by the following expression: 
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(27) 

where �� is a scale factor for the plastic potential surface to intercept the bounding surface at the 

current image point and �� is a macro-element parameter. 

 

2.4 BOUNDING SURFACE PLASTICITY MODEL 

The first important concept in bounding surface plasticity is that the generalised forces are limited by 
the bounding surface: 

   0, SQF  (28) 

where Q  is the image point at the bounding surface and it is related to the current loading point, Q, 

by a mapping rule,  SQMapQ , , satisfying certain conditions (Dafalias, 1986). The image point 

must always lay on the bounding surface and the generalised forces vector, by definition, always lies 
on the loading surface: 

   0, SQf  (29) 

The internal variables, S, present in both (28) and (29), describe the evolution of both surfaces. 
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The choice of one loading surface over the infinite number of surfaces that pass through the loading 
point is related to the particular mapping rule chosen. In fact, the loading surface, and its evolution in 
size and/or position with the loading point variation, is simply a practical way of defining the mapping 
rule with some kind of physical reasoning. Note that the loading surface may never cross the 
bounding surface, i.e. it is always enclosed by it. This is usually guaranteed by defining the image 
point as the one having the same unit normal vector to the bounding surface as the unit normal vector 
to the loading surface at the current loading point. Such a constraint is not absolutely necessary except 
when the loading point reaches the bounding surface, thus coinciding with the image point. 

For simplicity reasons, the loading surface is also usually assumed to have a similar shape to the 
bounding surface. It shares a lot of properties with the yield surface of classical plasticity. The main 
difference between the two is that the loading function is always equal to zero, while a yield function 
can be less or equal to zero. The loading surface moves with the loading point, even upon unloading, 
while a yield surface represents the maximum extent of previous yielding.  

Probably the most successful mapping rule for the image point is the radial projection on the 
bounding surface (Dafalias, 1986; Borja et al., 2001). The concept of such mapping is discussed in 

Correia and Pecker (2019), where the bounding surface is centred at BS
0Q  and described by: 

   0,0  SQQ BSF  (30) 

A projection centre, QP, is used to project the current loading point on the bounding surface. The 
mapping rule thus takes the following form: 

    PPP QQQQQQQ  )1(   (31) 

The mapping variable, , varies between zero, when QQ  , and infinity, when PQQ   (in which 

case the image point is indeterminate). By imposing that the unit normal vector to the loading surface 
at the loading point and the unit normal vector to the bounding surface at the image point must 
coincide, together with the mapping rule (31), one is indirectly defining an appropriate loading 

surface. Such loading surface is centred at the point LS
0Q  and is defined by the following equation: 

     0,)(, 00  SQQQQSQQ BS
P

LS Ff   (32) 

This loading surface is homologous to the bounding surface and the projection centre QP occupies the 
same relative position inside both surfaces. It is consequently also called the homology centre. In fact, 
the loading surface represents the locus of all loading points Q with the same value of  for a given 
position of the homology centre. 

It can be easily shown that, for a loading surface defined as above, all the governing equations of the 
plasticity problem can be applied indifferently to the bounding surface or to this loading surface 
instead (see, for instance, Borja et al., 2001). It is noted that , in such case, is to be treated similarly 
to an isotropic hardening parameter for the loading surface. 

From (31), the similarity ratio between the bounding and the loading surfaces is given by the 
following expression: 
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where  is the normalised distance between the loading point and the homology centre with respect to 
the distance between the latter and the image point. It varies between zero and one and corresponds to 



the inverse of the loading parameter, . This loading parameter varies from infinity to one, when the 
bounding surface is attained. Further details on these formulations can be found in Correia and Pecker 
(2019). 

In terms of plastic displacements, the role of the plastic potential surface is to define the direction of 
plastic increments, as well as the magnitude of the plastic modulus, which is dependent on the 
adopted mapping rule. The mapping rule adopted herein is capable of reproducing both the radial 
mapping rule, adopted in Chatzigogos et al. (2011) and the constant vertical mapping rule, adopted in 
Figini et al (2012) in cyclic response, as well as any translational loading, see Figure 9. This is 
achieved by assuming as the projection centre the loading point before the previous unloading. 

 

Figure 9. a) Radial mapping rule; b) Vertical load mapping rule (from Figini et al., 2012) 

The unit normal vector �� on the image point is introduced to define the case of the plastic loading, 

neutral loading and unloading for a given force increment. In case of unloading and neutral loading, 
the response is elastic. In case of plastic loading, the plastic modulus is defined as: 
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��[����(�/����)���)]
 (34) 

where the first expression is valid for virgin loading and the second one is valid for unloading from 
virgin loading and for reloading inside the maximum loading surface. � is the abovementioned 
loading parameter, a scalar quantity that defines the distance between the current state of loading and 
its image point on the bounding surface, while ���� is the minimum loading parameter achieved 
during virgin loading.  

 

3. VALIDATION TESTS FOR THE SHALLOW FOUNDATION 
MACRO-ELEMENT 

The macro-element model presented previously was implemented in the structural analysis software 
SeismoStruct [Seismosoft, 2019]. It requires the definition of 26 input parameters, from which only 3 
need to be calibrated. The model parameters along with their definition and suggested values are 
given in Table 1. They correspond to: 

(a)  2 Geometric parameters.  The footing dimensions (length, L, and width, B). 

(b)  12 Elastic impedances parameters.  The six foundation initial stiffness components, indicated as 
���, �����

, �����
, �����

, �����
, ���, for vertical, horizontal and rotational directions, 

respectively, can be evaluated by using formulas from literature (e.g. Gazetas, 1991), or calibrated 



based on test results. The same applies to the corresponding six equivalent dashpot coefficients for 
radiation damping representation. 

(c)  6 Strength parameters.  These characterise the failure surface and are defined as: 

-the maximum centred vertical load capacity, ����, that corresponds to the ultimate static bearing 
capacity of the foundation and can be evaluated by standard superposition formulas (e.g. Brinch-
Hansen,1970); 

- the maximum base shear capacities, ��,��� and ��,���, and maximum base moment capacities 

��,���, ��,���, ����, which can be calibrated based either on material properties (e.g. soil friction 

angle) or on theoretical values. 

(d)  6 Model specific parameters.  Characterised as follows: 

- the choice of bounding surface type is another parameter, which is depending on whether the 
analysis is drained or undrained. For the drained case, the rugby-ball shape bounding surface is 
appropriate, while for the undrained case, the scallop shape is the right one; 

- the uplift initiation parameter, α, is only dependent on the assumed stress distribution of vertical 
stresses underneath the foundation. It is not affecting much the results, and is typically taken as 3, 
which corresponds to assuming a linear distribution of vertical stresses underneath the foundation for 
the soil at the beginning of the analysis; 

- the exponent for loading history in unloading/reloading, nUR, is usually equal to 1, being related to 
different plastic modulus values for unloading/reloading in comparison to the virgin loading; 

- the soil/footing contact degradation parameter, d , takes into account the decrease of the contact area 
due to cumulative inelastic rocking in the damage model and can be evaluated based on experimental 
results; 

- the normalised reference plastic modulus, plH 0 , calibrated based on experimental results; 

- and the plastic potential surface parameter, g, also calibrated based on experimental results. 

From the above, it turns out that, once the classical elastic and strength parameters for the soil- 
foundation system are known, a small number of 3 free-parameters remains to be calibrated in the 

validation process: plH 0 , the normalised reference plastic modulus, g, the plastic potential surface 

parameter, and d, the damage model parameter. 

In the following, the influence of those calibration parameters is analysed and a comprehensive 
validation process against an international experimental dataset is illustrated aiming to investigate the 
accuracy of the improved macro-element to model the behaviour of shallow foundations during cyclic 
and seismic loading. 

 

 



Table 1. Summary of macro-element parameters related to: (i) geometric and elastic parameters; (ii) strength 
parameters; (iii) model specific parameters 
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Suggested 

Values 
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 �, � footing dimension geometry 

��� 
footing initial vertical 
stiffness (i) estimated based on literature 

(e.g. Gazetas, 1991); 

(ii)calibrated on experimental results, 
when available. 

��� 
footing initial horizontal 
stiffness in x and y direction 

��� 
footing initial rotational 
stiffness in x and y direction 
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���� 
Centred vertical bearing 
capacity Brinch-Hansen (1970) 

Vesic (1973) 

Eurocode8 

Butterfield and Gottardi (1994) 

���� 
Maximum base shear capacity 
along x and y direction 

���� 
Maximum base moment 
capacity around x and y 
direction 

�� Bounding surface type 

1 – rugby-ball shape 

2 – scallop shape 

3 – ellipsoid shape 
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� uplift initiation parameter static consideration 3 

��� exponent for loading history  fixed 1 

�� 
soil/footing contact 
degradation  

calibrated on 
experimental 
results 

0.1 

plH 0  
reference plastic modulus  

(����/� ��� ) 
0.2-0.4 

�� plastic potential parameter 0.5-2 

 

One database compiles selected data of rocking foundation performance in monotonic and slow cyclic 
loading (e.g. Hakhamaneshi et al., 2018); the other one summarises selected data of rocking shallow 
foundation performance in dynamic experiments (e.g. Gavras et al., 2018). The reason for developing 
these databases was to archive the key experimental results and data of independent test series, 



including both centrifuge and 1g shake table tests of SDOF-like models on shallow foundations, in a 
unique and compact form, easy to be used, that allows to better understand the observed response and 
to compare in a synthetic way the experimental results from different datasets. 

Finally, based on this comprehensive validation process against a set of independent experimental 
results, a reduced set of macro-element parameters for shallow foundations on sand is proposed, 
which can be used to perform predictive analyses and applications to earthquake engineering analysis. 

A set of experimental datasets was selected among those collected in both databases in order to 
validate the improved macro-element proposed herein: 

- large scale cyclic tests carried out in the TRISEE research program (e.g. Faccioli et al., 1998); 

- large scale dynamic tests performed at the Japanese Public Work Research Institute (e.g. PWRI, 
2007) 

- reduced scale centrifuge test performed at the Centre for Geotechnical Modeling (CGM) at the 
University of Davis, California, carried out in SSG04 research program (e.g. Gajan, 2006; Gajan and 
Kutter, 2008) and in LJD03 research program (e.g. Deng and Kutter, 2010; Deng et al., 2012). 

- in addition to centrifuge tests, results of a large-scale dynamic test, performed in the CAMUS 
project and not available in the abovementioned databases (e.g. Combescure and Chaudat, 2000; 
Combescure et al., 2001), have been used for the validation. 

Table 2 summarises some relevant information about each test, namely the soil type and relative 
density, the footing geometry (in terms of length to width ratio, B/L, and embedment depth, D), 
superstructure model, loading type, and vertical safety factor, FS). The selected dataset varies in 
model size, testing equipment, superstructure properties, footing shape, supporting soil environment 
and loading protocol. Both uplifting-dominating response and plastic settlement-dominated response 
have been investigated by using tests with different initial safety factors for vertical load, ranging 
from 4 to 30. Ground motion inputs include both cyclic loading of varying amplitude and real or 
artificial earthquake motions. 

Hereafter, a brief description of the setup and load sequence is reported for each test of Table 2, 
followed by the numerical modelling. A comparison between numerical and experimental results is 
presented and discussed.  

Table 2. Summary of soil, foundation and structural properties for the experimental tests used for calibration 

Test 

series 

Test 

type 

Soil  

Sand 

Dr[%] 

Foundation 

Superstructure Loading FS L/B D [m] 

TRISEE 1g 45; 85 1 1 - cyclic 5-7 

PWRI 1g 80 1 0,0.05,0.01 - dynamic 28.5 

CAMUS 1g 71 2.62 0 MDOF shear wall dynamic 4.2 

SSG Centrifuge 80 4.30 0 SDOF shear wall dynamic 4 

 



3.1 TRISEE CYCLIC TESTS 

A programme of large-size, cyclic loading experiments has been carried out in 1997-98, at the ELSA 
laboratory in ISPRA (Italy) (Negro et al., 1998) within the framework of the European research 
Project TRISEE (3D Site Effects and Soil-Foundation Interaction in Earthquake and Vibration Risk 
Evaluation), to investigate the nonlinear interaction between direct foundations and the supporting soil 
under seismic loading. Figure 5.4 depicts the experimental setup of the TRISEE test. It consists of a 
rigid caisson (4 m high, 4.6 m wide, 4.6 m long), filled with saturated Ticino river Sand in dense (HD, 
DR = 85%) and loose (LD, DR = 45%) conditions. A steel foundation model (1m x 1m) was placed in 
the caisson, at the depth of 1m (overburden load: 20 kPa). 

A fixed vertical load was imposed by means of a jack (dense sand: 300 kN; loose sand: 100 kN), the 
resulting static safety factor, evaluated with the classical superposition formula, was found to be about 
7 in LD and 5 in HD conditions. Then, a horizontal load was applied at the top of the vertical column 
of Figure 1. Three distinct loading phases were imposed: (i) small amplitude sinusoidal load-
controlled cycles (0.5 Hz frequency); (ii) artificial seismic loading (maximum seismic coefficient 
H/V=0.20); (iii) cyclic displacement-controlled loading until the collapse of the foundation. Hereafter, 
a comparison is presented between experimental results from loading phase III in the dense and loose 
sand strata and the numerical simulations performed by means of the macro-element. 

 

Figure 1. Scheme of the experimental setup of TRISEE tests 

The values of macro-element parameters used in the numerical simulations are reported in Table 3, 
for both HD and LD cases. The foundation impedances values have been calibrated based on the first 
cycles of phase I experimental results. For the HD case, these values are the same adopted by Figini et 
al. (2012), while for LD case the values of foundation impedance are close to those used by Grange et 
al. (2008). The value of static vertical bearing capacity, ����, is set equal to the value reported in the 
official report of TRISEE experiments. ���� and ���� are evaluated based on material properties 
and on theoretical formulae, according to Butterfield and Gottardi (1994), as previously described.  

