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General Introduction 

As part of the NAM-led studies program into induced seismicity in Groningen, a number of seismological 

models have been prepared for the Groningen gas field.  In 2013, a strain-partitioning seismological model 

(SM V1) was presented in the technical addendum to the winningsplan 2013 (Ref. 1).  This model is further 

described in a scientific peer-reviewed paper published in the Journal of Geophysical Research (Ref. 2).  

This model was used in the hazard assessment of Winningsplan 2013 (Ref. 3).   

In 2015, as an alternative seismological model, the activity rate model (SM V2), was introduced (Ref. 4 

and 5).  Like the strain-partitioning seismological model, the new activity rate model was based on a 

statistical analysis of the historical earthquake record of Groningen, in combination with the measured 

subsidence.  Both the strain-partitioning seismological model and the alternative activity rate 

seismological model have been reviewed by Ian Main, Professor Seismology & Rock Physics at the 

University of Edinburgh.  The activity rate model was described in two scientific papers (Ref. 6 and 7).  To 

be able to implement the new model in the hazard and risk assessment, the distribution of pareto sums 

needs to be computed. A new method using Laplace Transformation and the Stehfest inversion was 

developed to do this efficiently (Ref. 8 and 9). The activity rate model has been used in the hazard and risk 

assessment of November 2015 (Ref. 10) and winningsplan 2016 (Ref. 11).   

Alternative seismological models were developed using two approaches; (1) geomechanical / statistical 

method and (2) machine learning.  The effort to develop a seismological model using machine learning 

has been documented in reference 12 and 13.  Although innovative methods were developed to forecasts 

seismicity in the Groningen field, the machine learning approach did not lead to an improved seismological 

model.   

Based on geomechanical principles, a set of different seismological models based on extreme threshold 

failures off a thin-sheet were developed. These were trained on the earthquake catalogue until 2012.  

Based on their ability to forecast the earthquake record for the period 2012 to 2017 the best performing 

model was chosen for implementation into the hazard and risk assessment (SM V5).  This was documented 

in two scientific papers (Ref. 14 and 15), which are also available in a reader (Fig. 16). Using Gaussian 

Process Optimisation an attempt was made to further improve the elastic thin-sheet seismological model 

(Ref. 17). This hazard and risk model (SM V5) was used in the hazard and risk assessment for the 

production schedule Basispad Kabinet in 2018 (Ref. 18) production schedule GTS-raming in 2019 (Ref. 19).  

A number of studies were performed to test the hypothesis that apart from the gas volume produced, 

also the gas extraction rate impacts the seismic event rate (Ref. 20 to 23). Both statistical/geomechanical 

and machine learning approached showed the available data did not support this hypothesis. Due to the 

limited size of the seismic record for Groningen, the possibility of a limited effect cannot be excluded.   

The development of the seismological model had to this point primarily focused on the forecasting of the 

spatial and temporal development of earthquake events.  For the forecasting of the frequency-magnitude 

relationship a power law (Gutenberg-Richter) with a b-factor was used.  The seismic catalogue for the 

Groningen field is relatively small compared to other seismically active regions. A maximum likelihood 



estimate for the b-factor for the complete earthquake catalogue and for spatial and temporal sub-sets 

was estimated.  The analysis of the maximum likelihood estimate for the b-factor indicates the b-factor 

varies over the field (Ref. 24).  Another study investigated the correlation dimension of clusters of seismic 

events (Ref. 25).   

These studies led to a renewed interest in the frequency-magnitude relationship.  A foundational study 

for this effort investigated fibre-bundle models (Ref. 26). Insights from this study and other statistical 

mechanical theories of brittle failure within heterogeneous media, statistical seismology, and acoustic 

emissions experiments indicate the pure power-law may contain a stress dependent exponential taper. 

Incorporating such an exponential taper in the seismological model for Groningen improved its 

forecasting performance. The current report reviews the existing theoretical and observational evidence 

for a stress-dependent exponential taper to motivate a range of alternative frequency-magnitude models 

suitable for induced seismicity hazard and risk analysis. For a set of different models the forecast 

performance was assessed using Bayesian inference, hindcast evaluations and forward-model simulations. 

This shows that the stress-dependent taper model with constant b-factor likely offers higher performance 

forecasts, than the stress-dependent b-models.  
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Abstract

Geological faults can fail and produce earthquakes under the in-
creased stresses associated with hydrocarbon recovery, geothermal ex-
traction, CO2 storage or subsurface energy storage. The risks to con-
tainment of subsurface fluids and to the integrity of the built envi-
ronment depend critically on the frequency and size of any induced
seismicity. Within seismic hazard and risk analysis, the exceedance
probability of seismic moments,M, is treated as a pure power-law dis-
tribution, ∼Mβ, where the power-law exponent, β, may vary in time
or space or with stress. Insights from statistical mechanics theories of
brittle failure within heterogeneous media, statistical seismology, and
acoustic emissions experiments all indicate this pure power-law may
contain an exponential taper, ∼Mβe−ζM, where the taper strength,
ζ, decreases with increasing stress. The role of this taper is to signif-
icantly reduce the probability of earthquakes larger than ζ−1 relative
to the pure power-law. This effect may appear as an apparent increase
in β values with stress if taper effects are ignored.

We review the existing theoretical and observational evidence for
a stress-dependent exponential taper to motivate a range of alterna-
tive frequency-magnitude models suitable for induced seismicity haz-
ard and risk analysis. These include stress-invariant models with and
without a taper, stress-dependent β models without a taper, stress-
dependent ζ models, and a hybrid stress-dependent β-ζ model. For
each of these models, we evaluated their forecast performance for in-
duced seismicity within the Groningen gas field in the Netherlands.
Through a combination of Bayesian inference, hindcast evaluations,
and forward-model simulations we assessed the forecast performance
capabilities of each model. Our results show that the stress-dependent
ζ-model with constant β likely offer higher performance forecasts than
the stress-dependent β-models with ζ = 0 75–85% of the time. This
model also lowers the magnitude with a 10% and 1% chance of ex-
ceedance over the next 5 years of gas production from 4.3 to 3.7 and
from 5.5 to 4.3 respectively.
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1 Introduction

Induced seismicity may arise due to mining, geothermal energy production,
artificial lakes, and fluid injection or production, including hydrocarbon pro-
duction, water disposal or CO2 storage. Most of these activities occur with-
out inducing any noticeable earthquakes. Nonetheless, due to the quantity
and scale of these activities, there is a growing number of notable occurrences
of induced earthquakes. Several recent reviews comprehensively summarise
the world-wide evidence for seismicity induced by human activities (Majer
et al., 2007; Suckale, 2009; Evans et al., 2012; Davies et al., 2013; Ellsworth,
2013; Klose, 2013; NAS, 2013; IEAGHG, 2013; Foulger et al., 2018).

In such cases of induced seismicity, any exposure to the associated hazards
of seismic ground motions or the risks of building damage must be assessed
using probabilistic seismic hazard and risk analysis (e.g. Elk et al., 2019), and
then if necessary mitigated. Induced seismicity is a transient non-stationary
process in response to time-varying and significant increases in stress that are
sufficient to destabilize previously inactive faults. Forecasting such failures
within a geological material critically depends on its heterogeneity (Vasseur
et al., 2015).

Heterogeneity falls into two classes. Resolvable heterogeneity that may
be map and accounted for with deterministic models such as large-scale fault
geometries. Unresolvable heterogeneities also influence failures and must be
accounted for with statistical models. This approach led to the development
of Extreme Threshold Failure models of induced seismicity occurrence where
the resolvable heterogeneities are included in a deterministic poro-elastic
thin-sheet stress model and the unresolvable heterogeneities are represented
by the tail of a pre-stress probability distribution given by the universal form
of a Generalized Pareto distribution (Bourne and Oates, 2017). This simple
model explains the observed, non-stationary, space-time statistics of induced
seismicity within the Groningen gas field and provides a physical explana-
tion for the exponential-like increase in seismicity rates relative to stress rates
(Bourne et al., 2018).

Current methods of forecasting induced earthquake magnitudes are em-
pirical and lack a clear physical basis. Natural and induced seismicity hazard
analysis for the United States assumes a stationary process with a stress-
invariant pure power-law distribution of seismic moments (Petersen et al.,
2018). Shapiro et al. (2010a) proposed a non-stationary model for fluid in-
jection induced seismicity that includes a pre-stress disorder with a uniform
distribution to model event occurrence but assumes a stress-invariant pure
power-law distribution of seismic moments (Shapiro et al., 2010b; Langen-
bruch and Zoback, 2016; Shapiro, 2018). Hazard analyses for Groningen
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induced seismicity also assume a pure power-law and takes an empirical
approach to include apparent compaction- (Bourne et al., 2014) or stress-
dependence (Bourne et al., 2018) of the power-law exponent. If this pure
power-law assumption is not valid then all these models may be incomplete
and biased in their earthquake magnitude forecasts especially under the sig-
nificantly increasing stress loads often associated with induced seismicity.

This study seeks to extend the method of treating unresolvable hetero-
geneities as stochastic disorder to improve the seismological models used for
forecasting induced earthquakes magnitudes for the purpose seismic hazard
and risk analyse. We will build on previous work to incorporate the failure
mechanics of disordered media into a statistical mechanics theory of natural
earthquakes (e.g. Bak and Tang, 1989; Alava et al., 2006; de Arcangelis et al.,
2016), and their seismic hazard analysis Main (1996). These statistical me-
chanic theories will be used to motivate the choice of models to evaluate, but
not to rank or select them. Under many different theories the probability dis-
tribution of failure event sizes follows a power-law subject to an exponential
taper where the power-law exponent is stress-invariant whilst the character-
istic taper scale increases as a critical-point power-law with stress. However,
under some other circumstances the power-law exponent may exhibit varia-
tion with stress. We reflect these possibilities by specifying 5 different classes
of frequency-moment models for induced earthquakes:

1. Stress-invariant power-law with no taper

2. Stress-invariant power-law with a stress-invariant taper

3. Stress-dependent power-law with no taper

4. Stress-invariant power-law with a stress-dependent taper

5. Stress-dependent power-law with a stress-dependent taper

Using Bayesian inference we sample the full posterior distribution of pos-
sible models given the observed history of induced seismicity and induced
stress within the Groningen gas field for a range of different parametrization
choices within each of the 5 model classes. Our evaluation of the Groningen
forecast performance for induced earthquake magnitudes reveals the best-
performance requires a stress-dependent taper as anticipated by most statis-
tical mechanics theories of brittle fracture.

After briefly stating the standard power-law formulation of seismic mo-
ments in statistical seismology (section 2), we will summarize the seismo-
logical literature that proposes (section 3) or opposes (section 4) evidence
for stress-dependent variations of power-law exponent with stress. We will
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then describe our model of intra-reservoir induced stress due to pore-pressure
changes (section 5) followed by simple statistical analyses of the variations
in observed earthquake magnitudes induced by Groningen gas production
(section 6). Then after reviewing existing statistical mechanics theories of
earthquakes (section 7) we specify our models for the stress-dependence of in-
duced earthquake magnitude distributions (section 8), infer their parameter
values (section 9), assess their behavioural characteristics (section 10), and
evaluate their performance (section 11), before assessing their implications
for seismic hazard and risk (sections 12 and 13).

2 Power-law distribution of seismic moments

The exceedance probability distribution of earthquake magnitudes typically
takes the form:

P (> M | > Mmin) = 10−b(M−Mmin), (1)

where M is the earthquake moment magnitude conditional on M ≥ Mmin

and b defines the negative slope of the exponential distribution (Gutenberg
and Richter, 1954). Alternatively, this may be expressed according to the
seismic moment, s, which scales with moment magnitudes as,

log10M = (c+ dM), (2)

with, c = 9.1, and d = 1.5. Combining (1) and (2) leads to the equivalent
power-law distribution,

P (>M| >Mmin) =

(
M
Mmin

)−β
, (3)

and b = βd.
Seismic hazard and risk analysis is highly influenced by the estimation

of β-values. Lower β-values mean larger expected magnitudes and a larger
expected maximum magnitude for a given population of earthquakes. In the
next two sections we outline the existing evidence for two alternate hypothe-
ses about the influence of stress on β-values.

3 β-values vary with stress

A number of observations and modelling results might suggest that earth-
quakes b-value depends on the stress level. Measured earthquake b-values
decrease systematically from 1.2 to 0.8 with increasing depth in the brittle
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crust from 5 to 15 km (Mori and Abercrombie, 1997; Spada et al., 2013).
Similar measurements indicate earthquake b-values vary systematically with
focal mechanism rake angle as a proxy for stress (Schorlemmer et al., 2005;
Gulia and Wiemer, 2010). Lower stress, normal faulting b-values are typically
1.0–1.2. Whereas higher stress, thrust faulting b-values are typically 0.7–0.9.
Intermediate stress, strike-slip b-values are in the range 0.9–1.0 (Wiemer and
Wyss, 1997, 2002; Huang et al., 2018).

b-values also appear to be a proxy for shear stress and pore pressure
(Scholz, 1968; Schorlemmer et al., 2005; Bachmann et al., 2012). Bachmann
et al. (2012) observed b-values decrease with a decrease in pore-pressure for
induced earthquakes of an Enhanced Geothermal System. Whilst system-
atically smaller b-values were measured for earthquakes induced by larger
reservoir compaction (Bourne et al., 2014) or higher Coulomb stress (Bourne
et al., 2018) associated with natural gas production. Variations in mea-
sured b-values are also used to indicate material heterogeneity (Mogi, 1962;
Main et al., 1992; Mori and Abercrombie, 1997) or for fault asperity map-
ping (Tormann et al., 2014). The scale of fault heterogeneities appears to
follow a power-law where its fractal dimension governs the b-value of seis-
mic slip events within this fault population (Main et al., 1989, 1990, 1992).
Initial heterogeneities in the form of a fractal distribution of fault sizes or
fault asperities are one way to explain the Gutenberg-Richter law. Another
explanation is that is arises from some distribution of strength.

Variations in observed b-values may also be precursors of future rupture
areas and sizes (Schorlemmer et al., 2005). In this case, b-values decrease
monotonically throughout the precursory phase, and then recovers abruptly
after peak stress (marked by a sudden stress drop event). Scholz (1968)
introduced a statistical model of brittle failure within an inhomogeneous
elastic medium to explain the apparent decrease in b-values with increasing
stress.

4 β-values do not vary with stress

In this hypothesis all observed b-values are consistent with a constant value in
both space and time and any observed apparent variations are artefacts due
to under-sampling (detection threshold and finite sample size effects), magni-
tude errors, non-homogeneous detection capabilities, and improper statisti-
cal tests (Shi and Bolt, 1982; Frohlich and Davis, 1993; Kagan, 1999, 2002b,
2010; Amorèse et al., 2010; Amitrano, 2012; Kamer and Hiemer, 2015). For
example, observed variations in b-values with stress rely on the maximum
likelihood estimator Aki (1965), with corrections for the magnitude binning
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(Utsu, 1965; Bender, 1983; Tinti and Mulargia, 1987). This method implic-
itly assumes that the underlying distribution is a pure power-law above some
threshold of completeness according to equation (3). If this is not the case,
then this estimator will be biased and confounded with any non-power-law
stress-dependent variations in the frequency magnitude distribution, as we
will show later.

Recent developments in statistical fracture and earthquake mechanics the-
ories indicate that a wide range of physical mechanisms and conditions all
lead to the same frequency-magnitude distribution that is a stress-invariant
power-law with a stress-dependent exponential taper. We will now review
these theories as a physical basis for β-values that do not vary with stress and
to introduce an alternative stress-dependence for the frequency distribution
of earthquakes induced by Groningen gas production.

5 Poro-elastic thin-sheet stress model

The development of external loads on pre-existing weak fault structures
within the Groningen gas field depends on the evolution of reversible reser-
voir deformations induced by pore pressure changes. Within the limit of
small strains, these reservoir deformations are well-described by linear poro-
elasticity. For thin reservoir geometries where the lateral extent of the reser-
voir greatly exceeds its thickness, the reservoir deforms predominately as a
thin-sheet. Within the poro-elastic, thin-sheet approximation (Bourne and
Oates, 2017), depletion-induced reservoir displacement vector field, u(x), is
constrained by symmetry to vertical displacements, u(x)ẑ, where ẑ is the
unit vertical vector. From this approximation it follows that the vertically-
averaged incremental Coulomb stress states are:

∆C(x, t) = −γHp(x)Γ(x)∆P (x, t) (4)

where ∆P (x, t) is the change in reservoir pore fluid pressure, Γ(x) is the
magnitude of lateral gradients in the elevation of the top surface bounding
the thin-sheet, γ = ν/(1−2ν) and ν is Poissons ratio taken to be 0.25. Hp(x)
is a poro-elastic material property defined as:

Hp(x) =
Hs

Hs +Hr(x)
(5)

where Hs is a constant related to the shear modulus of the skeleton mate-
rial comprising the poro-elastic medium and estimated as a model parame-
ter. Hr(x) is the time-invariant ratio of the observed reservoir depletion to
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the observed reservoir compaction strain, ∆P (x, t)/εzz(x, t). Reservoir com-
paction strain is inferred from geodetic monitoring of surface displacements,
and reservoir depletion is measured by in-well pressure gauges. For depletion,
i.e. ∆P (x, t) < 0, incremental Coulomb stresses increase towards frictional
fault failure in locations where γHp(x) > 0, otherwise depletion acts to in-
crease frictional fault stability. In the presence of pre-existing faults that
partially offset the thin-sheet, Γ(x), is locally increased and acts to increase
the sensitivity of Coulomb stress to pore-pressure changes. The deterministic
reservoir map −γHp(x)Γ(x) describes the time-invariant, local sensitivity of
Coulomb stress to reservoir pore pressure changes, ∆C/∆P , or stress sus-
ceptibility. This map was estimated by multiplying Γ(x) and −γHp(x) maps
independently inferred from field observed quantities. Γ(x) is computed from
the top reservoir surface mapped by reflection seismic imaging.