The soil/footing contact damage parameter �� was calibrated based on the foundation nonlinear 
response during the Phase II and III, since it is function of the cumulative plastic rotation. In 
particular, �� is chosen to reproduce the observed moment-rocking loops in terms of energy 
dissipation, as well as the variation of the elastic rotational stiffness, as discussed in the section on 

parametric analyses. The plastic modulus plH 0  is determined based on the magnitude of the plastic 

displacements. Finally, the plastic potential parameter, ��, is chosen so that the proportion between 

the horizontal, vertical and rotational plastic displacements is similar to the experimental one. 



Table 3. Macro-element parameters used for the simulation of TRISEE cyclic tests 

Phase 

B 

[m] 

KNN 

[MN/m] 

KHH 

[MN/m] 

KMM 

[MN/m] 

�� 

[-] 

plH 0  

 [-] 

�� 

[-] 

���� 

 [MN] 

HD-III 1 200 110 70 1 0.2 1 1.5 

LD-III 1 30 40 15 0.1 0.2 1.5 0.7 

 

In Figure 2 and Figure 3, the results of the numerical simulations (red lines) are compared with the 
observed ones (black lines) for Phase III, in both HD and LD conditions, in terms of: (a) moment-
rotation cycles; (b) base shear-horizontal displacement cycles; (c) time evolution of rocking angle and 
(d) time evolution of vertical settlements. 

During Phase III, important nonlinearities are developed during this displacement-controlled phase. 
The HD and LD sets of loops in terms of moment-rocking behaviour are quite different: dense sand 
shows a more reversible behaviour than loose sand. In particular, the S-shaped curve observed in 
Figure 2a indicates that the influence of uplift is significant for the HD sand; on the contrary, for LD, 
only plasticity is developed, with larger energy dissipation (Figure 3a): the foundation on loose sand 
presents continuously increasing settlements without uplifting (Figure 3d).  

The numerical results reproduce satisfactorily the behaviour of the foundation in terms of hysteretic 
response in HD (Figure 2a, b) and LD (Figure 3a, b). This indicates that the model is able to 
reproduce correctly both uplift-dominated response (S-shaped curve, HD case in Figure 2a), and the 
plasticity-dominated response (LD case in Figure 3a). In the moment-rotation plane, the attainment of 
the strength capacity and the energy dissipation associated with the shape of the hysteresis loops and 
the stiffness degradation are in good agreement with the observed ones.  

The peak and residual rotations are also well estimated in both HD (Figure 2c) and LD (Figure 3c) 
cases. Moreover, the trend of vertical settlements is well reproduced in terms of shape and amplitude 
for HD (Figure 2c) and LD (Figure 3c) sand. 

 



 

Figure 2. Comparison between numerical simulations (red lines) and experimental results (black lines) of TRISEE 
Phase III-HD test: a) moment vs. rocking angle; b) base shear vs. horizontal displacement; c) rocking angle history, 

d) settlement history 

 

Figure 3. Comparison between numerical simulations (red lines) and experimental results (black lines) of TRISEE 
Phase III-LD test: a) moment vs. rocking angle; b) base shear vs. horizontal displacement; c) rocking angle history, d) 

settlement history 

 

3.2 PWRI DYNAMIC TESTS 

The PWRI shake table tests (e.g. Shirato et al., 2005,2007; Paolucci et al., 2008) were focused on the 
performance of a model shallow foundation under realistic seismic loads. A laminar box (2.1 m high 
and 4 m x 4 m in plan, Figure 4) was placed on the shake table and filled with dry Toyoura sand (with 
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a relative density DR = 80%, mass density ρ = 1.60 x 103 kg/m3, and an internal friction angle of 
42.1°).  

 

Figure 4. Experimental setup of PWRI dynamic tests (after Paolucci et al., 2008) 

The test model, located at the centre of the box on the ground level, consists of three main structural 
components: a steel rack at the top, 5227 N heavy, a 0.5 m sided square foundation block at the 
bottom, and a short steel beam with I cross-section connecting the two massive blocks. The total 
height of the model was 0.753 m, while the height of the centre of mass was 0.420 m from the base of 
the foundation. The total weight of the structural model was 8385 N. The ultimate bearing capacity 
was evaluated from the available results from monotonic centred vertical loading tests on the model, 
and is equal to ���� = 245 kN. The static safety factor FS = 245/8.385 = 29 is implied. For a more 
comprehensive and detailed description of the tests, see Paolucci et al. (2008), Shirato et al. 
(2005,2007). 

Hereafter, the experimental results from PWRI shaking table test are compared with the numerical 
ones for load cases 1-2 and 2-2, corresponding to the seismic inputs shown in Figure 5. 

 

Figure 5. Earthquake records used as input for the PWRI shake table tests 

In the numerical analyses, the superstructure was modelled as a SDOF oscillator through an elastic 
frame element, while the macro-element parameters values are summarised in Table 4. The 
foundation elastic impedances and damping parameters were set equal to the values calibrated by 
Paolucci et al. (2008) through the sweep tests and the initial elastic phases of the earthquake 
excitation. Note that concentrated dashpots at the base of the superstructure were introduced in the 
model to reproduce the radiation damping. The plastic parameters were calibrated on the experimental 
results, as explained for the TRISEE experimental tests. 



Table 4. Macro-element parameters used for the simulation of PWRI dynamic tests 

B 

[m] 

KNN 

[MN/m] 

KVV 

[MN/m] 

KMM 

[MN/m] 

CNN 

[kNs/m] 

CVV 

[kNs/m] 

CMM 

[kNms] 

�� 

[-] 

plH 0  

[-] 

�� 

[-] 

Nmax 

[MN] 

0.5 200 110 70 18 16 2 200 0.2 2 0.235 

 

The comparison between experimental (black line) and numerical (red line) results of case 1-2 is 
shown in Figure 6. From the hysteretic cycles in the moment-rocking angle plot, it is clear that the 
structure is subjected to a large number of loading cycles, since the input motion consists of a very 
long duration (more than 60 s) and high-frequency excitation. In spite of this, the large number of 
loops in the moment vs. rocking plot is adequately reproduced in the simulated response. The 
attainment of the footing limit moment value, of about 1.5 kNm, from 30 s to 50 s is well captured by 
the numerical simulations. The large amount of permanent displacements, equal to 30 mrad for the 
rocking angle and 12 mm for the settlement are correctly predicted by the macro-element model. This 
represents an important improvement with respect to other simulation attempts of PWRI Case 1-2 
(e.g. Shirato et al., 2008b; Paolucci et al., 2008). 

 

Figure 6. Comparison between experimental results (black lines) and numerical simulations (red lines) of PWRI 1-2 
test: a) base moment-rotation hysteretic cycles, b) base moment history, c) rocking angle history, d) evolution of 

settlements 

The experimental and numerical results of case 2-2 are compared in Figure 7. In this case, the 
experimental behaviour presents a large non-regular shaped cycle, ending with a significant stiffness 
degradation, which is promptly recovered after one oscillation (black line). On the contrary, the 
numerical response in terms of hysteretic behaviour appears to be more regular (red line), and not 
capable of reproducing the largest hysteretic cycle of the response, observed around 10.5 s.  
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On the other hand, the history of the foundation base moment is well captured by the numerical 
simulation. Moreover, the evolution in time of the rotation and settlement are in satisfactory 
agreement with the observed one, although the peak rotation is underestimated (30 mrad against 
55 mrad). The uplift model allows to predict the evolution of vertical settlement in reasonable 
agreement, both in magnitude and in shape, while the residual settlement, around 2 mm, is well 
reproduced by the numerical simulation. 

 

Figure 7. Comparison between experimental results (black lines) and numerical simulations (red lines) of PWRI 2-2 
test: a) base moment-rotation hysteretic cycles, b) base moment history, c) rocking angle history, d) evolution of 

settlements 

Figini et al. (2012) have also simulated the PWRI tests. Their results were improved in this 
simulation, particularly in terms of: (a) the moment-rotation hysteretic response – the present macro-
element is able to predict more accurately the number of loops and the energy dissipation; (b) 
settlement prediction – this model is able to follow the trend of vertical settlements in time, with a 
good prediction of the permanent displacements at the end of the excitation, while in Figini et al. 
(2012) the history of vertical settlements is not well captured except for the initial phase of the 
shaking. 

3.3 CAMUS DYNAMIC TESTS 

A series of seismic tests on reinforced concrete (RC) shear wall structures were performed at CEA 
within the Camus Research Project between 1996 and 1999. One of the 1:3 scaled specimens, 
CAMUS IV, is of interest for the validation of the macro-element. The specimen consists of two 
parallel 5-floor RC walls, without openings, connected by 6 floor slabs and with a total mass of 36 
tonnes. While the previous specimens were tested as fixed base wall buildings, the CAMUS IV model 
stands on a 40-cm-deep sand layer (with a relative density DR = 71%, a friction angle of 35° and a dry 
unit weight of 16.1 kN/m3) with two strip foundations (2.1 m x 0.8 m, Figure 8). For more details 
about the setup description and processing of the experimental data, see Combescure and Chaudat 
(2000) and Combescure et al. (2001). A series of increasing intensity seismic tests were performed, 
with the acceleration inputs of interest for this work reproduced in Figure 9. 
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Figure 8. a) General view of the CAMUS experimental setup; (b) dimensions of the sand box and of the two footings 
for the CAMUS IV specimen (after Combescure and Chaudat, 2000) 

 

Figure 9. Input signals used for the numerical simulation of CAMUS IV tests: Nice 0.33 g, 0.52 g and 1.1 g 

In the numerical simulation of CAMUS IV tests, only one of the two shear walls was considered, 
similarly to Cremer et al. (2001) and Figini et al. (2012). It was modelled as a MDOF elastic 
cantilever beam, with lumped masses at each floor. The total mass of the wall including the 
foundation is about 19.3 tonnes. In the numerical simulations, Rayleigh damping was considered for 
the superstructure, to achieve a damping ratio ξ = 2% at frequencies close to the fundamental 
frequency of the structure, which has also been used in Combescure et al. (2001) and Figini et al. 
(2012). 

The macro-element parameters used for the simulation of CAMUS IV tests are summarised in Table 5 
for the three events of Figure 9. The foundation static bearing capacity ���� was taken equal to the 
value used by Cremer et al. (2001), 0.8 MN, corresponding to a static factor of safety FS4. The 
foundation elastic impedances were set equal to those reported in Figini et al. (2012) for Nice 0.33 g 
and Nice 0.52 g tests; these values were calibrated based on the first cycles of the force-displacement 
curves of the Nice 0.05 g test. Note that the elastic rotation stiffness for the Nice 1.1 g test is reduced 
with respect to the previous cases to take into account the degradation of dynamic characteristics of 
the specimen, as reported in Combescure and Chaudat (2000). The footing dashpot coefficients, 
reported in Table 5, are equal to the ones considered by Grange (2008). The parameters of the surface 



of ultimate loads are calibrated based on the Nice 0.52 g test, in which the loads reach their limit 
values. The plastic parameters were calibrated based on the experimental results, as described for the 
TRISEE test simulations. 

Table 5. Macro-element parameters used for the simulation of CAMUS IV dynamic tests 

Input 

[g] 

B 

[m] 

KNN 

[MN/m] 

KVV 

[MN/m] 

KMM 

[MN/m] 

CNN 

[kNs/m] 

CVV 

[kNs/m] 

CMM 

[kNms] 

�� 

[-] 

plH 0  

[-] 

�� 

[-] 

Nmax 

[MN] 

0.33 
0.52 

2.1 230 50 160 200 110 280 10 0.4 0.5 0.8 

1.1 2.1 230 50 140 200 110 280 0.1 0.4 1 0.8 

 

The comparison between the numerical simulation for Nice 0.33 g and the experimental results is 
shown in Figure 10. As can be observed, the simulated results are in very good agreement with the 
observed foundation response. Namely, the hysteretic behaviour of the foundation, governed mainly 
by uplift, is well-reproduced by the macro-element. In what concerns the foundation rotations and 
settlements, they are very well predicted, both in magnitude and in shape throughout the duration of 
the excitation. Likewise, the displacements at the top of the structure agree in both results. 

 

Figure 10. Comparison between experimental results (black lines) and numerical simulations (red lines) of CAMUS 
IV test for Nice 0.33 g: a) base moment-rotation hysteretic cycles, b) base moment history, c) rocking angle history, d) 

evolution of settlements; e) settlement vs. rocking angle; f) evolution of top displacement 

Regarding the results for seismic input Nice 0.52 g, they are depicted in Figure 11. The uplift-
plasticity coupling is well reproduced by the S-shape curves and area of the loops in the moment-



rotation response. The moment of uplift initiation is captured accurately, as well as the limit moment 
level, when the surface of ultimate loads is reached and the plastic displacement flow is produced. 
The history of base moment is also very well followed, similarly to the vertical settlement and rocking 
angle evolutions, which are very close to the experimental ones. These results highlight the capacity 
of the macro-element model to reproduce accurately the coupling between the uplift and plasticity. 

Finally, the numerical results for input Nice 1.1 g are compared with the observed response in Figure 
12. Differently from the previous cases, in which the S-shape of hysteretic behaviour was observed, in 
this case the moment-rotation response is more complex and not symmetric, reaching much larger 
values of the rotation. There are large and irregularly shaped cycles, ending with significant stiffness 
degradation. Although the numerical model does not fit this trend completely, namely not capturing 
the change in stiffness that characterises the largest cycle, the overall response of the foundation is 
qualitatively captured, both in terms of base moment history and in terms of foundation 
displacements. Moreover, the accumulation of residual footing rotations (Fig.5.19c) is satisfactorily 
simulated, as well as the evolution of vertical settlements. Regarding the structural response, the 
simulated top displacement is in good agreement with the experimental one. 