Two modifications help to improve the performance of this thin-sheet
model. First, we filter the contribution of individual faults to the topo-
graphic gradient field, Γ(x), according to their juxtaposition geometry with
the reservoir, by including fault segments according to the criterion:

r ≤ rmax, (6)

where r is the local ratio of fault throw to reservoir thickness, and rmax is a
model parameter. This represents the consequences of juxtaposition, where
faults offset the reservoir against the overlying and ductile Zechstein salt
formation. Increased juxtaposition of the reservoir interval against the Zech-
stein formation may limit induced seismicity by favouring ductile fault creep
instead of a stick-slip behaviour. Second, we use a smoothed incremental
Coulomb stress model, ∆C̃(x, t), evaluated as:

∆C̃(x, t) =

∫
S

∆C(x, t)G(x,x′)dS ′ (7)

a surface integral over the entire model domain, S, where G(x,x′) is the
isotropic Gaussian kernel:

G(x,x′) =
1√
2πσ

e−
(x−x′)2

2σ2 (8)

defined by the characteristic smoothing length-scale, σ.
This poro-elastic, thin-sheet stress model has three degrees of freedom

{β2, β3, β4}; the smoothing length-scale, β2 = σ, the maximum juxtaposition
ratio, β3 = rmax, and the poro-elasticity constant β4 = Hs. These three
parameters are optimized jointly with a given seismological models that de-
fines the conditional probabilities of earthquake occurrence and size given
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the smoothed incremental Coulomb stress field, ∆C̃(x, t), and the observed
catalogue of induced earthquakes, D.

This model is applicable to any reservoir subject to pore-pressure changes
that is thin relative to it’s lateral extent and smoothing length-scale such that
uni-axial displacements dominate. In the particular case of the Groningen
reservoir the posterior distribution of thin-sheet models inferred given the
observed history of pore-pressure depletion, reservoir compaction, and in-
duced seismicity (Bourne and Oates, 2017). For M ≥ 1.5 event occurrences
observed from 1/1/1995 to 1/6/2019, the maximum posterior probability
thin-sheet parameter values are β2 = 3 km, β3 = 0.41, β4 = 105.3 MPa
(Appendix C). For M ≥ 1.5 event magnitudes observed from 1/1/1995 to
1/6/2019, the maximum posterior probability thin-sheet parameter values
are obtained using the event locations and origin times from are β2 = 3.5 km,
β3 = 1.1, β4 = 107 MPa (Appendix C). The apparent difference between the
optimal smoothing length-scales between these two models is not significant
as both posterior distributions include both values within their 95% credi-
ble intervals. The larger apparent different in the juxtaposition parameter,
β3, nonetheless yields very similar coulomb stress models and reflects the
previously observed bi-modal distribution with modes at both β3 = 0.4 and
β3 = 1.1 (Bourne and Oates, 2017, Figure 12). The apparent difference in
skeleton modulus β4 may also reflect inference uncertainty. Inference of a
single thin-sheet model given may allow better forecast performance by uti-
lizing both the observed event occurrences and magnitudes to constrain a
single stress model but this was outside the scope of our current study.

6 Observed seismicity

The Groningen field is located within the north-east of the Netherlands.
The gas-bearing reservoir interval comprises the Upper Rotliegend Group
(Permian) and the Limburg Group (Carboniferous) sediments, separated
by the Saalian unconformity (Stauble and Milius, 1970). The depth of the
Rotliegend reservoir is 2600-3200 m. The field extent is controlled primar-
ily by fault closures with occasional local dip closures. The top seal is the
Zechstein salt. Production of Groningen gas started in 1963 and pressure
depletion rates increased rapidly until 1973 before reducing significantly to
conserve Groningen gas reserves. From 2000 to 2014, depletion rates rose
moderately in response to increased market demand and decreased capacity
of other smaller gas fields. Starting in 2014, depletion rates were significantly
reduced in response to induced seismicity.

The Royal Netherlands Meteorological Institute (KNMI) has monitored
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Figure 1: Observed distribution of epicentres and magnitudes of earthquakes
induced by Groningen gas production since the monitoring of M ≥ 1.5
events started in 1995. Colours denote the poro-elastic thin-sheet model
of smoothed incremental maximum Coulomb within the reservoir induced by
pore-pressure depletion from the start of production in 1965 until 2019. Cir-
cle denotes earthquakes and their area scales continuously with earthquake
magnitude as indicate by the legend. Thin grey lines denote fault traces at
the top of the reservoir. A dark grey polygon denotes the original gas-water
contact respectively. Map coordinate units are kilometres.
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Figure 2: Time series of the incremental Coulomb stress and magnitude as-
sociated with the Groningen M ≥ 1.5 events observed from 1995 to 2019
(grey panel). The area and colour of the circles denotes the magnitude of
each event. Grey lines indicate the evolution of stress exposure within the
reservoir according to the poro-elastic thin-sheet model and denote the reser-
voir volume fraction exposed to at most that stress state. Most events occur
within the largest 20% of the exposed stress states (80%–100%).

seismicity in the Netherlands since at least 1986 (Dost et al., 2012). For the
Groningen Field earthquake catalogue, the magnitude of completeness for
located events is taken to be ML = 1.5, starting in April 1995, with an event
detection threshold of ML = 1.0 (see ?). Here we restrict our analyses to the
279 events with ML ≥ 1.5 recorded within the Groningen Field between 1st

January 1995 and 1st June 2019. Epicentres of events in the catalogue are
determined to within about 500-1000 m but, because of the sparseness of the
monitoring array, depths were routinely estimated. For these events a depth
of 3000 m–approximate reservoir depth–has been assumed. This is consis-
tent with a limited number of reliable depth estimates from a reservoir-level
borehole geophone array. Event magnitudes are reported as local magnitudes
with a typical error of 0.1.

The spatial distribution of epicentres is localized within regions of the
reservoir associated with larger incremental Coulomb stresses as represented
by the poro-elastic thin-sheet model (Figure 1). Event origin times also
appear to favour larger incremental Coulomb stress states (Figure 2) as most
events occur at later times when incremental stresses are larger albeit subject
to considerable variability. Likewise, larger magnitude events, e.g. M ≥ 2.5,
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appear mostly localised in the times and places associated with the largest
20% of the exposed reservoir stress states. The stress-dependence of event
occurrence probability appears to follow an exponential-like trend consistent
with an Extreme Threshold theory of initial frictional reactivations within a
heterogeneous and disordered fault system (Bourne and Oates, 2017).

The observed frequency-magnitude distribution of events (Figure 3) shows
clear evidence for under-reporting of M < 1.5 events and an apparent in-
crease in variability with increasing magnitude due to finite sample effects.

The apparent b-values of these events also appear to decrease systemat-
ically with increasing Coulomb stress (Bourne et al., 2018) or compaction-
induced strain (Bourne et al., 2014). However, the available surface dis-
placements and seismicity observations cannot reliably distinguish between
a stress or a strain driven process. Harris and Bourne (2017) demonstrated
the observed frequency-magnitude distribution of 1995 to 2015 M ≥ 1.5
events with epicentres inside a central elliptical region of the Groningen field
is significantly different from those located outside this region with a statis-
tical confidence exceeding 95% under the Kolmogorov-Smirnov test statistic.
This elliptical region was centred close to the centroid of seismicity and ori-
ented and sized to divide these events into approximately two equally-sized
populations. Maximum likelihood estimates for the b-values were b = 0.7
and b = 1.2 for the inside and outside events respectively.Poro-elastic thin-
sheet reservoir stress models indicate the region inside this ellipse experienced
systematically higher maximum Coulomb stress states throughout this time
period indicating these significantly lower b-value estimates are associated
with a history of higher Coulomb stress states.

All these observations may however be an artefact of assuming a pure
power-law frequency distribution of seismic moments without allowing for
the possibility of other distributions such as a power-law with an exponential
taper. All these previous observations also relied on catalogues of Groningen
earthquake magnitudes reported to one decimal place. In the following sec-
tions we will assess the observable relationship between the distribution of
earthquake magnitudes, now reported to 2 decimal places, and the reservoir
stress history due to pore pressure depletion according to poro-elastic thin-
sheet reservoir deformation model calibrated to the observed history of pore
pressure depletion, surface displacements, and the space-time distribution of
earthquake occurrences (Bourne and Oates, 2017; Bourne et al., 2018).