 

Figure 11. Comparison between experimental results (black lines) and numerical simulations (red lines) of CAMUS 
IV test for Nice 0.52 g: a) base moment-rotation hysteretic cycles, b) base moment history, c) rocking angle history, d) 

evolution of settlements; e) settlement vs. rocking angle; f) evolution of top displacement 
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Figure 12. Comparison between experimental results (black lines) and numerical simulations (red lines) of CAMUS 
IV test for Nice 1.1 g: a) base moment-rotation hysteretic cycles, b) base moment history, c) rocking angle history, d) 

evolution of settlements; e) settlement vs. rocking angle; f) evolution of top displacement 

 

3.4 SSG04 CENTRIFUGE TESTS 

Gajan et al. (2005) and Gajan and Kutter (2008) conducted a test programme of centrifuge 
experiments, subjected both to slow lateral cyclic loading and to dynamic base shaking, aiming at 
better understand the behaviour of buildings on shallow foundations under large nonlinear loadings 
and soil stresses representative of field conditions. The experiments have been conducted in a 9.1 m 
radius centrifuge at 20 g centrifuge acceleration.  

The centrifuge test programme consisted of seven series of tests, including 40 models tested under 
different loading conditions. Such tests were performed to study the effects of footing dimensions, 
depth of embedment, initial static vertical factor of safety and soil type on the nonlinear soil-
foundation response. Figure 13 represents the model container and the experimental setup for 
different tests. Hereafter, the focus is on the dynamic loading test, denoted as SSG04, and also shown 
in Figure 13. A soil bed (4.0 m depth) of dry Nevada sand (with relative density, DR = 80% and 
friction angle of 42°, estimated experimentally from the observed ultimate vertical load) was prepared 
inside a rigid container (1.75 m x 0.90 m x 0.53 m, in model dimensions). Scaling laws for centrifuge 
modelling were described in detail in Kutter (1995). 

The structural configuration includes double shear-walls, connected by a rigid floor (Figure 13). The 
total mass of the prototype wall structure, in aluminium, is equal to 36.8 tonnes per footing and height 
of the centre of gravity equal to 5.3 m. Each wall is connected to a strip foundation (with length, 
L = 2.8 m; width, B = 0.65 m; embedment, D = 0 m).  



    

Figure 13. Model container and experimental setups for different tests (left). Experimental setup and instrumentation 
for SSG04 dynamic base shaking tests (right) (after Gajan, 2006) 

The base acceleration, applied in the direction of the longer dimension, corresponds to tapered cosine 
cycles with increasing amplitude and predominant frequency of about 1.2 Hz and with higher 
frequency accelerations superimposed. Different peak base accelerations were obtained by scaling up 
or down the base soil acceleration, simultaneously maintaining the same frequency in dynamic 
shaking tests. Figure 14 shows three acceleration histories, with increasing amplitude, from 0.12 g to 
0.90 g, selected for the numerical simulation of SSG04 centrifuge tests. 

 

Figure 14. Input signals used for the numerical simulation of SSG04 tests, with amplitudes of 0.12 g to 0.90 g 

The shear wall was modelled as a cantilever beam, similarly to Gajan (2006). The values of the 
macro-element parameters are reported in Table 6, for the 0.12 g, 0.55 g and 0.90 g inputs. The elastic 
foundation impedance values, in the vertical and in the horizontal directions, are available in Gajan 
(2006) and used in this work, whereas the initial elastic rotational stiffness was calibrated on the first 
cycles of the moment-rocking response observed at the beginning of the smallest magnitude shaking, 
with peak acceleration equal to 0.12 g. The maximum vertical bearing capacity value was set equal to 
that reported in Gajan (2006). The macro-element parameters characterising the plastic response, were 
calibrated to the experimental results but trying to maintain as many parameters as possible constant 
throughout the different simulations. 

 

 

 

 



Table 6. Macro-element parameters used for the simulation of SSG04 dynamic tests 

Input 

[g] 

B 

[m] 

KNN 

[MN/m] 

KVV 

[MN/m] 

KMM 

[MN/m] 

CNN 

[kNs/m] 

CVV 

[kNs/m] 

CMM 

[kNms] 

�� 

[-] 

plH 0  

[-] 

�� 

[-] 

Nmax 

[MN] 

0.12 2.8 560 150 520 200 100 200 10 0.2 0.5 1.4 

0.55 2.8 560 150 520 200 100 200 0.1 0.2 1.70 1.4 

0.90 2.8 560 150 520 200 100 200 0.1 0.2 1.70 1.4 

 

Figure 15 shows the comparisons of the simulated and observed responses for the 0.12 g test. For the 
smallest magnitude shaking, even though the mobilised moment does not reach the moment capacity, 
the moment-rotation hysteretic loops show an onset of nonlinear behaviour and energy dissipation, 
which is reasonably well-captured by the numerical results. The evolution of foundation rotations and 
of vertical settlements is in good agreement with the observed one. 

 

Figure 15. Comparison between experimental results (black lines) and numerical simulations (red lines) of SSG04 for 
the 0.12 g input: a) base moment-rotation hysteretic cycles, b) base moment history, c) rocking angle history, d) 

evolution of settlements 

The comparison between the macro-element response and the experimental results for the test with 
0.55 g is represented in Figure 16. The foundation dynamic response is dominated by soil plasticity, 
as can be observed by the significant area of the hysteretic loops. Although the numerical simulation 
shows a stiffer response than the observed one, the overall hysteretic behaviour is reasonably well 
reproduced, capturing the moment capacity and the size of the loops. On the contrary, the shear-
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horizontal displacement relationship fails in reproducing the observed response. The experimental 
response shows a significant nonlinear behaviour, which is not well represented in the macro-element 
model response; hence the degradation of the shear stiffness is not captured, producing an 
underestimation of the horizontal displacements. This is likely related to the larger estimated value of 
the maximum horizontal capacity, based on the value of the soil-friction angle, which prevents a more 
significant plastic response. However, the evolution of the simulated foundation deformations 
correlates reasonably well with the experimental ones, especially in terms of general shape. The 
predicted residual settlements are slightly larger than the observed ones, while the history of rocking 
angle follows reasonably well the observed one. Moreover, the evolution of the drift is reproduced 
reasonably well. 

 

Figure 16. Comparison between experimental results (black lines) and numerical simulations (red lines) of SSG04 for 
the 0.55 g input: a) base moment-rotation hysteretic cycles, b) base shear-horizontal displacement cycles, c) rocking 

angle history, d) evolution of settlements; e) settlement vs. rocking angle; f) evolution of drifts 

The numerical results of 0.90 g test are now compared with the observed ones in Figure 17, for the 
foundation response and structural response. The experimental results show that the footing rocks 
through larger amplitude rotations, showing more permanent settlements as the shaking intensity 
increases. The foundation hysteretic loops show unsymmetrical behaviour and a permanent tilt at the 
end of the shaking. This observed behaviour is well predicted by the numerical simulations. The 
moment capacity and the degradation of rotational stiffness with increasing amplitude of rotation are 
captured satisfactorily in the model. On the contrary, as previously also pointed out for the 0.55 g 
input, the shear-horizontal behaviour does not fit the observed one. The simulated evolution of 
foundation displacements, in terms of rocking angle and vertical settlements, is consistent with the 
experimental results: the amount of permanent rotation and vertical settlement is very well 
reproduced, showing almost equal residual values. 
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Figure 17. Comparison between experimental results (black lines) and numerical simulations (red lines) of SSG04 for 
the 0.90 g input: a) base moment-rotation hysteretic cycles, b) base shear-horizontal displacement cycles, c) rocking 

angle history, d) evolution of settlements; e) settlement vs. rocking angle; f) evolution of drifts 

Although some discrepancies in the predicted hysteretic responses were detected, these results can be 
considered very satisfactory, proving the capacity to predict foundation displacements under a very 
high level of seismic input. This can be appreciated if one considers the performance of the available 
simulation results carried out by Gajan (2006). The improvements of the present modelling approach 
are visible in the moment-rocking response simulation, and in the settlement-rotation diagram. 

 

3.5 VARIABILITY OF MACRO-ELEMENT PARAMETERS 

Parameters calibration is a significant aspect to be considered in order for the macro-element model to 
be used for practical applications. For this purpose, the attention was focused on the three discussed 

parameters, the soil/ footing contact degradation parameter, ��, the reference plastic modulus, plH 0  

and the plastic potential, ��, which are specific of this macro-element and cannot be related in a 

straightforward way to the elastic or strength parameters of the soil-foundation system. The objective 
is to find a default set of values that ensures an overall good performance of the model. 

It should be noted that the PWRI macro-element parameters are not considered in this discussion, 
since the �� value used in PWRI simulations differs significantly from the values adopted in other 
tests. The main difference with respect to the other cases is that the most severe PWRI tests are based 
on the combination of a very high static safety factor (FS = 30) and very large levels of seismic 
excitation that may have induced a significant degradation of the contact surface of the soil and the 
foundation, thus requiring an extremely large �� for a proper simulation of the experimental results. 
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From the previous analyses, it can be seen that the parameter that presents a significant variability for 
the various tests is the footing/soil contact degradation parameter, ��, ranging from 0.1 to 10; while 
the plastic potential parameters varies from 0.5 to 2. The reference plastic modulus values set in each 
independent test are quite similar, changing from 0.2 to 0.4. 

The reference plastic modulus, plH 0 . 

The reference plastic modulus, plH 0 , is related to the magnitude of plastic displacements: a lower 

value is associated to larger plastic displacements. It can be observed that  plH 0  = 0.4 occurs only for 

the CAMUS IV tests (for 0.33 g and 0.55 g case) that have shown a uplift-dominated response. On the 
other hand, a value of 0.2 is found for the plastic-dominated response (e.g. TRISEE HD, TRISEE LD, 
SSG04). 

The plastic potential parameter, ��. 

Focusing on the �� parameter, it is one of the parameters used for the plastic potential formulation. 

Changing �� values, the direction of the normal to plastic potential changes. Figure 18 shows the 

variability of �� as a function of the permanent vertical displacement normalised by the foundation 

length, /L. 

 

Figure 18. Variability of the plastic potential parameter �� as function of the normalised vertical displacement, /L. 

The time evolution of settlements is also displayed for five selected case: CAMUS IV 0.33 g and SSG04 0.12 g for 
��=0.5 (left); TRISEE HD III for ��=1 (centre); TRISEE LD III and SSG04 0.90 g for ��=2 (right) 

It can be observed that: 

- �� = 0.5 is found for numerical simulations of experimental test characterised by residual settlement 

/L< 0.5, for example, during the CAMUS IV test and during the SSG04 test with a small level of 
input acceleration (0.12g); 

- ��~ 2 is used for the experimental tests in which the foundations experience significant permanent 

settlement (6.5% for cyclic TRISEE LD; 2.5% for dynamic SSG04).  

- 0.5 <��< 2 is detected in case the /L varies from 0.5% to 1.5% (e.g. CAMUS IV for 1.1 g).  



The effect of the �� values on the numerical response can be also observed in Figure 19. The black 

line represents the observed response during SSG04 test, for 0.55 g input, in terms of the history of 
settlements. The coloured lines correspond to different values of ��, varying from 0.5 to 2. The trend 

observed can be explained as follows: when a low value of �� is adopted, the normal to the plastic 

potential surface is mainly directed along the vertical axis (related to the rotation component of plastic 
displacement); on the contrary, when a high value is adopted, the normal is mainly directed along the 
horizontal axis, that implies higher values of vertical settlement. 

 

Figure 19. Effect of plastic potential parameter, ��, on the numerical results in terms of history of vertical settlement 

The footing/soil contact degradation parameter, ��. 

From the previous analyses, it can be seen that the parameter that presents the most significant 
variability is the footing/soil contact degradation parameter, ranging between 0.1 and 10. It is worth 
noting that such variability can be detected only for dense sand cases, while for the low density cases 
(e.g. TRISEE LD, DR = 45%), it is equal to 0.1. 

The damage parameter is a function of the cumulative plastic rotations and it has been introduced in 
the macro-element formulation to define the damage function D, that takes into account the reduction 
of the contact between the footing and the soil due to irrecoverable downward movement of soil 
beneath the foundation induced by foundation rotations during load cycles. 

It can be observed that within the macro-element formulation, a small value of �� leads to a more 
plastic response with wider hysteresis loops, whereas a large value produces the nonlinear elastic 
response where the uplift is the predominant mechanism, with low energy dissipation.  

In order to provide a practical rule to define its value, for example depending on the FS, a set of 
parametric simulations were carried out, considering two different values of FS, equal to 5 and 15 
respectively. The structural model consists of a square footing with length 7.5 m, on sand with a 
friction angle of 33.5˚, shear modulus of 90 MPa and Poisson’s ratio of 0.3 (e.g. Sotiriadis et al., 
2017). The corresponding footing bearing capacity under pure vertical load was 40 MN. The initial 
stiffness properties of the footing are estimated based on standard formulas for a square foundation. In 
the numerical simulations, the model is characterised by the same bearing capacity of the foundation, 
and by two values of the vertical loads to achieve the two different FS values. A quasi-static cyclic 
displacement loading (in terms of rotation) is applied in one direction with increasing amplitude. The 
results, in terms of hysteretic response, are displayed in Figure 20: the moment-rocking foundation 
response is indicated by a red line for �� = 0.1 and by a blue line for �� = 10. As can be observed, 
the influence of �� is apparent for low FS systems where plasticity seems to play a more significant 



role. On the contrary, systems with a larger FS, where uplift response is dominant, exhibit minor or 
practically no hysteretic damping.  

Based on the validation process, as well as on this independent analysis, it can be concluded that: in 
case of uplift- dominated response (e.g. higher value of FS), or in case of linear response (e.g. in case 
of small shaking amplitude), the effects of �� are negligible; in case of plastic-dominated response 
(e.g. low values of FS), the suggested reference value should be 0.1. 