6.1 Frequency-magnitude stress dependence

To investigate stress-dependence of the frequency-magnitude distribution
without making any assumptions about the particular form of this distri-
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Figure 3: The frequency magnitude distribution of earthquakes from
1/1/1995 to 1/6/2019 associated with Groningen gas production. (left) Ex-
ceedance counts denotes the number of events with at least the given mag-
nitude. (right) Counts denotes the number of events within magnitude bins
of size 0.1. The magnitude of completeness for this catalogue is in the range
1.3–1.5.

bution we will use the Kolmogorov-Smirnov test statistic. First, we compute
the incremental Coulomb stress, ∆Ci, at the origin time, ti and epicentral
location, Xi of each observed M ≥ 1.5 event from 1995 to 2019, according to
the poro-elastic thin-sheet reservoir model. Based on these values, we divide
the events into two disjoint samples: a low stress sample, ∆Ci < ∆C, and
a high stress sample, ∆Ci ≥ ∆C. By increasing the stress threshold, ∆C,
we compute the Kolmogorov-Smirnov test statistic p-value for all possible
divisions of the events (Figure 4a), and repeat this procedure for alternative
minimum magnitudes of completeness in the range 1 ≤Mmin ≤ 2 (Figure 4b).
This p-value measures the probability that these two independent samples
were drawn from the same underlying probability distribution.

The smallest p-values found are about 10−3 and correspond toMmin = 1.5,
a ∆C = 0.7 MPa stress threshold, with about 100 and 200 events in the low-
and high-stress samples respectively. This result appears robust to alterna-
tive values of Mmin such that the 95% confidence threshold is exceeded also
for 1.0 ≤Mmin ≤ 1.7. For Mmin > 1.7, the loss of statistical power due to the
smaller number of these larger events likely predominates. Consequently we
conclude there is a statistically significant stress dependence in the frequency-
magnitude distribution of Groningen induced earthquakes. Figure 5 shows
the empirical exceedance distribution functions and epicentral map locations
for this optimal stress-based division of the observed events.

By simple visual inspection, the different distributions appear consistent
with β-values decreasing with stress or ζ-values increasing with stress. Er-
godicity is implicit within this stress covariate hypothesis. That is to say
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(a) (b)

Figure 4: (a) Kolmogorov-Smirnov test statistic p-values for each possible
division of the observed M ≥ 1.5 events since April 1995 into low and high
incremental Coulomb stress, ∆C, groups according to the poro-elastic thin-
sheet stress model (σ = 3.5 km, rmax = 1.12, Hs = 1013 Pa). The ith event
belongs to the low stress group if ∆Ci < ∆C; otherwise it belongs to the
high stress group. (b) As (a), except for all M ≥Mmin events over the range
1.0 ≤Mmin ≤ 2.0.

a temporal stress change is indistinguishable from a spatial stress change
of the same amount. The separation of high and low-stress events in space
(Figure 5) more than in time (Figure 2) might indicate the influence of some
initial spatial heterogeneity (quenched disorder). However, closer inspection
of the map shows spatial mixing with many low- and high-stress events occur-
ring in similar locations. This means there are three distinct spatial domains.
A low-stress domain that has never experienced incremental stress above the
0.7 MPa threshold over the period of observation. A high-stress domain that
has never experienced incremental stress below the 0.7 MPa threshold over
the period of observation. Finally, an intermediate stress domain that has
experienced stress states that have crossed the 0.7 MPa threshold at some
time during the period of observation.

Any continuous stress-dependence of the frequency-magnitude distribu-
tion implies both samples still represent a mixture of different distributions
reflecting the range of stress states within each sample. In this case sub-
division of the events into more than 2 disjoint samples fails to reveal any
reliable evidence for this which we attribute to the reduction of statisti-
cal power which limits our resolution of this stress dependency under the
Kolmogorov-Smirnov non-parametric test statistic.
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Figure 5: The observed earthquake size distribution and epicentral locations
of low- and -high stress groups most likely to originate from different proba-
bility distributions.
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6.2 Apparent stress dependence of β- and ζ-values

The significant stress-dependent differences found in the observed frequency-
magnitude distribution may reflect a decrease in the power-law exponent, β,
and the exponential taper exponent, ζ, with increased Coulomb stress. To
measure any apparent variations of β- or ζ-values with Coulomb stress, we
first ordered the M ≥ 1.5 observed events from 1/4/1995 to 1/6/2019 accord-
ing to the incremental maximum Coulomb stress at their time and place of oc-
currence within the poro-elastic thin-sheet reservoir deformation model. This
yields a sequence of N incremental Coulomb stress values {∆C1, . . . ,∆CN},
and a paired sequence of event magnitudes {M1, . . . ,MN}. For the first k
events in this paired sequence, we computed the posterior distribution of
β-values for a constant β-value model with no exponential cut-off (ζ = 0),
and repeated this for every set of k consecutive events. Figure 6a shows the
resulting β-value estimates and their uncertainties for k = 20 which tend to
decrease with increasing Coulomb stress. A clear step-like decrease is evident
at ∆C = 0.7 MPa which is consistent with the previous Kolmogorov-Smirnoff
test (Figure 4a). Such gradual evolution due to a mixing of different states
has recently been demonstrated in lab data (Jiang et al., 2017) and also seen
in volcanic seismicity (Roberts et al., 2016).

Repeating this procedure for a constant ζ-value model with fixed at its

(a) (b)

Figure 6: Variation of posteriori (a) b-value and (b) ζ-value estimates with
incremental Coulomb stress given Mmin = 1.5 and a constant population
sample of 20 events. Light and dark grey bands denote the 67% and 95%
confidence intervals, and β = 2

3
b.
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presumed universal value (β = 2/3), yields a similar trend of decreasing val-
ues with increasing Coulomb stress (Figure 6b). These piece-wise constant
estimates for the variation of β- or ζ-values with Coulomb stress depend in
detail on the choice of sample size, k. Larger k-values allow reduce uncer-
tainties in the estimated β- and ζ-values but lower their resolution of any
stress dependency. Likewise, smaller k-values increases stress resolution at
the expense of precision. Nonetheless, similar results were obtained over a
wide range of k-values indicating an apparent general tendency for β- and
ζ-values to decrease with increasing Coulomb stress under the poro-elastic
thin-sheet model. Once more, there is evidence for mode switching or mixing
under increased stress.

7 Statistical mechanics of earthquakes

We will now briefly review the statistical mechanics aspects of earthquakes
that motivate our choice of possible models that are included in the evalua-
tion (Figure 7). We will only use these theories for hypothesis identification
and not for hypothesis testing, which we will do instead using the available
observations of Groningen induced seismicity.

Heterogeneity is the key to forecasting failure events within geological ma-
terials as consistently demonstrated in the laboratory experiments (Vasseur
et al., 2015, 2017). Statistical models distinguish themselves from determin-
istic models of fractures by incorporating the influence of unresolvable het-
erogeneities as stochastic disorder. Statistical theories of brittle rock strength
originate with Weibull (1939) and now fall within a broad class of statistical
models of fractures (e.g. Alava et al., 2006) and earthquakes (de Arcangelis
et al., 2016).

Figure 8 illustrates this abstraction process of replacing the unknown
distribution of fault heterogeneities (disorder) that influence the initiation
and termination of frictional fault slip under an external stress with stochastic
variables representing the probabilities of failure given the local stress states.
These local stress states depend on the external stress and the redistribution
of stresses due to previous failures.

Within these theories, the frequency-moment power-law may be derived
in one of at least four different ways.

1. The geometric constraints associated with the number of permutations
available for tiling rupture areas over a fault surface (Main and Burton,
1984).

2. Within the renormalisation group model for a wide-variety near-critical
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physical systems (e.g. chapter 15 Turcotte, 1997).

3. Within percolation theory near the percolation threshold (e.g. Stauffer
and Aharony, 1994).

4. Within self-organized criticality theory (Bak and Tang, 1989; Main,
1996).

Likewise, the frequency-moment distribution as a power-law with an ex-
ponential taper also has a physical basis in at least four different statistical
mechanics theories.

1. Within fiber bundle models of brittle failure with equal-load sharing
(e.g. Pradhan, 2010). See Appendix A for a more detailed review.

2. Within percolation theory below the percolation threshold (e.g. Stauffer
and Aharony, 1994). See Appendix B for a more detailed review.

3. Within Ising models of brittle failure with local-load sharing.

4. Within interface theories of crack depinning in the presence of hetero-
geneity (e.g. Daguier et al., 1997).

5. Within information theory, using the concept of maximum entropy to
find the least-informative probability distribution subject to observa-
tional constraints on the mean magnitude and mean total seismic mo-
ment rate (Main and Burton, 1984).