 

Figure 20. Numerical results in terms of moment vs. rocking angle, obtained by considering two different initial 
safety factors, FS= 5 and FS= 15, and setting ��= 0.1 (red line) and ��= 10 (blue line) 

The results of the simulations confirm that the �� parameter does not affect the results in case of: 
almost linear foundation response; uplift-dominated response. 

On the contrary, the different values of �� parameter produce significant variation in the response. As 

explained previously, this difference is expected, since it is related to the plastic displacement flow, 
when the surface of ultimate loads is reached. As a practical rule, it can be assumed that: �� = 2 for 

plastic-settlement dominated response, that reasonably occurs in case of loose sand; �� = 0.5 for 

uplift-dominated response, that reasonably occurs in the case of dense sand. 

To conclude, the robustness of the model is supported by the relatively limited set of parameters to be 
calibrated. For predictive analyses using the macro-element, and considering shallow foundations on 
sand, the following rules can be suggested: for elastic and strength parameters, use the relationships 
proposed in literature; for model specific parameters, use the parameters of the nonlinear macro-
element discussed above, as a summary of the previous validation experience. It is worth underlining 
that the proposed reference parameter set for sand with different relative density does not depend 
neither on elastic nor on the strength soil parameters. The dependence on the elastic properties of soil 
material is implicitly accounted for in the parameters of the dynamic impedance, while the soil 
strength is implicitly accounted for in the static bearing capacity, ���� . 

 

θmax= 5 mrad θmax= 10 mrad
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4. CONCLUSIONS 

This paper dealt with the numerical modelling of nonlinear foundation behaviour and its interaction 
with the superstructure. An innovative and efficient pile-head macro-element was presented that is 
capable of accurately describing the main features of the dynamic response of rigid isolated footings. 
It was based on the three fundamental characteristics of the footing response: linear elastic behaviour 
at low levels of loading; uplift evolution and its effects on the rocking behaviour; and failure 
conditions. 

The improved macro-element model builds upon the well-consolidated concepts and formulations of 
previous models. Nevertheless, it incorporates some major improvements, namely addressing 
inconsistencies regarding the formulation of the participating mechanisms, such as the soil-footing 
geometric (uplift) and material (soil plasticity) nonlinearities. Moreover, this macro-element 
introduces a significantly enhanced uplift model, based on a nonlinear elastic uplift response which 
also considers some degradation of the contact at the soil/footing interface due to irrecoverable 
changes in its geometry. An improved bounding surface plasticity model is adopted in order to 
reproduce a more general and realistic material nonlinear behaviour, which correctly takes into 
account the simultaneous elastic-uplift and plastic nonlinear responses. Another original feature of 
this model is represented by its implementation in a finite element code and its extension to three-
dimensional cases. 

The macro-element was extensively validated against results of experimental tests, including both 
large-scale and reduced-scale tests. The good, and in some cases excellent, agreement between 
simulated and observed response of foundation subjected to different shaking inputs demonstrates that 
the numerical model is able to qualitatively and quantitatively reproduce the experimental behaviour, 
also when the dynamic nonlinear soil-foundation behaviour plays a dominant role. The prediction of 
foundation displacements fits very well the experimental results. 

The proposed macro-element was tested on the selected cyclic and dynamic experimental datasets 
covering a wide range of variations of geometries, structures and soil properties. Both uplifting-
dominating response and plastic settlement-dominated response were investigated by using tests with 
different initial safety factor for vertical load, ranging from 4 (CAMUS and SSG04) to 30 (PWRI). In 
all experiments, the foundation sand presented a different relative density (from 45% in TRISEE LD 
to 85% in TRISEE HD). Loading inputs included both cyclic loading of varying amplitude and real or 
artificial earthquake motions of moderate and strong intensity (e.g. the maximum input acceleration 
varies from 0.12 g (SSG04 test) to 1.1 g (CAMUS). The remarkable agreement achieved between the 
numerical results and observed response gives an important indication on the robustness and accuracy 
of the macro-element model.  

The numerical model was able to qualitatively and quantitatively reproduce with satisfactory accuracy 
the experimental behaviour, also for the case in which very intense input motions are used (e.g. 
CAMUS 1.1g, SSG04 0.90 g). Even in the case of very high excitation (e.g. PWRI), the macro-
element model seems to be adequate, since it captures the overall hysteretic response and the residual 
settlements and rotation. In the opposite scenario, when the maximum footing rotation is limited to 
about 20 mrad, the numerical model provides very good results (e.g. TRISEE LD; SSG04 for 0.90 g 
input).  

In conclusion, macro-element models have by now reached a very satisfactory level of sophistication 
and the required maturity to undertake a systematic work of parameter calibration. Furthermore, in 
order for them to be of use for the practicing engineer, such calibration effort should eventually lead 
to a database associating specific macro-element models and sets of parameters to specific foundation 
configurations and soil conditions. 



It was therefore another main achievement of the model validation and parametric analyses to define a 
default set of macro-element parameter values that ensures an overall good performance of the model. 
The practical indications regarding the selection of the parameters were provided, related to: (i) 
geometric and elastic parameters; (ii) strength parameters; (iii) model specific parameters. The limited 
number of model specific parameters (3) to be defined is a key aspect that may favour the practical 
use of this model either for application in design or for parametric studies.  
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ABSTRACT 

Performance-based design (PBD) procedures require accurate estimates of both maximum and 
residual displacements in structural systems. Macro-element models are already proven tools for 
designing structures on shallow foundations according to PBD, since they represent a very cost-
effective solution in terms of balance between physical behaviour, simulation accuracy and 
computational cost. This work extends the macro-element approach to the analysis of laterally loaded 
pile-shafts and soil-pile-structure interaction. The lateral response of the entire soil-pile system to 
seismic actions is thus condensed at the pile-head, being represented by a zero-length element located 
at the base of the columns and subjected to the foundation input motion. 

The macro-element model is presented, based on the three fundamental features of the response of 
laterally loaded piles: initial elastic behaviour, gap opening/closure effects and failure conditions. 
These three characteristic behaviours are all made compatible by using an inelastic model which 
accounts for the evolution from initial nonlinear elastic behaviour to full plastic flow at failure. Such 
inelastic model is based on a bounding surface plasticity theory formulation that ensures a smooth 
transition from the initial elastic pile-head response up to nonlinear behaviour and collapse.  

In order to validate the macro-element, its response is compared with numerical results from advanced 
simulations of pile lateral behaviour and with load tests on real piles. 

Keywords: macro-element; soil-pile-structure interaction; pile-head; lateral response; gap; bounding 
surface plasticity. 

 

1. INTRODUCTION 

Recent tendencies in seismic design procedures call for an accurate determination of maximum and 
residual displacements of structural systems, thus requiring efficient design tools for analysing the 
nonlinear seismic performance of structures. While macro-element approaches have proven to be 
adequate for performance-based design of shallow foundations (e.g. Figini et al. [2012]), there are no 
equivalent simplified tools for the analysis of deep foundations. This work aims at broadening the 
scope of such method to the seismic design of extended pile-shaft-supported bridges. Figure 1 depicts 
alternative models for analysing the lateral response of piles, either by using the concept of 
experimentally determined p-y curves or by using a pile-head condensation of the response as adopted 
in the model proposed herein. 

The pile-head macro-element may be regarded as a lumped model located at the base of the 
superstructure which intends to represent the behaviour of the entire soil-foundation system. With the 
aim of realistically simulating the seismic response of a structure, nonlinear cyclic behaviour has to be 
considered not only for the superstructure but also for both the foundation and the supporting soil. The 
main sources of nonlinearity for laterally loaded piles have been shown to be related to soil and pile 
inelastic response, including gap opening and closure. Only when these effects are fully captured, one 
can carry out a performance-based assessment of the structure [Correia, 2011]. 



 

Figure 1. Alternative analysis models for laterally loaded extended pile-shaft  
supports in bridges (Hutchinson et al. [2002]) 

The basic idea of the pile-head macro-element is to replace the full description of the soil and pile 
kinematic, static and constitutive behaviour, in the continuum mechanics sense, by the corresponding 
generalised force and displacement quantities. In fact, while constitutive formulations are usually 
conceived using stress and strain tensors, in this work we are concerned instead with generalised 
forces and displacements. These kinematic and static quantities are related through the inelastic 
constitutive relationships that compose the core of the macro-element. They may be based on any 
viscoelastic-plastic model, after reformulating it in terms of those generalised entities. 

The shallow foundation macro-element developed by Cremer et al. [2001, 2002] adopted a multi-
surface plasticity model. However, it was verified that the kinematic and/or isotropic evolution of the 
inner yield surfaces may become numerically intensive and time consuming, especially for complex 
geometries of the yield surfaces. On the other hand, bounding surface plasticity models have already 
been successfully adopted in shallow foundation macro-element formulations [Chatzigogos, 2007; 
Chatzigogos et al., 2009, 2010; Figini, 2010; Figini et al., 2012]. One such model is adopted herein 
and presented in the following section, together with the fundamental features of the response related 
to initial elastic behaviour, gap opening/closure effects and failure conditions. 

 

2. MACRO-ELEMENT MODEL 

A pile-head macro-element model is proposed to represent the lateral behaviour of single vertical 
piles, subjected to a horizontal load and a moment, from the initial stages of loading up until reaching 
failure. The effects of vertical loading are not directly considered in this model except for its influence 
on the plastic moment of the pile cross-section. Otherwise, it is considered that the upper zone of the 
soil profile, until the depth at which the plastic hinge will form, only contributes to the lateral load 
resistance. The vertical load is assumed to be transferred to the surrounding soil below that depth, 
where there is no influence of gap opening. 

A saturated soil deposit is considered and, upon seismic motion, is assumed to be impervious. The soil 
is thus considered to have undrained behaviour since the aim of the macro-element is to simulate the 
pile response under seismic actions, or short-term cyclic loads, and the Tresca failure criterion is 
assumed to be valid. Figure 2a represents two simplified geotechnical scenarios considered in this 
study, in terms of undrained shear strength (Su) distribution along the depth of the soil deposit: 
constant or linear. Figure 2b illustrates the characteristic soil response for a laterally loaded long pile, 
namely: a soil passive wedge failure at shallow depths and flow-around failure at larger depths, with a 
possible gap formation at the back of the pile. 



 

Figure 2. Simplified (a) geotechnical scenarios and (b) soil response for pile-head lateral loading 

It seems natural to consider, in the context of a bounding surface plasticity model, the failure surface 
presented in Correia et al. [2019] as the limit yield surface for laterally loaded piles in the space of 
generalised forces. It should be pointed out that, for dimensional consistency when formulating a 
plasticity model in the loading space instead of the usual stress space, the generalised forces should 
either have the same dimensions or be dimensionless. The same applies to the corresponding 
generalised displacements. Throughout this work, the variables employed in the plasticity formulation 
are dimensionless, unless explicitly stated otherwise. The normalisation adopted for the macro-
element is based on using the pile diameter, D, and the pile yield moment, My, as the normalising 
variables. 

The proposed macro-element is based on the three major features of the behaviour of laterally loaded 
piles, namely: 

 Initial elastic response, i)
 Gap opening and closure, ii)
 Failure loading conditions. iii)

The bounding surface plasticity model is used to represent a continuous transition between the initial 
elastic response and the plastic flow at failure, for monotonic as well as cyclic pile-head loading 
conditions. The gapping behaviour is represented by a nonlinear elastic model which, however, takes 
into account and is influenced by the plastic deformation state in the surrounding soil. 

An additive decomposition of the displacement rate in its elastic, gap and plastic components is 
considered: 

 plegplgapelegp qqqqqq !!!!!! +=++=  (1) 

where egpq!  is the elastic-gap-plastic displacement rate and gapeleg qqq !!! +=  is the elastic-gap 
displacement rate. The following paragraphs describe the macro-element model characteristics and 
how each of these displacement components is computed. 

 

2.1 INITIAL ELASTIC RESPONSE 

The initial elastic lateral response of single piles has been extensively studied through several 
sophisticated numerical methods, as reviewed in Correia [2011]. For the purpose of this macro-
element model, the pile-head impedances available in literature are deemed to represent such 
behaviour with sufficient accuracy. 

Within the scope of this work, the expressions of the pile-head static stiffnesses presented in EC 8 – 
Part 5 [2003], for the simplified soil profiles consisting of either constant shear wave velocity, VS, a 

Soil wedge failure 
in front of the pile 

Gapping on the 
back of the pile 

Soil flow around 
the pile 

(b)	(a)	



linearly increasing one with depth, or a parabolically increasing one with depth are used. Other 
authors also proposed approximate expressions for the pile-head stiffness coefficients in different 
simplified soil profiles [Randolph, 1981; Davies and Budhu, 1986; Budhu and Davies, 1987, 1988; 
Gazetas, 1991]. Several numerical methods have also been proposed for the determination of the 
elastic response of laterally loaded piles in more complex soil profiles, which may be used in order to 
obtain the corresponding pile-head stiffnesses. Note that, in the macro-element framework, these 
stiffness coefficients, and hence the soil Young’s modulus at the depth of one diameter, ESD, and the 
pile Young’s modulus, Ep, are deemed to represent the initial elastic response and not an equivalent-
linear or effective stiffness state. 

The evolution of the pile-head loading is assumed to obey the rate form of the elastic constitutive 
relationships: 

 ( ) ( )plgapegpelgapegelelel qqqKqqKqKQ !!!!!!! −−=−==  (2) 

In this equation, the dimensionless components of the pile-head load and displacement vectors and of 
the initial elastic symmetric stiffness matrix are given by: 
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The subscript n in these variables stands for normalised or dimensionless. 

 

2.2 GAPPING BEHAVIOUR 

Gap opening and closure in laterally loaded piles is a very complex behaviour and it has considerable 
influence on the response of a single pile, as discussed in Correia et al. [2019], particularly for the soil 
profile with constant Su. For that case, during a monotonic loading application a gap will develop on 
the back of the pile. The failure mechanism used herein predicts that it will reach a depth 
corresponding to the active soil wedge depth at failure conditions, which is also the depth at which the 
plastic hinge will form on the pile.  

For the soil profile with linear Su, instead, no gap opening was predicted for the failure mechanism in 
Correia et al. [2019] and numerical simulations clearly show that the gap influence for this particular 
soil profile is of much less significance. Nevertheless, a gap will certainly develop for cyclic loading 
conditions, which are not considered in yield design theory, due to the increasing plastic deformations 
in the surrounding soil and the progressive soil heave in front of the pile. 

Based on results from other authors and on numerical simulations presented later, a gap evolution 
model is proposed here. A first important note is that the initial horizontal stress state around the pile 
was found to have only a very small influence on the gap behaviour and is thus disregarded in this 
model. 



Despite expression (2) being similar in form to the one used in plasticity theories, this model assumes 
that the elastic-gap displacement components, qeg, have a nonlinear elastic and non-dissipative 
behaviour. Hence, no irreversible components of displacement exist when plasticity is not considered. 
This is successfully simulated by considering that the same tangent stiffness is valid for both loading 
and unloading. However, when plasticity is present, it will affect the gapping behaviour and this 
interaction must, therefore, be taken into account. The following expression formalises the rate form 
of the nonlinear elastic constitutive relationship: 

 egeg qKQ !! =  (4) 

The elastic-gap stiffness matrix, Keg, varies during loading application. It is computed, in a simplified 
manner, as the inverse of a weighted average of the initial elastic flexibility matrix and a flexibility 
matrix considering an open gap on both the front and the back of the pile. The latter is obtained as 
described in the following paragraph. 

(a)  Flexibility matrix with full gap around the pile.  This corresponds to the limit case where a full 
gap has developed, on both the front and back of the pile, up to a depth zgap. It remains permanently 
open due to irreversible deformations of the soil surrounding the pile. Figure 3 describes the variables 
of interest for this situation. It is assumed that the pile is long enough below depth zgap so that the 
“flexible pile” stiffnesses, defined in (3), may be used as if the pile head was at such depth. Moreover, 
it is assumed that the soil and pile moduli of deformation correspond to the initial ones below that 
depth, while an effective stiffness to yield is considered for the pile length above it. This portion of 
the pile behaves as a cantilever on a deformable foundation. A statically equivalent loading at depth 
zgap to the pile-head loading is given by: 
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The conjugate relationship for the pile-head displacements derives directly from Figure 4 and is 
expressed by: 
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In this expression, qp is the pile cantilever contribution for the total deformation above depth zgap. The 
pile displacements at depth zgap are only due to soil flexibility and are expressed as: 
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Figure 3. Permanent full gap up to depth zgap 



 
Figure 4. Transmission of displacements from depth zgap to the pile-head 

where Fel is the static pile-head flexibility matrix for a long pile, given by: 
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On the other hand, the pile cantilever effective flexibility contribution to the total displacement is: 
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By replacing (9) and (7) into expression (6), one finally obtains the formula for the total pile-head 
displacements with a full gap around the pile: 
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The rate form of this relationship is assumed to produce the same tangent stiffness, which corresponds 
to ignoring a possible variation of the gap depth during the application of a load increment. 

(b)  Gap behaviour during virgin loading phase.  Following the reasoning presented thus far, during 
virgin loading phase the elastic-gap stiffness matrix will decrease progressively as the gap depth 
increases. For a given gap depth, the elastic-gap stiffness matrix, relating the pile-head loading rate to 
the rate of displacements according to (4), is assumed to be computed by the following expression: 
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According to (11), the elastic-gap flexibility matrix with a gap opening on the back of the pile equals 
the average of the initial elastic flexibility matrix and the elastic flexibility matrix corresponding to 
the case of a full gap opening around the pile down to the current gap depth. 

On the other hand, the current gap depth value indirectly relates the gapping and plastic behaviours. In 
fact, in this model, it is considered that the maximum gap depth equals the soil wedge depth, zw, 
obtained for the failure mechanism through yield design theory [Correia et al., 2019]. Furthermore, it 
is assumed that the current gap depth is inversely proportional to the loading parameter, λ, which 
varies between +∞ and 1 and is inversely proportional to the distance from the current loading point to 
the failure surface. The gap depth evolution is thus governed by the following relation: 



 βλ
w

gap
z

z =  (12) 

In this expression, β > 0 is a calibration parameter that affects the gap depth rate of growth with 
loading evolution. Note that the asymptotic behaviour of zgap respects the limiting conditions of being 
zero for the initial state, where λ = +∞, and being equal to zw at failure, where λ = 1. 

(c)  Gap behaviour during unloading/reloading phases.  It is assumed that the elastic-gap tangent 
stiffness varies according to (11) and (12), similarly to the virgin loading case. Therefore, detachment 
and re-attachment on opposite sides of the soil/pile interface is considered in the gapping model. 

Moreover, since irreversible plastic displacements occur in the surrounding soil mass and the soil 
presents an increased stiffness upon unloading, an accumulated cyclic gap opening is considered. This 
corresponds to an increasing minimum gap depth, min

gapz , which is not closed during subsequent 
loading cycles. It is assumed that this value depends on the cumulative plastic dimensionless 
displacement, pl

ncumu , , according to the following law: 
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In this expression, η > 0 is the second calibration parameter of the macro-element model, while max
gapz  

is the maximum gap depth attained in previous loadings, corresponding to the loading parameter λmin: 
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On the other hand, (13) may be used to determine the value of the loading parameter corresponding to 
the unloading point at which the minimum gap depth is attained: 
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Inside the loading surface corresponding to this loading parameter value, i.e. for min
gapz

λλ > , there is a 

swift evolution between the elastic-gap stiffness related to a gap open on one side of the pile, defined 
in (11), and the stiffness related to an open gap on both sides, obtained by (10). This evolution is 
expressed by the following relation: 
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These expressions are valid for both unloading and reloading. 

 

2.3 FAILURE SURFACE FOR LATERALLY LOADED PILES 

The bounding surface in the macro-element model proposed hereafter corresponds to the failure 
surface for laterally loaded piles. Since there is no evidence showing that non-associative behaviour 
should be considered, associative plasticity will be used and the bounding surface will act 
simultaneously as the plastic potential surface. Hence, it is important to define this surface as 
accurately as possible and preferably by using a simple and smooth function to represent it. The 



failure surface adopted in this work is the one derived in Correia et al. [2019], which satisfies those 
requirements. 

No axial load effects are considered in this macro-element formulation and, consequently, the failure 
surface is defined in the loading space of the pile-head horizontal force and moment only. 
Furthermore, as already mentioned, a planar loading is assumed.  

A “rounded” approximate failure surface was proposed in Correia et al. [2019], which is based on the 
so-called superellipse. This corresponds to a generalisation of the common ellipse. Supposing a 
superellipse centred at the point (Hc, Mc), with a horizontal axis length 0, =euH  and a vertical axis 

length My, which is also superimposed to a distortion of its shape, γ < 0, this approximate failure 
surface can be expressed as: 
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The positive exponents nH and nM control the curvature of the sides of the superellipse and should be 
≥ 2 so that no corners arise. If both exponents equal two, the common ellipse is retrieved. 

Figure 5 represents such distorted superellipse configuration, centred at the origin (Hc = Mc = 0), with 
its parameters calibrated in order to fit the failure surface for the linear Su soil profile obtained in 
Correia et al. [2019]. It provides a good approximation to the failure surface resulting from the failure 
mechanism optimisation. A distorted superellipse will be used hereafter as the failure surface for the 
macro-element. 

 
Figure 5. Distorted superellipse configuration for linear Su 

2.4 BOUNDING SURFACE PLASTICITY MODEL 

The first important concept in bounding surface plasticity is that the generalised forces are limited by 
the bounding surface: 

 ( ) 0, =SQF  (18) 
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where Q  is the image point at the bounding surface and it is related to the current loading point, Q, 
by a mapping rule, ( )SQMapQ ,= , satisfying certain conditions [Dafalias, 1986]. The image point 
must always lay on the bounding surface and the generalised forces vector, by definition, always lies 
on the loading surface: 

 ( ) 0, =SQf  (19) 

The internal variables, S, present in both (18) and (19), describe the evolution of both surfaces. 

The choice of one loading surface over the infinite number of surfaces that pass through the loading 
point is related to the particular mapping rule chosen. In fact, the loading surface, and its evolution in 
size and/or position with the loading point variation, is simply a practical way of defining the mapping 
rule with some kind of physical reasoning. Note that the loading surface may never cross the 
bounding surface, i.e. it is always enclosed by it. This is usually guaranteed by defining the image 
point as the one having the same unit normal vector to the bounding surface as the unit normal vector 
to the loading surface at the current loading point. Such a constraint is not absolutely necessary except 
when the loading point reaches the bounding surface, thus coinciding with the image point. 

For simplicity reasons, the loading surface is also usually assumed to have a similar shape to the 
bounding surface. It shares a lot of properties with the yield surface of classical plasticity. The main 
difference between the two is that the loading function is always equal to zero, while a yield function 
can be less or equal to zero. The loading surface moves with the loading point, even upon unloading, 
while a yield surface represents the maximum extent of previous yielding. Figure 6 exemplifies these 
concepts for a radial mapping rule and circular surfaces. 

 
Figure 6. Radial mapping rule in bounding surface plasticity 

Probably the most successful mapping rule for the image point is the radial projection on the 
bounding surface [Dafalias, 1986; Borja et al., 2001]. The concept of such mapping is shown in 
Figure 6, where the bounding surface is schematically shown as a circle of centre BS

0Q  and described 
by: 

 ( ) 0,0 =− SQQ BSF  (20) 

A projection centre, QP, is used to radially project the current loading point on the bounding surface. 
The radial mapping rule thus takes the following form: 

 ( ) ( )PPP QQQQQQQ −++=−+= )1( µµ  (21) 



The mapping variable, µ, varies between zero, when QQ = , and infinity, when PQQ =  (in which 
case the image point is indeterminate). By imposing that the unit normal vector to the loading surface 
at the loading point and the unit normal vector to the bounding surface at the image point must 
coincide, together with the mapping rule (21), one is indirectly defining an appropriate loading 
surface. Such loading surface is centred at the point LS

0Q  and is defined by the following equation: 

 ( ) ( ) 0,)(, 00 =−−+=− SQQQQSQQ BS
P

LS Ff µ  (22) 

This loading surface is homologous to the bounding surface and the projection centre QP occupies the 
same relative position inside both surfaces. It is consequently also called the homology centre. In fact, 
the loading surface represents the locus of all loading points Q with the same value of µ for a given 
position of the homology centre. 

It can be easily shown that, for a loading surface defined as above, all the governing equations of the 
plasticity problem can be applied indifferently to the bounding surface or to this loading surface 
instead (see, for instance, Borja et al. [2001]). It is noted that µ, in such case, is to be treated similarly 
to an isotropic hardening parameter for the loading surface. 

From (21), the similarity ratio between the bounding and the loading surfaces is given by the 
following expression: 
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where δ is the normalised distance between the loading point and the homology centre with respect to 
the distance between the latter and the image point. It varies between zero and one. 

In the following, our attention will be focused on the simplest of the radial mapping rules, which will 
prove to be most helpful for the rest of the work. Firstly, a monotonic loading is considered. 
Afterwards, cyclic behaviour is analysed. 

2.4.1 Radial mapping from the origin 

If one considers that both the bounding and loading surfaces are centred at the origin of the loading 
space, the homology centre will consequently also be positioned at that point: 

 0QQQ === P
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Hence, the simplest of the mapping rules results: 
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The loading parameter λ, equal to 1+µ, decreases from infinity to one as the loading vector increases 
from zero until it reaches the bounding surface. It will be used to represent the similarity ratio for this 
particular mapping rule. Moreover, the bounding surface will be assumed to maintain its shape and 
size all the time. Hence, one can represent the self-similar bounding and loading surfaces by the 
following expressions: 

 
( )
( ) ( ) 0,

0

==
=

QQ

Q

λλ Ff

F
 (26) 



It is clear from the above, that the loading parameter represents the scale factor of the bounding 
surface relative to the loading surface. More importantly, it represents the isotropic hardening 
parameter of the current yield/loading surface. 

The plastic displacements’ evolution is described by the plastic flow rule: 

 g
pl nq γ!! =  (27) 

where the unit normal vector to the plastic potential surface, ng, defines the direction of the plastic 
displacements’ increments. The plastic multiplier or consistency parameter, γ! , is greater than zero 
only when plastic deformation occurs, and is identical to zero otherwise. 

The evolution of the internal variables or hardening parameters is defined by the hardening rule, 
which in this case can be expressed as a scalar hardening rule of the following type: 

 ( )λλγλ ,Q!! =  (28) 

The hardening function λ  needs to be completely defined in classical plasticity theory context. 
However, one of the differences towards bounding surface plasticity is that the latter uses a direct 
definition of the plastic modulus instead. Hence, a full explicit description of λ  is not required, as 
seen below. 

The so-called consistency condition in bounding surface plasticity enforces that the image point must 
always lie on the bounding surface, allowing the computation of the plastic multiplier value [Correia, 
2011]. It implies that: 
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The notation can be simplified using the following definitions: 
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where nF is the unit normal vector to the bounding surface. 

The plastic modulus at the current loading point, Hpl, for this mapping rule, is now defined as: 

 ( ) ( )QnQQ ⋅−=⋅∇
∇

−= F
pl F

F
H

λ
λ

γλ
λλ
!