For earthquakes, we are concerned with the limit that these redistributed
stress perturbations are small relative to the external stress known as dam-
age mechanics. Damage mechanics models exist in two distinct classes (Fig-
ure 7). First, network models that address the evolution of failure across a
distributed collection of interacting elements. Second, interface models that
focus on the advance of a fracture tip line within a heterogeneous medium.

Network damage models take three key forms with respect to failures.
Random fuse networks (Roux et al., 1988; de Arcangelis et al., 2007; Hansen,
2011), provide a model of brittle failure within a scalar central force network
(Gilabert et al., 2007). Each fuse within the network has a randomly assigned
and invariant failure threshold (quenched disorder). Increasing external volt-
age leads to failure of individual fuses and re-distribution of current across
the network that potentially triggers additional failures at constant applied
voltage. Mean field theory (Toussaint and Hansen, 2006) shows this is a
percolation process in the limit of infinite disorder (Roux et al., 1988) where
re-distributed loads are equally shared. Random spring networks (Nukala
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et al., 2005) provide a model of brittle failure within a tensor central force
network. Here, springs failure under a quenched random strain threshold
and forces are re-distributed across the remaining spring network. Under
simple shear loads, failure within this network is equivalent to random fuse
networks.

Random block-spring networks (Burridge and Knopoff, 1967) represent

Figure 7: The network of statistical damage mechanics theories that seek
to describe mechanical failure as a stochastic process. This different models
all lead to failure sizes distributed according to a stress-invariant power-law
with a stress-dependent exponential-like taper.
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frictional failures within a tensor central force network. A network of slider-
blocks in frictional contact with a rigid basal surface and are connected to
each other and to a driver plate by a network of springs. Displacement of the
driver plate loads the blocks which slide when the basal shear exceeds the
frictional threshold. Basal shear stresses are initiated as a random quenched
disorder. Within mean field theory (Sornette and Physique, 1992), the first
cycle of failures is equivalent to the fiber bundle model (Hansen and Hemmer,
1994; Hemmer and Hansen, 1992; Kloster et al., 1997; Pradhan, 2010). Tous-
saint and Pride (2005) demonstrates an isomorphism of weak lattice damage
models with fiber bundle model which in turn is isomorphic with percolation
theory for equal load sharing or the Ising model for local load sharing. Using
renormalisation group theory, Shekhawat et al. (2013) unified the theories
of fracturing within a disorder brittle material for infinite disorder (percola-

Figure 8: Schematic to illustrate (a) the different sources and (b) the dif-
ferent strengths of unresolved fault heterogeneity and (c) their stochastic
representation as local failure probabilities that lead to the emergence of an
exponentially tapered power-law distribution of failure sizes.

Figure 9: The probability-area distribution of fault failure events arising on a
single fault with a network of uniform failure probabilities is an exponentially-
tapered power-law. The lower probabilities of larger failure areas are gov-
erned by competition between the lower probability of a larger number of
connected dark grey failed cells bordered by white intact cells and the larger
number of alternative geometric configurations with the same failure area.
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tion) and zero disorder (nucleation) to show a power-law failure avalanche
size distribution with an exponential-like taper for finite disorder. Also us-
ing renormalisation group theory, (Coniglio and Klein, 1980) demonstrate a
correspondence between percolation and Ising models.

An alternative theoretical approach is to represent an existing crack front
as a deformable line that advances under an external stress through a ran-
dom toughness medium (e.g. Daguier et al., 1997). This crack front advances
episodically between equilibrium states in which heterogeneities temporarily
resist crack propagation. The resulting size of crack growth events depends
on the competition between distortions of the crack front due to the mate-
rial’s inhomogeneities and the elastic self-stress field that acts to straighten
this front (Bonamy and Bouchaud, 2011). Within the theory elastic fracture
mechanics and in the limit of quasi-static deformations, this crack depin-
ning process leads to failure sizes distributed as a universal power-law with
a stress-dependent exponential taper (Ponson et al., 2006). This observation
that some many diverse models all collapse to the same failure-size distribu-
tion is remarkable and motivates the application of statistical mechanics to
seismic hazard analysis Main (1996).

This phenomena is not limited to geological materials. A wide variety of
physical systems exhibit crackling noise when driven towards failure slowly
(J.P. Sethna et al., 2001) and the event-size distributions are power-laws with
exponential-like tapers. Also with regard to fitting observed global natural
seismicity, Kagan (2002b) strongly favours a power-law with an exponential
taper and a universal value for β. He also finds no statistically significant
evidence for any variations in β (Kagan, 2002a).

7.1 A generalized frequency-moment distribution

Following the common form of failure-size distributions found within a wide
range statistical mechanics models of brittle failure, we follow Kagan (2002b)
and write a generalized distribution for earthquakes according to the seismic
moment, M, exceedence probability (survival) function:

P (≥M|M ≥Mm) =

(
M
Mm

)−β
e−ζ(

M
Mm
−1), (9)

whereMm is the lower threshold for completeness in the observed catalogue
and the corner moment, Mc, characterizing the exponential taper is Mc =
Mm/ζ. As expected, for M =Mm the exceedance probability is 1.

Within these statistical mechanics models of a fault or fracture system
being driven from stability towards critical instability β is a universal con-
stant and Mc evolves as a power-law relative to the system’s critical point,
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such that

Mc =
Mm

ζ
∼ (εc − ε)−γ. (10)

Figure 10 illustrates how this survival function evolves with increasing ζ. The
maximum likelihood estimator Aki (1965), with corrections for the magnitude
binning (Utsu, 1965; Bender, 1983; Tinti and Mulargia, 1987) assumes ζ =
0. If this is not true, the estimator becomes biased upwards. Figure 11
illustrates this bias using magnitudes simulated according to (9). When ζ
scales as a critical-point function of external strain then this bias appears as
a systematic and non-linear decrease in b-values. To evaluate the observed
stress-dependency of earthquake magnitudes within the Groningen field we
now require a suitable model for the development of stress due to depletion
of reservoir pore-pressures associated with gas production.

Figure 10: Seismic moment exceedance probability functions (survival func-
tions, SF) as a power-law with an exponential cut-off according to according
to equation (9) for a constant power-law exponent β = 2

3
, and a corner mo-

ment, sc/sm, varying from 10−1 to∞, where sm = 2.2×1011 Nm (Mmin=1.5).
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(a)

(b)

Figure 11: (a) Apparent decrease in b-value with increasing corner moment,
Mc. Based on 1000 simulated earthquake catalogues each with 50 M ≥ 1.5
events for β = 2

3
and a given Mc, and then repeated for 30 different values

of Mc. The black line and grey band denote the ensemble average and 5%
to 95% interval of these simulations. (b) Apparent decrease in b-value with
increasing strain, ε relative to a critical strain, εc, according to a critical-point
scaling law, Mc ∼ (εc − ε)−γ. In this example, γ = 2.
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8 Model specifications

8.1 Power-law distribution with an exponential taper

We start by representing the seismic moment,M, as an independent random
variable distributed according to a power-law distribution with an exponen-
tial taper according to:

P (≥M|M ≥Mm) =

(
M
Mm

)−β
e−ζ(

M
Mm
−1), (11)

where β is the power-law exponent, and sm/ζ is the corner moment of the
exponential taper. For ζ=0 this distribution reduces to the power-law previ-
ously given by (3).

The associated probability density of the tapered power-law model is

p(M|M ≥Mm) dM =
1

Mm

(
β + ζ

M
Mm

)(
M
Mm

)−β−1

e−ζ(
M
Mm
−1) dM,

(12)
and the log-likelihood of this model given the set of seismic moment obser-
vations, Mi = {M1, . . . ,Mn}, follows as

` =
n∑
i=1

(
log(βi + ζ

Mi

Mm

)− (1 + βi) log
Mi

Mm

− ζi
(
Mi

Mm

− 1

)
− logMm + log dM

)
,

(13)
as previously given by Kagan (2002b). If the observed seismic moments,Mi,
are computed from moment magnitudes according to (2) and these magni-
tudes are binned within intervals of size, ∆M , then the minimum seismic
moment, Mm, must be computed as

logMm =

(
c+ d(Mc −

1

2
∆M)

)
log 10, (14)

where Mc is the magnitude of completeness above which all events within
the region of interest are reliably detected and located. We will use this one
general form of the log-likelihood function for the inference and evaluation
of all the different possible earthquake magnitude models considered in this
study.

A complete seismological model also requires a model for event occur-
rence, which we shall model according to the Extreme Threshold Failure
model (Bourne and Oates, 2017). Within the Extreme Threshold Failure
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model, the occurrence rate of M ≥ 1.5 events induced inside the Groningen
reservoir are well-described by the Poisson intensity function

λ = h∆Ċθ0e
θ1∆C . (15)

Here, λ corresponds to the expected number of events per unit surface area
and unit time. The apparent dependence on the local reservoir thickness, h,
and stress rate ∆Ċ is not fundamental to this stress-dependent process. To
clarify this, the corresponding expected event rate per unit volume and per
unit of incremental Coulomb stress, χm, may be written as

χm = θ0e
θ1∆C . (16)

Here, χm characterises the stress susceptibility of the system for inducing
events of at least seismic momentMm. Multiplying (16) and (11), yields the
generalised stress susceptibility, χ, for events of at least seismic moment M
given M≥Mm, such that:

χ = χm

(
M
Mm

)−β
e−ζ(

M
Mm
−1). (17)

Equation (17) defines a family of seismological models for induced seismic-
ity conditioned maximum incremental Coulomb stress field, ∆C(x, t), ac-
cording to the poro-elastic thin-sheet equation (4). All that remains now is
to specify the functional form of any magnitude stress dependence accord-
ing β = β(∆C) and ζ = ζ(∆C). We will do this by specify four distinct
and physically plausible model classes: stress-invariant magnitudes, stress-
dependent β-values, stress-dependent ζ-values, and stress-dependent β and
ζ values.

8.2 Stress-invariant distributions

This class of stress-invariant models has up to 2 degrees of freedom, {β, ζ}
where the log-likelihood function (13) takes the special case where:

βi = β,

ζi = ζ.
(18)

Also of interest are two special cases with single degrees of freedom. The
first case is an unknown invariant power-law with zero taper, specified as

βi = β,

ζi = 0.
(19)
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The second case is an unknown invariant taper with a known universal power-
law, such that

βi =
2

3
,

ζi = ζ.
(20)

These basic invariant magnitude-frequency models are all unable to ex-
plain the significant difference observed between the low- and high-stress par-
titions of the Groningen earthquake catalogue (Figures 4 and 5). Nonetheless,
they provide useful performance references for the following two alternative
classes of stress-dependent models.

8.3 Stress-dependent β-values

Within this class of models we represent the stress-dependence of the frequency-
magnitude distribution according to (11) given ζi = 0 and βi = f(∆Ci),
where ∆Ci, is the maximum incremental Coulomb stress state at the occur-
rence time, ti, and epicentral location, xi of each event such that ∆Ci =
∆C(ti,xi).

As a first possible parametrization of f(∆Ci), we will consider an inverse
power-law of the form:

βi = θ0 +

(
∆Ci − θ1

θ2

)−θ3
,

ζi = 0.

(21)

To avoid implausibly large β-values we include the constraint βi = min(βi, 1).
This model has 4 degrees of freedom {θ0, θ1, θ2, θ3} where θ1, θ2, θ3 are non-
negative. In general, β-values decrease with increasing Coulomb stress to
the lower bound θ0. This model has an asymptote at ∆Ci = θ1 and so its
range of physical validity is restricted to ∆Ci > θ1. The scale and shape
of the stress dependence are given by θ2 and θ3 respectively which are both
restricted to be non-negative. For θ3 = 0 the model is stress invariant, and
for ∆Ci � θ1∀i the model reduces to a linear function of ∆Ci equivalent
to the theoretical model proposed by Scholz (1968), whilst also limiting the
extent of this linear region to avoid the non-physical possibility of negative
β-values.

We will also consider an alternative parametrisation of f(∆Ci) to rep-
resent a smooth step-like transition from an upper to a lower bound with
increasing stress without increasing the degrees of freedom. This is moti-
vated by Figure 6a and previous observations of mode switching in volcanic
seismicity (Roberts et al., 2016).
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βi = θ0 + θ1 (1− tanh(θ2∆Ci − θ3)) ,

ζi = 0.
(22)

In this case, the smallest and largest possible β-values are bounded such
that, βmin = θ0, and the largest possible decrease in the β-value with in-
creasing stress is βmax − βmin = 1

2
θ1. The shape and location of this smooth

step down in β-values are governed by θ2 and θ3 respectively. The observ-
able performance of these two stress-dependent β-value models is not greatly
sensitive to the these alternative parametrization choices as they both rep-
resent a smooth non-linear approach to a lower bound. They will differ in
extrapolation to earlier times with lower stress as only the second model has
an upper bound. However, under extrapolation to later times with higher
stress the two models become equivalent as they approach a common lower
bound. For seismic hazard and risk analysis we only require this second type
of extrapolation.

8.4 Stress-dependent ζ-values

Within this alternative class of stress dependent models we represent the
stress-dependence of the frequency-magnitude distribution according to (11)
given βi = β and ζi = f(∆Ci). As a first parametrization, we model the stress
dependence of ζ according to a critical-point power-law scaling motivated by
statistical fracture mechanics (Alava et al., 2006, e.g.), such that

βi = θ0,

ζi =

{
θ1(θ3 −∆Ci)

θ2 if ∆Ci ≤ θ3,

0 otherwise ,

(23)

where θ3 is the critical stress of the system corresponding to the divergence
of failure correlation length-scales and the onset of global failure. θ2 is the
non-negative critical exponent of this power-law, and θ1 is a proportionality
constant. So, as ∆C → θ3, then ζ → 0. This means seismic moments
initiated under critical stress states are distributed as a power-law, whereas
sub-critical stress states involve power-law with an exponential taper. Within
this model, the power-law exponent, β, is a universal constant whilst the
strength of the exponential taper decreases as stress states approach the
critical point, as previously argued by Main (1995, 1996).

Given this parametrization choice, θ1 = 0 corresponds to the power-law
distribution without any exponential taper, and θ2 = 0 corresponds to an
exponential taper independent of the stress state. This model has 4 degrees of
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freedom {θ0, θ1, θ2, θ3}. The joint posterior distribution of these parameters
given the Groningen events and stress model exhibit a trade off between
parameters. This may be avoided by fixing θ1 to its maximum a posteriori
probability (MAP) value, but doing so may also inadvertently bias the model.

Motivated by these findings, we consider an alternative positive definite
parametrization of the ζ stress function with just 2 degrees of freedom which
still allows for rapid decrease of ζ-values with increasing stress towards the
critical point (ζ = 0) in the form of an exponential trend:

βi = θ0,

ζi = θ1e
−θ2∆Ci .

(24)

This alternative model has 3 degrees of freedom {θ0, θ1, θ2}. With this
parametrization choice, θ1 = 0 corresponds to a pure critical-state power-
law with no exponential taper for all stress states as also postulated in Main
(1995, 1996).

Then for θ1 = 0, and θ2 = 0, then exponential taper is present but
independent of the stress state. If both parameters are non-zero, then the
exponential taper depends on the stress state, and for θ2 > 0 is follows that
ζ → 0 as ∆C →∞. So we see that this reduced parametrization if equivalent
to the previous power-law choice in the limit that the critical stress point
is much larger than the presently observed stress states. Although Taylor
expansion of the power-law (23) under these conditions leads to a linear trend,
i.e. ζi = θ1 + θ2∆Ci, this is not guaranteed to be positive definite without
an additional constraint that creates a discontinuity in the first derivative
leading to increased instability during inference. This linear form also lacks
the requirement for non-linear growth in ζ with increasing sub-critical stress
states. For these reasons we do not include an explicit linear parameterization
for stress-dependent of ζ-values.

8.5 Stress-dependent β-ζ-values

Within this hybrid class of models we consider a 5-parameter combination of
the hyperbolic-tangent stress-dependent β-model and the exponential stress-
dependent ζ-model defined here as

βi = θ0 + θ1 (1− tanh θ2∆Ci) ,

ζi = θ3e
−θ4∆Ci .

(25)

Joint inference of the model parameters {θ0, θ1, θ2, θ3, θ4} in-principle allows
for competition between the two paradigms of stress-dependent β with ζ = 0
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and stress-dependent ζ with some universal fixed β. In practise, the limited
number of observed events, the uncertainties in their magnitudes and reser-
voir stress states, and biased sampling of higher stress states may critically
limit the statistical power of this most-complex model.

9 Bayesian inference

Adopting the established methods of Bayesian inference we will estimate the
set of parameters, Θi, for each of the specified models, Mi

∗ (Table 1), given
the observed earthquake data set, D. According to Bayes theorem:

Pr(Θi|D,Mi) =
Pr(D|Θi,Mi) Pr(Θi|Mi)

Pr(D|Mi)
, (26)

where Pr(Θi|D,Mi ≡ P (Θi) is the posterior probability distribution of
the model parameters, Pr(D|Θi,Mi) ≡ L(Θi) is the likelihood distribu-
tion, Pr(Θi|Mi) ≡ π(Θi) is the prior distribution of parameter values, and
Pr(D|Mi) ≡ Zi is the normalization factor or Bayesian evidence. As Zi is in-
dependent of Θi it may be ignored for the purposes of model inference. Using
standard MCMC methods provided by the Python library PyMC3 (Salvatier
et al., 2015), we sample each model’s parameter space distributed according
to its un-normalised posterior using equilibrium Markov chains. This sam-
pled posterior constitutes a complete joint inference of all parameter values,
and may be marginalised over each parameter to yield individual parameter
value estimates.