!
,  (31) 

And, using expression (29) and the mapping rule for the image point, the plastic multiplier becomes: 

 ( ) ( )QnQn !!! ⋅=⋅= FplFpl HH
11γ  (32) 



In bounding surface theory, the plastic modulus at the current loading point, Hpl, is obtained by a 
function depending only on the distance between the loading and image points. This function must 
respect some limiting behaviours, namely: 

 When the distance becomes zero and the loading point coincides with the image point, the plastic i)
modulus must be equal to plH , 

 During elastic behaviour the plastic modulus function must be infinite, ii)
 In between the above limits, the plastic modulus must be monotonically decreasing. iii)

According to the a priori definition of the plastic modulus, the evolution of the hardening parameters 
is now constrained by the scalar expression (31). Therefore, in bounding surface plasticity, the 
hardening rule does not have to be completely defined as in (28). 

The bounding surface adopted in the macro-element model presents no hardening since it represents a 
failure surface. Hence, the plastic modulus when the yield/loading surface reaches it is equal to zero. 
An example of a simple plastic modulus in the macro-element context is the one used by Chatzigogos 
[2007] and Chatzigogos et al. [2009, 2010] for monotonic loading of shallow foundations: 

 ( ) λλ ln0
plpl HH =  (33) 

This expression, where plH0  is a constant coefficient for calibration, correctly starts at infinity for 
zero loading and tends to zero as the loading point reaches the bounding surface. It will also be used 
in the pile-head macro-element. 

The distorted superellipse, as defined by Equation (17), is used to represent the bounding, loading, 
and plastic potential surfaces. Moreover, the parameters specified in Correia et al. [2019] are adopted 
for the constant Su and the linear Su soil profiles. 

This macro-element model thus assumes a radial mapping from the origin for virgin loading in order 
to define the image point on the bounding surface. For the planar loading considered and using 
dimensionless variables, the bounding surface corresponding to (17) is defined by: 
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The corresponding self-similar yield/loading surface is described by: 
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In the context of return mapping procedures for solving plasticity problems, the evolution of the 
loading parameter λ is determined by inverting expression (31).  

In order to determine the plastic displacement components, the gradient of the bounding surface at the 
image point must be derived: 
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These gradient components are given by: 
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In the following sections, particular aspects of the cyclic response in this model are analysed, and the 
return mapping algorithms for solving the plasticity problem are exposed. 

2.4.2 Cyclic Response 

As presented so far, the radial mapping model predicts inelastic behaviour while loading but an elastic 
response for unloading. This produces an unrealistic behaviour upon partial unloading/reloading 
cycles, since the corresponding stress-strain loops are not closed [Dafalias, 1986]. Chatzigogos et al. 
[2009, 2010], for instance, used such model for their shallow foundation macro-element. It has a 
reloading behaviour slightly different from the initial loading one, which is represented by expression 
(33). They assume a less plastic response during reloading relative to the initial loading response: 
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where λmin < λ is the minimum value of the loading parameter attained during virgin loading and the 
constant exponent nR controls the difference between the loading and reloading stiffnesses. 
Nevertheless, this will produce a similar behaviour to the one pointed out by Dafalias [1986]. While 
such model may represent sufficiently well the response of a shallow foundation for cyclic vertical 
loading, for moment and/or horizontal loading it would be desirable that the response would also be 
inelastic while unloading. For cyclic soil behaviour and cyclic pile lateral response the same applies. 

A more realistic behaviour is obtained, as shown later, by assuming that, upon unloading, there is a 
discrete relocation of the projection centre to the point of load reversal. This was idealised and 
implemented by the author, but it had been already proposed by several authors, as early as Mróz and 
Zienkiewicz [1984] or Borja et al. [2001]. 

Figure 7 represents the concept of this cyclic model. Assuming radial mapping from the origin for 
virgin loading, the initial loading surface grows, centred at the origin, until the load reversal point is 
reached. The plastic modulus may be assumed to evolve according to an expression like (33). Upon 
unloading, the homology centre is relocated to the load reversal point and a second loading surface 
originates within the first one, both surfaces remaining in contact at such point. 

In order to avoid over-shooting phenomena, it is suggested that the plastic modulus now varies 
between infinity and the plastic modulus at the moment of load reversal, which is attained when the 
second loading surface expands to the point it becomes identical to the initial one. When this happens, 
the homology centre has reached the origin and the second loading surface vanishes. The first one 
becomes active again, with radial mapping from the origin once more. 



 
Figure 7. Evolution of loading surface and homology centre for cyclic behaviour 

It is noted that the suggested plastic modulus variation with the evolution of the second loading 
surface corresponds to making a double projection of the loading point. The load reversal point is 
used to project the current loading point on the initial loading surface and the first projection centre, 
the origin, is used to project this first image point into the bounding surface. The plastic modulus may 
then be computed according to: 
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In (39), min1 /1 λδ =  is the similarity ratio between the first loading and the bounding surfaces, while 
δ2 is the similarity ratio between the second and the first loading surfaces and nUR is a calibration 
constant. 

If more than two loading surfaces are created by successive load reversals of decreasing amplitude, 
the same process is repeated internally to each loading surface. An increasingly higher number of 
projection centres and loading surfaces are then successively created, and multiple radial mapping 
operations are performed in order to obtain the image point and the plastic modulus. Expression (39) 
may be easily generalised for such case. Dafalias [1986] mentions that the concept of generating new 
loading surfaces at each load reversal and the corresponding rule for their hierarchical elimination can 
be traced back to the work by Phillips [1972]. 

The cyclic features adopted for the macro-element follow these concepts of discrete relocation of the 
homology centre upon load reversals, with the subsequent generation of new loading surfaces. The 
behaviour was described as being similar to a multi-yield surface kinematic plasticity formulation, 
with the sequential creation of loading surfaces and the continuous evolution of the plastic modulus. 

There are, however, three main changes to the aforementioned description. The first is that only a 
limited number of loading surfaces is accepted to co-exist in a cyclic loading with decreasing 
amplitude, so as to limit computational effort and memory requirements. This limit was chosen to be 
two, for the analyses presented in this work. Hence, in a given moment, the formulation considers: the 
bounding surface; the outer loading surface corresponding to virgin loading and to the minimum value 
attained by the loading parameter, λmin; and a possible loading surface corresponding to unloading or 
reloading inside the latter one. 



It should be noted that, by setting this limit, overshooting is only formally prevented at the virgin 
loading surface and not in an inner unloading/reloading cycle. However, this was deemed to represent 
a good compromise between accuracy and complexity in the formulation. Numerical tests have shown 
that no significant overshooting problem occurs. 

A second change is concerned with the evolution of the homology centre when unloading or 
reloading. This point, together with the centre of the current loading surface and the current loading 
point are deemed to always being aligned in the same line centred at the origin, as represented in 
Figure 8. This feature leads to a gradual evolution of the homology centre location if the load 
eccentricity changes. Nevertheless, it always corresponds to a common point between the current 
loading surface and the previous one, although not necessarily the point of load reversal anymore. It is 
noted that, if the load eccentricity is constant, the two approaches coincide. 

 
Figure 8. Evolution of homology centre during unloading 

The third change is that, although formally there is a relocation of the homology centre and the 
generation of a new loading surface upon a load reversal, in practical terms the approach used in this 
formulation is different. In fact, it is easier to keep track of the current loading point, and of the size of 
the active loading surface, by using a concentric loading surface, i.e. centred at the origin, than to use 
a non-concentric loading surface. This concentric current loading surface is easily defined, and its 
evolution is computed similarly to the evolution of the virgin loading surface. However, the plastic 
modulus now is computed through expression (39), considering the current unloading/reloading state. 
Figure 9 represents the conceptual differences in the approaches. 

 
Figure 9. Concentric vs. non-concentric current loading surface 

Hence, the current loading surface is always defined by expression (35) and it presents isotropic 
hardening/softening. It evolves with the current loading point, always centred at the origin, from being 



a vanishing elastic nucleus at the origin when the loading starts up to the outermost loading surface 
corresponding to the virgin loading state. Upon unloading, this current loading surface softens 
isotropically and the image point at the bounding surface is located at the opposite side. It is pointed 
out that, for the loading surface to be able to soften, the plastic multiplier γ!  may now assume 
negative values. 

The following paragraphs clarify and summarise the plastic modulus computation for the three 
possible loading states. 

(a)  Virgin loading state.  For this loading state, the simplest of the mapping rules is applied in order 
to define the image point at the bounding surface. It is represented in Figure 10 and it is defined in 
expression (25). As already mentioned before, the loading parameter λ decreases gradually from 
infinity to one. The plastic modulus value is therefore assumed to be given by: 
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Figure 10. Image point and plastic modulus computation for the virgin loading case 

(b)  Unloading state.  In the most general case of unloading state, which is unloading from a previous 
reloading state, one must consider the bounding surface, the current loading surface, the outermost 
loading surface attained during virgin loading and the loading surface passing through the load 
reversal point for unloading. These are depicted in Figure 11. The image point at the bounding surface 
is now defined as: 

 QQ λ−=BS  (41) 

where λ is the current loading parameter. The image point at the outermost loading surface attained 
during virgin loading is computed as: 
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On the other hand, the homology centre is defined as: 
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where λU is the loading parameter associated to the load reversal point for unloading. 



 
Figure 11. Image point and plastic modulus computation for the unloading case 

For this case, the distances from the homology centre, PQ , to the image point at the outermost 
loading surface attained during virgin loading, 

minλQ , and to the loading point, Q, are given by: 
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Hence, the normalised distance δ between the loading point and the homology centre with respect to 
the distance between the latter and the image point 

minλQ  corresponds to the ratio: 
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It should be pointed out that this expression, for the similarity ratio between the non-concentric 
current loading surface and the concentric loading surface corresponding to λmin, is only valid until the 
loading point unloads to zero. If the load point continues to move on the same direction, it becomes a 
reloading state. The plastic modulus during unloading is computed through an expression equivalent 
to the one presented in expression (39): 
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Immediately after the load reversal, λ = λU, δ = 0 and the plastic modulus is infinite, as expected. At 
the point of zero loading, λ is infinite, ( )minmin / λλλδ += U  and the plastic modulus will be equal to 

( )[ ]minminmin0 /)(lnln λλλλ UUR
pl nH ++ . 

(c)  Reloading state.  The macro-element behaviour during reloading after unloading is very similar to 
the one exposed above for the unloading state. Hence, one still needs to consider the bounding 
surface, the current loading surface, the outermost loading surface attained during virgin loading and, 



now, the loading surface passing through the load reversal point for reloading. There are, however, 
two possible reloading states that must be analysed, as represented in Figure 12. A parameter that 
allows distinguishing between both situations is: 

 ( )QQ ⋅= Usignr  (47) 

This parameter is either 1 or -1. If it is positive, the reloading is in the same direction of the loading at 
the previous load reversal point for unloading. Otherwise, the unloading reached the point of zero 
loading and continued reloading from zero in the same direction, i.e. opposite to the previous load 
reversal point for unloading. 

The image points at the bounding surface and at the outermost loading surface attained during virgin 
loading are now computed as: 

 QQ λ=BS  (48) 
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On the other hand, the homology centre definition now depends on r and is given by: 
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where λR is the loading parameter associated to the load reversal point for reloading. It is pointed out 
that λR = λU if r = -1. 

 
Figure 12. Image point and plastic modulus computation for the two reloading cases 

For the reloading case, the distances Δmax and Δ and the normalised distance δ are computed as: 
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The corresponding plastic modulus during reloading is given by: 
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For r = 1, δ will vary between zero, when λ = λR, and one, when λ = λmin. The plastic modulus will be 
respectively equal to infinite and to λln0

plH . On the other hand, for r = -1, δ will vary between 
( )minmin / λλλ +U , when λ is infinite, and one, when λ = λmin. The plastic modulus will be respectively 

equal to the one obtained for unloading, at the transition point from unloading to reloading, and to 
λln0

plH . 

When the outermost loading surface attained during virgin loading is reached, the virgin loading state 
is activated again. The plastic modulus is continuous at that point, although the rate of its evolution is 
discontinuous. 

2.4.3 Return Mapping Algorithm 

The previous paragraphs have thoroughly presented the constitutive relationships for the macro-
element in terms of generalised forces and displacements. The problem now arises of determining, for 
a given generalised displacements history, the corresponding evolution of the generalised forces. This 
is accomplished by integrating the rate form of the constitutive equations. 

Exact analytical solutions for the classical plasticity evolution problem are only available for the 
simplest elastic-plastic problems [Prévost, 1987]. The first exact solution was obtained by Krieg and 
Krieg [1977] for the case of isotropic elastic-perfectly plastic Von Mises model. Despite exact 
solutions have been developed over the years for other plasticity models, the more complex ones have 
no analytical solution. Moreover, the exact solutions, although error-free, are computationally too 
slow to be used in practice. Hence, all elastic-plastic problems are numerically implemented with 
some error. Explicit one-step forward Euler schemes should not be considered due to their inherent 
error accumulation characteristics. Iterative schemes using some form of predictor or trial elastic step 
followed by a plastic corrector step should be used instead. The plastic consistency is restored in the 
plastic corrector step through a return mapping algorithm. It involves an integration which is usually 
performed using a backward Euler scheme, an implicit one requiring iterations. The global solution is 
strongly affected by the accuracy, stability and computational efficiency of such algorithms [Prévost, 
1987]. 

A general framework for developing consistent, accurate and stable return mapping algorithms was 
formulated by Simo and co-workers [Simo and Ortiz, 1985; Simo and Taylor, 1985; Ortiz and Simo, 
1986; Simo and Hughes, 1998; Ortiz and Martin, 1989]. The most successful of the return mapping 
algorithms in classical plasticity are the closest point projection and the cutting plane algorithms. 
They both apply to the case of a general yield condition, flow rule and hardening law. 