Relative to earlier studies (Bourne and Oates, 2017; Bourne et al., 2018),
our MCMC sampling methods incorporate three improvements. First, the
adaptive Metropolis Hastings sampler was replaced with the No-U-Turn
(NUTS) sampler that provides automatic tuning of the Hamiltonian sam-
pler and uses symbolic derivatives of the likelihood function to improve sam-
pling efficiency and reduce correlations between successive samples. Second,
single trace sampling was replaced by multiple independent trace sampling
in parallel on multiple CPU and, when possible, GPU cores. Third, sam-
ple chains are initiated by random draws from the prior distribution, π(Θi),
rather than at the parameter values that maximize the posterior distribu-
tion, P (Θi). This last change avoids sampling bias and assists confirmation
of sample repeatability between the independent Markov chains.

∗Although models and magnitudes are both denoted by the same symbol M , they may
be distinguished as models are always associated with an integer subscript, Mi, whereas
any magnitude subscripts are restricted to Mc and Mt representing the completeness and
threshold magnitudes respectively.
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In addition, the earthquake data set, D, incorporates two improvements
relative to Bourne et al. (2018). First, the seismological survey, KNMI, re-
duced the rounding of reported earthquake magnitude values from 0.1 to 0.01.
Second, the observed time period increased by 18 months from 1/1/1995–
1/1/2018 to 1/1/1995–22/5/2019 (6% increase), to incorporate another 20
M ≥ 1.5 events within the Groningen catalogue (7% increase).

For model inference from these data, we aim to use uninformative uni-
form prior distributions that honour non-negative conditions where applica-
ble. The range of these distributions are sufficiently large such that further
increases do not influence the posterior distributions.

Mi Equations Parameters Label
Stress invariant models

M1 (19) Θ1 = {β} uni1

M2 (20) Θ2 = {ζ} uni1.z

M3 (18) Θ3 = {β, ζ} uni2

Stress-dependent, inverse-power-law β-models

M4 (21) Θ4 = {θ0, θ1, θ2, θ3} ets0.ipc4

M5 (21|θ1=0) Θ5 = {θ0, θ2, θ3} ets0.ipc3

Stress-dependent, hyperbolic tangent β-models

M6 (22) Θ6 = {θ0, θ1, θ2, θ3} ets0.htc4

M7 (22|θ3=0) Θ7 = {θ0, θ1, θ2} ets0.htc3

M8 (4), (22|θ3=0) Θ8 = {β2, β3, β4, θ0, θ1, θ2} ets3.htc3

Stress-dependent, critical-point scaling ζ-models

M9 (23) Θ9 = {θ0, θ1, θ2, θ3} ets0.cps4

M10 (23|θ1=10−4) Θ10 = {θ0, θ2, θ3} ets0.cps3

Stress-dependent, exponential trend ζ-models

M11 (24) Θ11 = {θ0, θ1, θ2} ets0.ltc3

M12 (4), (24) Θ12 = {β2, β3, β4, θ0, θ1, θ2} ets3.ltc3

Stress-dependent β-ζ-models

M13 (25) Θ13 = {θ0, θ1, θ2, θ3, θ4} ets0.b3.z2

M14 (4), (25) Θ14 = {β2, β3, β4, θ0, θ1, θ2, θ3, θ4} ets3.b3.z2

Table 1: Summary of the different seismological magnitude-frequency mod-
els, Mi, evaluated according to their posterior, out-of-sample, predictive per-
formance. The labels are composed by string to represent a model type and
a following digit to denote the associated degree of freedom. For instance,
ets0.htc3 denotes the MAP elastic thin-sheet model with zero degrees of free-
dom combined with the hyperbolic tangent of incremental Coulomb stress
model with 3 degrees of freedom to represent a stress-dependent β-value.
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Figure 12: Marginal posterior probability density distributions inferred for
each model given the observed magnitudes of M ≥ 1.5 events from 1995 to
2019. Thick horizontal lines denote the 95% credible interval defined by the
highest posterior density (HPD) interval.
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9.1 Stress-invariant models

We trained the power-law distribution with an exponential taper model with
constant β- and ζ-values as specified by (18) with uniform prior distribu-
tions: 0.3 ≤ β ≤ 1, and 0 ≤ ζ ≤ 1. The resulting joint posterior probability
density (Figure 13) indicates a β value consistent with its typically observed
value, β = 2/3, and a non-zero ζ-value consistent with the presence of an
exponential-taper on the power-law distribution of seismic moments within
the Groningen catalogue. The posterior distribution obtained is character-
ized by the following mean values and 95% credible intervals defined by the
highest posterior density:

β̄ = 0.64 (0.56 < β < 0.71)

ζ̄ = 1.2× 10−3 (3.5× 10−5 < ζ < 2.5× 10−3)
(27)

This is consistent with the usually-observed value of β = 2/3 and the pres-
ence of an exponential taper (ζ > 0). The joint posterior probability density
distribution (Figure 13) indicates no evidence for any strong covariance be-
tween the inferred β- and ζ-values that would appear as a clear diagonal
trend in the distribution. That is lower than average β-values are equally
likely to be paired with lower or higher than average ζ-values and vice-versa.

9.2 Stress-dependent β-models

9.2.1 Inverse power-law β-model

The posterior distribution of parameter values for the inverse power-law β-
model specified according to (21) was sampled subject to uniform prior dis-
tributions, 1/3 ≤ θ0 ≤ 1, θ1 = 0, 0 ≤ θ2 ≤ 1, and 0 ≤ θ3 ≤ 10. Our choice of
this θ0 lower bound reflects the absence of lower values in prior observations of
stress-dependent b-values reported elsewhere (Mori and Abercrombie, 1997;
Wiemer and Wyss, 1997, 2002; Schorlemmer et al., 2005; Gulia and Wiemer,
2010; Spada et al., 2013; Huang et al., 2018). The joint posterior proba-
bility density distribution (Figure 14) indicates a bounded distribution with
well-sampled and highly correlated uncertainties, and localised MAP values.

The posterior distribution obtained is characterized by the following mean
values and 95% credible intervals (HPD).

θ̄0 = 0.49 (0.33 < θ0 < 0.63)

θ̄2 = 0.49 (0.28 < θ2 < 0.63)

θ̄3 = 5.77 (1.96 < θ3 < 10.0)

(28)
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This apparent variation with stress may be a statistical artefact of neglect-
ing stress variations in ζ as illustrated in Figure 11. The posterior ensem-
ble β function of incremental Coulomb stress (Figure 19a) are consistent
with the previous finding of a significant difference between the frequency-
magnitude distribution of events occurring under stress states below and
above ∆C = 0.7. Joint optimization of this magnitude-frequency model and
the poro-elastic thin-sheet model with its three degrees of freedom (σ, rmax,
Hs), yields a similar ensemble function (Figure 19c) albeit with a broader
prediction interval reflecting the additional variabilities within this ensemble
stress model.

9.2.2 Hyperbolic tangent β-model

The posterior distribution of parameter values for the hyperbolic tangent
β-model specified according to (22) was sampled subject to uniform prior
distributions, 1/3 ≤ θ0 ≤ 1, 0 ≤ θ1 ≤ 2.5, 0 ≤ θ2 ≤ 5, and θ3 = 0. The joint
posterior probability density distribution (Figure 15) once again indicates a
bounded distribution with singular MAP values.

The posterior distribution obtained is characterized by the following mean
values and 95% credible intervals (HPD).

θ̄0 = 0.52 (0.34 < θ0 < 0.67)

θ̄1 = 1.2 (0.27 < θ2 < 3.2)

θ̄2 = 2.2 (0.7 < θ3 < 4.2)

(29)

Under this alternative parametrization of the stress-dependent β-model, the
correlation structures between the parameters do differ but a lead to similar
evidence of apparent stress-dependence. The associated ensemble β-function
of stress (Figure 19b) appears broadly similar to the inverse-power law model,
with the largest differences limited to the lowest stress states. We attribute
this to sampling bias as the observed events are significantly more prevalent
under the higher stress states leaving few observations to constrain this low-
stress response. Joint optimization of this magnitude-frequency model with
the thin-sheet stress model leads to similar results once more (Figure 19d),
and again with increased variability associated with counting the uncertainty
in our knowledge of the stress states associated with each event.
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9.3 Stress-dependent ζ-models

9.3.1 Power-law ζ-model

For the power-law ζ-model specified by (23), and given the constraint θ1 = 1,
the posterior distribution obtained is characterized by the following mean
values and 95% credible intervals (HPD).