The closest point projection algorithm relies on an implicit backward Euler integration scheme, the 
normality to the yield and plastic potential surfaces is enforced at the final – and unknown – state, and 
the consistency condition is solved using Newton’s method. The algorithm is consistent with the 
constitutive relations to be integrated (i.e., first-order accurate), unconditionally stable and achieves a 
quadratic convergence rate. It can be exactly linearized in closed form, leading to a consistent 
algorithmic tangent moduli matrix. It requires, however, the computation of the second-order 
derivatives of both the yield and plastic potential surfaces, which may prove to be exceedingly 



laborious or even impossible for complex plasticity models [Ortiz and Simo, 1986; Prévost, 1987; 
Simo and Hughes, 1998]. 

On the other hand, the cutting plane algorithm is an efficient and simpler procedure, which bypasses 
the need for computing such second-order derivatives. In this algorithm the return mapping is defined 
iteratively. At each iteration, the plastic corrector problem is integrated about the current values of the 
state variables by an explicit procedure in order to satisfy the linearized version of the consistency 
condition. As such, the normality to the yield and plastic potential surfaces is enforced at the initial – 
and known – state. This algorithm is consistent but only conditionally stable and it cannot be exactly 
linearized in closed form. Hence, a consistent algorithmic tangent moduli matrix cannot be obtained 
for this case. Nevertheless, it also achieves a quadratic convergence rate for the update [Ortiz and 
Simo, 1986; Prévost, 1987; Simo and Hughes, 1998]. 

In view of the fact that the macro-element comprises two nonlinear mechanisms – gapping and 
inelasticity –, a modified version of the usual return mapping algorithms is required. A cutting plane 
algorithm is preferred, instead of a closest point projection one, since there is no sufficient 
information on the yield and plastic potential surfaces so as to consider correctly their second 
derivatives. 

Moreover, given that the elastic-gap constitutive relationships, expressed through expression (4), 
relate directly the elastic-gap displacements and forces without separating both components, a simpler 
version of the cutting plane algorithm is devised. This is based on a Newton-Raphson iterative 
scheme, which is described in the following paragraphs. 

(a)  Predictor or trial elastic-gap step.  An initial trial elastic-gap step is computed by freezing the 
plastic flow. Considering all state variables known at load step N, the input for the next step is the 
increment of total displacements: 
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The trial values of the relevant state variables are: 
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The trial vector of generalised forces is coherently given by: 
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If the loading point corresponds to a load reversal point, this trial elastic-gap state is correct. Hence 
this is a nonlinear elastic unloading or reloading step. The analysis parameters are updated, namely, 
the loading parameter through solving equation (35) and the elastic-gap stiffness matrix through 
expression (11) or (16). 

Otherwise, a return mapping or corrector phase is required. As predictor step, the initial state is 
computed with the current tangent stiffness and no plastic flow or hardening: 
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The vector of generalised forces for the first iteration thus corresponds to: 
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In order to iteratively update the remaining state variables associated to this generalised forces’ 
vector, a corrector phase is implemented which depends on whether the loading point is inside or 
outside the bounding surface. 

(b)  Corrector step inside the bounding surface.  The vector of generalised displacements at iteration 
k can be obtained as the sum of its components: 

 

( )
( )

)(
1

)(
1

)(
1

)(
1

)(
1

)(
1

)(
1

)(
1

)(
1

1)(
1

)(
1

)(
1

)(
1

)(
1

kpl
N

keg
N

kpl
N

kgap
N

kel
N

kegp
N

kpl
N

kgap
N

k
N

elkegp
N

kpl
N

kgap
N

kegp
N

elk
N

++++++

+++
−

+

++++

+=++=⇔

⇔++=⇔

⇔−−=

qqqqqq

qqQKq

qqqKQ

 (59) 

The corresponding elastic-gap displacements are obtained through the elastic-gap constitutive 
relationships, while the plastic displacements are updated using the flow rule. Using an explicit 
integration scheme for these variables, one obtains: 
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The discrete version of the hardening law, using also an explicit update, leads to: 
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Up to this point, all variables used were already known from the previous step. In order to compute 
the new value of the plastic multiplier, Newton’s method is now applied to both the displacement 
residue and the yield condition. The current displacement residue is defined as: 
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It is now imposed that the linearized prediction for the updated displacement residue should be zero: 
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Solving this equation for the increment of generalised forces, one finds: 
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The linearization of the discrete consistency condition gives: 
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Finally, the plastic multiplier increment corresponds to: 
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At this point, the vector of generalised forces may be updated with the increment given by expression 
(65) and the iterative process may be repeated from expressions (59) to (67), until the displacement 
residue and the bounding surface function are smaller than a given tolerance. 

(c)  Corrector step outside the bounding surface.  When the loading point is outside the bounding 
surface this problem reduces to a classical plasticity one, where the bounding surface behaves as the 
yield surface. Expressions (59)-(61) and (63)-(65), of the corrector step inside the bounding surface, 
remain unaltered. The loading parameter, λ, is now constant and equal to one and the elastic-gap 
stiffness matrix is given by: 
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The linearization of the discrete consistency condition now results in: 
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Replacing expression (65) in this one and solving for the incremental plastic multiplier leads to: 
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Similarly to the previous case, the iterative process is repeated until the displacement residue and the 
bounding surface function are smaller than a given tolerance. 

(d)  Tangent stiffness matrix.  If one wished to update the global tangent stiffness matrix, the 
consistent algorithmic tangent moduli matrix would be computed through: 
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However, there is no explicit algorithmic formula for the increments gap
N 1+qΔ  and pl

N 1+qΔ . 
Consequently, as already mentioned, such consistent matrix cannot be determined and it has to be 
replaced by the continuum tangent moduli matrix corresponding to the last converged state. 

Hence, considering eg
N 1+K  and 1, +Ngn  to be defined at the last converged state, expression (71) may be 

developed as: 
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The incremental consistency condition is given by: 
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Replacing (72) in (73), the plastic multiplier is computed as: 
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Finally, replacing the plastic multiplier expression in (72) defines the continuum tangent moduli 
matrix: 
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Instead of using for 1, +Ngn  the values corresponding to the last converged state, one can also compute 
secant values based on the iterative procedure of the previous increment. In fact, one can assume that, 
after r iterations, the increment of plastic displacements is given by: 
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which defines an equivalent increment for the plastic multiplier and an equivalent normal unit vector 
to the plastic potential surface. 

 

3. VALIDATION TESTS FOR PILE-HEAD MACRO-ELEMENT 

The macro-element model presented previously was implemented in the structural analysis software 
SeismoStruct [Seismosoft, 2019]. It requires the definition of the following 15 input parameters: D, 
KHH, KMM, KHM, Hu, e=0, My, nH, nM, γ, zw, ( )

effpp IE , β, η, plH0  and nUR. Only the last four of these 

parameters must be calibrated, since all the remaining ones are computed directly through expressions 
developed in the literature [e.g. Gazetas, 1991; Correia et al., 2019]. 

Amongst the four calibration parameters, two of them are related to monotonic response – β and plH0 , 
and the other two are related to cyclic behaviour – η and nUR. Alternatively, two of the parameters are 
related to the gapping behaviour – β and η, and the other two are related to the plasticity model – plH0  
and nUR. The parameters β, plH0  and nUR are always positive, while η can also be equal to zero if no 
residual gap opening is considered.  

In the following, the influence of those four calibration parameters is analysed and several validation 
tests for the macro-element are performed by comparing its response both to numerical results 
obtained with OpenSees [McKenna et al., 2000] and to real lateral load tests on piles. 



 

3.1 INFLUENCE OF MACRO-ELEMENT CALIBRATION PARAMETERS 

In order to test the influence of the four macro-element calibration parameters, a soil profile with 
constant Su = 80 kPa is considered. The shear wave velocity is assumed to be VS = 200 m/s and the 
Poisson’s ratio is taken equal to 0.5. It is further assumed that the pile has a diameter D = 1 m and 
above-ground height equal to e = 5 m, corresponding to the load eccentricity. Table 1 and Table 2 
summarise all assumed input parameters’ values. The effective flexural stiffness of the pile cross-
section is the one corresponding to yield, as suggested by Priestley et al. [2007]. 

Table 1. Pre-determined geometric and elastic macro-element parameters 

D 
[m] 

KHH 
[MN/m] 

KMM 
[MNm/rad] 

KHM 
[MN/rad] 

zw 
[m] 

(EpIp)eff 
[MNm2] 

1.00 647 1343 -544 1.24 580 
 

Table 2. Pre-determined failure surface parameters 

Hu,e=0 
[kN] 

My 
[kNm] 

nH nM γ  

1834 3200 8.435 2.000 -0.597 
 

The most important of the macro-element calibration parameters is the reference plastic modulus 
value, plH0 , which determines the relative amount of irreversible displacements occurring during 
monotonic loading. For convenience, it is defined relatively to the dimensionless component of the 
initial elastic stiffness matrix for horizontal displacement, i.e. the normalised value HHn

pl KH /0  is 
used. The effect of this variable is shown in Figure 13, where the pile-head response is plotted in 
terms of displacement, with β = 1. 

 
 

Figure 13. Influence of the normalised reference plastic modulus (H0
pl/KHHn) on the pile-head displacement 

This normalised reference plastic modulus has a very significant effect on the amount of irreversible 
displacements. As its value increases, the response will tend to become more similar to an elastic-
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perfectly plastic one. As it decreases, more nonlinear behaviour and irreversible displacements are 
expected to occur for lower values of the loading parameter. 

On the other hand, the gap evolution parameter, β, has a much less significant influence on the 
response of the macro-element. It mainly affects the quasi-elastic stiffness evolution at low levels of 
displacement. Such effect is clear in Figure 14, where the pile-head response is again plotted in terms 
of displacement, now with HHn

pl KH /0  = 1. 

 
Figure 14. Influence of gap evolution parameter β  on the pile-head displacement 

Regarding cyclic behaviour, the significant influence of the unloading/reloading exponent, nUR, is 
shown in Figure 15, with η = 0. It can be seen that this parameter controls the amount of plastic 
response upon unloading/reloading. When it equals one, the cyclic response to a given load follows 
Masing’s rule, i.e. it is symmetric. For other values it may increase or reduce the irreversible 
displacements, depending on if its value is smaller or higher than one, respectively. It should be noted 
that upon completing a full cycle to a given load level, the same displacement of the monotonic 
response is always attained, for η = 0. 

 
Figure 15. Influence of unloading/reloading exponent nUR on the pile-head displacement 

This parameter can alternatively be interpreted as controlling the amount of hysteretic damping of the 
macro-element response. 
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The residual gap parameter, if different than zero, always increases the amount of displacement upon 
unloading/reloading to the same load with opposite sign. This can be clearly seen in Figure 16, where 
nUR = 1. 

 
Figure 16. Influence of residual gap parameter η  on the pile-head displacement 

The residual gap parameter has a smaller influence on the overall response than nUR, and its value can 
be conjugated with the latter one, if nUR > 1, in order to produce a quasi-symmetric cyclic response 
with different amounts of hysteretic damping. If nUR < 1, on the other hand, the response can never be 
symmetric. 

A comparison of the responses for a symmetric loading cycle and for asymmetric loading cycle with 
the same limits but containing several unload/reload inner cycles was also performed. The 
corresponding response, purely for illustrative purposes, is presented in Figure 17. 

 
Figure 17. Asymmetric loading history displacement response 

 

3.2 COMPARISON WITH FINITE ELEMENT RESULTS 

The response of the macro-element will now be calibrated and compared to numerical simulations 
performed with OpenSeesPL [Lu et al., 2011], which is a graphical user interface for OpenSees 
[McKenna et al., 2000] dedicated to solid finite element analysis of piles. Static, cyclic and dynamic 
analyses of a laterally loaded pile with D = 1 m were performed. The pile-column had an above-
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ground height of e = 5 m. Two different soil profiles were considered: (i) a soil profile with constant 
Su = 80 kPa, shear wave velocity VS = 200 m/s and a depth LS = 15 m; (ii) a soil profile with a linearly 
increasing Su with depth. The latter had an undrained shear strength constant of proportionality m = 
0.25, a depth LS = 30 m and assumed that the maximum soil shear modulus was related to the 
undrained strength by Gmax = 1100 Su. 

The soil model used a multi-yield surface plasticity formulation according to Elgamal et al. [2003], 
assuming that the Von Mises failure surface was attained for an octahedral shear strain of 10%. The 
soil was modelled as being fully saturated and with a very low permeability, thus having an undrained 
behaviour for all practical purposes. Moreover, a tension cut-off was considered for both the soil 
domain and the soil-pile interface layer [Correia, 2011]. 

(a)  Soil profile with constant Su.  The horizontal load-displacement response obtained with solid 
finite elements for a pushover analysis in undrained conditions is shown in Figure 18, for various 
types of soil and pile behaviour. One can observe that gapping effects are limited in the linear elastic 
range of response but become significant with increasing load level. 

Figure 19 presents the three-dimensional soil mesh in its deformed configuration for a monotonic 
pushover with full nonlinear response with gapping. At this load level, close to failure, it is interesting 
to note the very limited dimension of the soil region contributing to the response. 

 
Figure 18. Pushover curves for the constant Su soil profile with: elastic behaviour with gapping (EG), and without 

gapping (EnoG), full nonlinear response with gapping (NG) and without gapping (NnoG) 

 
Figure 19. Deformed mesh and stress ratio contour 
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Figure 20 illustrates the similar responses obtained in a fully coupled dynamic analysis, with 
simulation of the pore pressure variations in rapid loading conditions, and the results obtained in static 
analyses with equivalent dry soil conditions.  

 
Figure 20. Load-displacement response for the constant Su soil profile for monotonic,  

cyclic and dynamic loading conditions and undrained behaviour 

The macro-element parameters are now calibrated in order to reproduce the results obtained with solid 
finite elements. For the simulations performed with this soil profile, the macro-element properties are 
the ones indicated in Table 1 and Table 2. In order to calibrate the remaining four macro-element 
parameters, the following approach is employed: 

 The gap evolution parameter, β, is calibrated using the simulation results with elastic soil and pile i)
response but including gapping behaviour. Moreover, the pile initial elastic flexural stiffness is 
considered, EpIp, instead of the effective one, and a very large value is considered for plH0  so that 
no plastic displacements occur before the bounding surface is attained, 

 Afterwards, the full nonlinear monotonic results are considered for calibrating the reference ii)
plastic modulus plH0 , 

 Finally, cyclic nonlinear results are used to calibrate simultaneously η and nUR with the purpose of iii)
replicating both the symmetric response obtained for cyclic loading and the amount of hysteretic 
damping evidenced by solid finite element simulations. 

This methodology was applied using the solid finite element results for pile-head displacement. Table 
3 presents the values obtained for the macro-element calibration parameters. The comparison of 
macro-element response with the one obtained by solid finite elements is presented in Figure 21 and 
Figure 22, in terms of pile-head displacement both for monotonic and cyclic loading. 

Table 3. Calibration results for macro-element parameters 

β  η  
HHn

pl

K
H0  nUR 

4 45 0.30 1.30 
 

Before even discussing the calibration results, attention must be pointed out to the fact that the initial 
elastic stiffnesses computed by the approximate expressions from literature give very good results for 
this case. 
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More important, however, for the objectives of this work, is the fact that the failure conditions 
predicted by the results obtained with the yield design theory parametric study from Correia [2019] 
are correct. In fact, it can be clearly seen in Figure 21 that the maximum horizontal load obtained in 
the numerical simulation with solid finite elements is very similar to the one predicted by the 
superellipse failure surface based on those parametric study results. Furthermore, the slight under-
prediction of the failure load by the macro-element may be attributed to the fact that OpenSeesPL [Lu 
et al., 2011] uses Von Mises failure criterion, while the macro-element is using the values obtained 
with Tresca failure criterion. As previously mentioned, the difference in both criteria may reach about 
15% for a plane strain mechanism. 

 
Figure 21. Comparison of Macro-Element (ME) vs. OpenSeesPL (OS) pile-head monotonic load-displacement 

response, for constant Su soil profile and for both elastic and nonlinear behaviour 

 
Figure 22. Comparison of Macro-Element (ME) vs. OpenSeesPL (OS) pile-head cyclic  

load-displacement response, for constant Su soil profile 

By applying the abovementioned calibration methodology to the displacement response, one can 
validate the behaviour of the macro-element by verifying that it adequately reproduces the overall 
response obtained with solid finite elements. Furthermore, and probably more important as a 
validation result, the response in terms of pile-head rotation is also adequately reproduced. In fact, for 
monotonic loading, with either elastic or nonlinear response, the results are at least as accurate as the 
ones used for calibrating the macro-element. For cyclic loading, albeit a slightly higher hysteretic 
damping obtained in the cyclic response of the macro-element, the results are also very satisfactory. 
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(b)  Soil profile with linear Su.  Starting with the results obtained with OpenSeesPL [Lu et al., 2011], 
they follow closely what was obtained for the previous soil profile. However, two important 
differences arise: (i) gapping has a much-reduced influence; (ii) the overall flexibility is extremely 
larger. These observations can be verified in the pushover results of Figure 23. 

 
Figure 23. Pushover curves for the linear Su soil profile with: elastic behaviour with gapping (EG), and without 

gapping (EnoG), full nonlinear response with gapping (NG) and without gapping (NnoG) 

It is interesting to note that albeit the virtual failure mechanism for this soil profile considered no 
contribution from gapping Correia [2019], it influences slightly the results both in terms of strength 
and stiffness. Hence, in the macro-element analyses this gapping influence will be considered also for 
this soil profile. The macro-element properties are now the ones indicated in Table 4 and Table 5. 

The calibration of the macro-element parameters was performed as proposed for the other soil profile 
and the results are presented in Table 6. Both parameters associated with cyclic response were found 
to give good results having the same values than before. 

Table 4. Pre-determined geometric and elastic macro-element parameters 

D 
[m] 

KHH 
[MN/m] 

KMM 
[MNm/rad] 

KHM 
[MN/rad] 

zw 
[m] 

(EpIp)eff 
[MNm2] 

1.00 72.9 744.2 -168.5 3.86 580 
 

Table 5. Pre-determined failure surface parameters 

Hu,e=0 
[kN] 

My 
[kNm] 

nH nM γ  

642.2 3200 7.040 2.000 -0.667 
 

Table 6. Calibration results for macro-element parameters 

β  η  
HHn

pl

K
H0  nUR 

12 45 0.12 1.30 
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The comparison in terms of pile-head displacement for both monotonic and cyclic loading of the 
macro-element response with the one obtained by solid finite elements is shown in Figure 24 and 
Figure 25. 

 
Figure 24. Comparison of Macro-Element (ME) vs. OpenSeesPL (OS) pile-head monotonic load-displacement 

response, for linear Su soil profile and for both elastic and nonlinear behaviour 

 
Figure 25. Comparison of Macro-Element (ME) vs. OpenSeesPL (OS) pile-head cyclic  

load-displacement response, for linear Su soil profile 

The same conclusions drawn for the other soil profile apply in this case. One may verify once more 
that the initial stiffnesses and the failure load are adequately predicted by the approximate expressions 
presented in this thesis. It is also clear that the response in terms of displacement, used for calibration 
purposes, is well replicated by the macro-element analyses. On the other hand, the response in terms 
of pile-head rotation, used for validation effects, is again properly reproduced. 

 

3.3 COMPARISON WITH UCLA PILE TESTS 

In a report by Stewart et al. [2007] a series of full scale cyclic large deflection lateral load tests of 
drilled shaft foundations were described. They performed three tests with reinforced concrete circular 
piles of the same diameter, D = 0.61 m (2 ft), in both a flagpole and a fixed-head configuration, as 
well as in a nine-pile group arrangement. The first two tests will be considered here for assessing the 
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macro-element capabilities. The last two tests are further described and analysed in Lemnitzer et al. 
[2010]. 

The site conditions at the depth range of interest correspond roughly to an OC silty clay with 
undrained shear strength of about Su = 187 kPa (3900 psf). Despite the water table was at large depths, 
due to the high saturation levels of the surficial layers and the high loading rate during the test, 
undrained soil behaviour was assumed. The initial undrained soil modulus of deformation was taken 
as ES = 335 MPa (7000 ksf) and, with a Poisson’s ratio of 0.5, the maximum soil shear modulus was 
assumed to be G = 112 MPa. A soil unit weight of 19 kN/m3 was measured. 

(a)  Flagpole test.  This free-head pile was subjected to a lateral force only, at a height of e = 4.06 m 
(13’4’’). It had a below-ground length of LP = 7.62 m (25 ft). A cyclic displacement history was 
imposed at the top of the column. Three cycles were performed at each displacement level. The 
displacement levels corresponded to multiplying a predicted yield displacement of 50.8 mm (2 in) by 
the following factors: 1/8, ¼, ½, ¾, 1, 1 ¼, 1 ½, 2, 3, 4, 6, 8. 

Figure 26 represents the experimental load-deflection response. These results clearly show a strength 
degradation effect for repeated cycles at the same displacement level. Nevertheless, there seems to be 
some influence of creep deformations on these plots, evidenced by the decrease of strength at 
maximum load conditions for each cycle and displacement level. 

Given the cross-sectional properties indicated in the aforementioned reports, the nominal pile yield 
moment corresponds to My = 510 kNm. The horizontal failure load obtained by the predictive 
expression in Correia [2019] is equal to 121 kN, which agrees well with the experimental results. 
Once more, pre-determined macro-element parameters are computed through the expressions 
presented in Correia [2019] and are summarised in Table 7 and Table 8. 

 
Figure 26. Experimental load vs. top displacement response for the flagpole test (after Stewart et al. [2007]) 

Table 7. Pre-determined geometric and elastic macro-element parameters 

D 
[m] 

KHH 
[MN/m] 

KMM 
[MNm/rad] 

KHM 
[MN/rad] 

zw 
[m] 

(EpIp)eff 
[MNm2] 

0.61 573 362 -264 0.25 54.7 
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Table 8. Pre-determined failure surface parameters 

Hu,e=0 
[kN] 

My 
[kNm] 

nH nM γ  

792 510 8.435 2.000 -0.597 
 

Regarding the macro-element calibration parameters, it was found that the gapping behaviour had 
little influence on the results due to the shallow wedge geometry. Consequently, the default values 
were adopted for β and η. The remaining macro-element parameters, related to inelastic monotonic, 
H0

pl, and cyclic, nUR, response, were calibrated to the values shown in Table 9. 

Table 9. Calibration results for macro-element parameters 

β  η  
HHn

pl

K
H0  nUR 

1 0 0.3 0.25 
 

Figure 27 illustrates the monotonic response of the macro-element in comparison to the cyclic load-
displacement results. The monotonic curve correctly envelopes the cyclic results and the maximum 
horizontal load is correctly predicted. 

Figure 28 represents the macro-element response for three load cycles at the maximum displacement 
level of the experimental test. The strength degradation with subsequent cycles appears to be correctly 
captured. Experimental hysteretic loops are somewhat thinner than the macro-element ones at low 
loading levels, but the overall loop area seems to be similar. It should be mentioned that the plastic 
hinge in the experimental test formed deeper than expected by the failure mechanism theoretical 
results (where zh = zw). If the passive wedge depth is increased accordingly, the macro-element 
hysteretic loops tend to get thinner, although the gap influence was not large in this test as already 
mentioned. 

 
Figure 27. Comparison of Macro-Element (ME) monotonic vs. flagpole cyclic (Exp.) load-displacement results 

-150

-100

-50

0

50

100

150

-600 -400 -200 0 200 400 600

Horizontal displacement [mm]

H
or

iz
on

ta
l l

oa
d 

[k
N

]

Exp.
ME



 
Figure 28. Comparison of Macro-Element (ME) vs. flagpole (Exp.) cyclic load-displacement  

results at maximum displacement level 

Finally, Figure 29 represents the full cyclic response of the macro-element in comparison to the 
experimental one. The overall response seems to agree very well, both in terms of strength and 
stiffness. 

 
Figure 29. Comparison of Macro-Element (ME) vs. flagpole (Exp.) cyclic load-displacement results 

 

(b)  Fixed-head test.  The fixed-head pile was subjected to a lateral force and a moment restraining 
the pile-head rotation. The load eccentricity is thus negative and with undefined value, since it varies 
with the loading evolution depending on the pile-head rotational and off-diagonal stiffness. The 
geometry of the fixed-head pile is the same as the flagpole one. Also, a proportional cyclic 
displacement history was imposed at the pile head, with the difference that the predicted yield 
displacement is now 12.7 mm (0.5 in). 

The material properties of this reinforced concrete pile are slightly different from the flagpole ones, 
resulting in a nominal pile yield moment of My = 600 kNm. This implies a different ultimate load for 
zero eccentricity condition, now equal to Hu, e=0 = 868 kN. All remaining macro-element parameters 
are the same, except the gap maximum depth zw. The predictive equation derived for this variable 
depends on the load eccentricity Correia [2019]. Since this is undetermined and since that equation 
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was not calibrated to negative eccentricity values, there is no easy way to determine zw but to perform 
an optimisation analysis with yield design theory. 

A constant value of zw = 1.50 m was considered based on previous optimisation results. However, this 
value is expected to vary during a load cycle, according to the changing load eccentricity. It should be 
recognized that the macro-element is not fully adapted to analyse fixed-head piles and that it needs 
further adjustments for that purpose. Nevertheless, a monotonic analysis was performed and 
compared to the experimental results, as depicted in Figure 30. 

 
Figure 30.  Comparison of Macro-Element (ME) monotonic vs. fixed-head pile cyclic (Exp.) load-displacement 

results 

It is very encouraging to verify that, despite the abovementioned problems, a very good prediction of 
the cyclic results envelope is obtained. Attention is pointed to the fact that only the first cycle for each 
displacement level is represented in the previous plot, since it was not possible to obtain the full 
experimental load-displacement results. It is also noted that the experimental results for this test are 
very different from the flagpole ones: there is a clear pinching effect on the cyclic loop. In the last 
displacement level, failure of the pile was attained, resulting on the significant strength degradation 
observed in the load-deflection curve. This failure is evidently not perceived with the macro-element 
analysis. 

 

4. CONCLUSIONS 

An innovative and efficient pile-head macro-element was presented that is capable of accurately 
describing the main features of lateral cyclic behaviour for flexible single piles. It was based on the 
three fundamental characteristics of pile lateral response: linear elastic behaviour at low levels of 
loading; gapping evolution and its effects on pile stiffness; and failure conditions. 

Elastic-gap evolution behaviour was considered through a nonlinear elastic model, which in turn was 
related to the failure mechanism characteristics. Transition from initial elastic behaviour to plastic 
flow conditions at failure was appropriately modelled by using a bounding surface plasticity 
formulation. Such model accounts for the irreversible nature of pile behaviour from initial loading up 
to collapse, but also for unloading/reloading hysteresis characteristics. 

The macro-element parameters are largely based on fundamental response characteristics which are 
appropriately predicted by either existing calibrated expressions or by predictive relationships 
developed in previous chapters. It turns out that, from the initial set of 15 macro-element parameters, 
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only four of them need to be calibrated, for given site and pile properties, through comparison with 
more complex numerical models or to lateral load tests on real piles. A procedure was suggested for 
successive individual calibration of those four parameters by using simple numerical results. 

Finally, advanced nonlinear analyses of laterally loaded piles, using solid finite elements, were carried 
out and their results were exposed and interpreted, namely in what refers to the gapping influence. 
Afterwards, successful calibration and validation of the macro-element response was achieved for a 
set of different existing results, both numerical and experimental. This very satisfactory behaviour 
rewarded the effort put on the development of such analysis tool and encourages its continued 
development for more complex soil conditions and behaviour. 
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