θ̄0 = 0.65 (0.57 < θ0 < 0.72)

θ̄2 = 3.15 (0.02 < θ2 < 6.48)

θ̄3 = 2.24 (0.36 < θ3 < 4.00)

(30)

We set the constraint θ1 = 1 to avoid a trade-off found with θ2 that is likely
due to the limitations of finite sample size and under-sampling of the seis-
mogenic response to lower stress states (see ∆C < 0.5 in Figure 2). This
constraint does not affect the subsequent out-of-performance of this model,
but simplifies the posterior distribution. The estimated β-value, θ0, is consis-
tent with a universal value of β = 2/3. The posterior distribution of θ3 takes
values that are mostly larger than ∆Ci corresponding to ζ > 0 reflecting the
presence of an exponential taper to the power-law distribution of seismic mo-
ments. Furthermore, as the 95% confidence interval for θ2 excludes θ2 = 0,
there is significant evidence for ζ decreasing with increasing Coulomb stress
in accord with the critical point scaling laws of statistical fracture mechanics.

9.3.2 Exponential ζ-model

Within the exponential ζ-model defined by (24) the sampled posterior dis-
tributions (Figure 17) yield mean values and 95% credible intervals (HPD)
as follows.

θ̄0 = 0.65 (0.57 < θ0 < 0.73)

θ̄1 = 0.42 (0.001 < θ1 < 0.93)

θ̄2 = 9.33 (5.9 < θ2 < 14.8)

(31)

These results are insensitive to our choice of uniform prior distributions.
The estimated β-value, θ0, is once more consistent with the usually observed
β-value of 2/3. These results also reveals significant evidence for θ1 > 0
which again reflects confidence about the presence of an exponential taper
of the power-law seismic moment distribution. In addition, θ2 > 0 is a
significant finding consistent with a stress-dependent exponential taper where
ζ decreases under increasing Coulomb stress (Figure 20).
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9.4 Stress-dependent β-ζ-models

Within the hybrid model that combines both β- and ζ stress dependence as
defined by (24) the sampled posterior distributions remain stable with unique
and localized MAP values (Figure 17). The associated mean values and 95%
credible intervals:

θ̄0 = 0.53 (0.34 < θ0 < 0.67)

θ̄1 = 1.1 (0.07 < θ1 < 2.2)

θ̄2 = 2.3 (0.7 < θ2 < 4.5)

θ̄3 = 0.33 (0 < θ3 < 0.85)

θ̄4 = 9.7 (4.9 < θ4 < 15)

(32)

indicate significant in-sample evidence for stress dependence of both β- and
ζ-values.
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Figure 13: The joint posterior distribution of the stress-invariant β- and ζ-
model (M3, uni2) obtained given the observed magnitudes of M ≥ 1.5 events
from 1995 to 2019. These sampled distributions are represented by Gaussian
kernel densities that introduce some data-adaptive smoothing.

Figure 14: Pairwise joint posterior distributions of the inverse power-law β-
model parameters given (M5, ets0.ipc3) inferred given θ1 = 0 and the MAP
poro-elastic thin-sheet model (σ = 3.5 km, rmax = 1.1, Hs = 107 MPa) and
the observed catalogue of M ≥ 1.5 earthquakes from 1-Jan-1995 to 1-Jan-
2019. There is stronger evidence of covariance given the less-than-circular
joint density maps.
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Figure 15: Pairwise joint posterior distributions of the hyperbolic tangent
β-model parameters (M7, ets0.htc3) inferred given θ3 = 0 and the MAP
poro-elastic thin-sheet model (σ = 3.5 km, rmax = 1.1, Hs = 107 MPa) and
the observed catalogue of M ≥ 1.5 earthquakes from 1-Jan-1995 to 1-Jan-
2019.

Figure 16: Pairwise joint posterior distributions of inverse power-law stress-
dependent ζ-model parameters (M10, ets0.cps3) defined according to (23)
given the additional constraint θ1 = 0.
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Figure 17: Pairwise joint posterior distribution of the exponential stress de-
pendent ζ-model parameters (M11, ets0.ltc3) defined according to (24).

Figure 18: Pairwise joint posterior distributions of the stress-dependent β-ζ-
model parameters (M13, ets0.b3.z2) defined according to (25).
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(a) (b)

(c) (d)

Figure 19: Posterior ensemble b-value functions of incremental Coulomb
stress according to (a) the inverse power-law (M5, ets0.ipc3), and (b) the
hyperbolic tangent (M7, ets0.htc3) model distributions shown by Figures 14
and 15 respectively. (c) As (a), except including the full posterior distribu-
tion of pore-elastic thin-sheet parameters, σ, rmax, Hs (ets3.ipc3). (d) As
(c), except for the hyperbolic tangent model (M8, ets3.ipc3). Note that b-
values are shown instead of β-values, where b = 1.5β. Black curves and grey
shading denote the median and 95% prediction intervals respectively.
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Figure 20: Evolution of the modelled magnitude survival function, SF, il-
lustrated by three stress states, ∆C = 0, 0.5, 1 MPa for a stress-dependent
β-model (left, M7), stress-dependent ζ-model (middle, M11), and the stress
dependent β-ζ-model (right, M13). These ensemble functions are summarized
by their medians (black), and 95% prediction intervals (grey).
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10 Model characteristics

Figure 21 illustrates how the stress susceptibility, χs defined by equation
(17), varies with Coulomb stress, ∆C, according to the different magnitude-
frequency models. The particular instance of each model was selected ac-
cording to MAP parameter values given the observed Groningen events and
poro-elastic thin-sheet stress model. The different lines in each plot show
how stress susceptibility varies for different magnitude thresholds. All mod-
els share the fundamental property of monotonic increases in susceptibility
with stress, so in all plots every line moves up to the right. Looking beyond
this similarity, there are key and distinguishing differences between each of
these magnitude-frequency models.

For the simplest magnitude-frequency model of a constant β and no expo-
nential taper, ζ = 0 (Figure 21a), all susceptibility lines are straight, parallel

(a) (c)

(b) (d)

Figure 21: The expected rate, χ, of events of at least magnitude, M per unit
reservoir volume and stress increment increases with incremental Coulomb
stress under four alternative models: (a) stress-invariant model with β = 2/3
and ζ = 0 (M1), (b) stress-invariant model with β = 2/3 and ζ > 0 (M3),
(c) stress-dependent β with ζ = 0 (M7), (d) stress-dependent ζ with β =
2/3 (M12). Lines denote different magnitude thresholds from 1.5 to 5.0 in
intervals of 0.1 (grey) and 0.5 (black). Each model (Table 1) is based on its
MAP values inferred using the observed 1995–2019 M ≥ 1.5 events and the
poro-elastic thin-sheet stress model.
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and equally-spaced on this log-linear plot. These lines remain straight and
parallel because the model is invariant under increasing stress, and they re-
main equally spaced because frequency-moment distribution is a pure power-
law. With the introduction of a stress-invariant exponential taper, ζ > 0
(Figure 21b), these lines remain parallel reflecting the stress invariance of
the model, but the line spacing increases with the magnitude threshold and
rapidly so above the corner magnitude as the exponential tail dominates.
In this example the corner magnitude is 3.5. The key difference between
these two stress-invariant magnitude-frequency models is the expected rate
of larger magnitude events at larger incremental stress states (lower right
corner of these plots). For example, the emergence of M ≥ 4.5 susceptibil-
ity rates above 0.5 × 10−10 /m3/MPa (stress-axis intercept) increases from
0.75 MPa to 0.85 MPa by including the exponential taper. This highlights
the importance of any non-zero taper for induced seismicity hazard and risk
analysis that are typically driven by larger than previously seen magnitudes
under larger than previously experienced stress states.

Under both stress-dependent models (Figure 21c, d), these lines are nei-
ther straight, nor parallel nor equally spaced. The only common feature
is the top line corresponding to the rate of M ≥ 1.5 events which follows
the same Extreme Threshold exponential trend given by (16) in all models.
The stress-dependent β-model with no taper (Figure 21c) has a constant line
space for any given incremental stress. This is most easily recognized on the
right side of the plot but is true everywhere. This line spacing decreases
with stress, reflecting the smaller β-values at larger stresses. This means
the largest line spacings occur for the smallest magnitudes at the smallest
stress states (lower left corner). Consequently, look along the stress axis,
χs = 0.5 × 10−10 /m3/MPa, the line spacing decreases with stress. This
means the additional stress required to exceed the next magnitude threshold
becomes progressively smaller as the system evolves to higher stress states.

The opposite is true for the stress-dependent ζ-model with a constant β-
value (Figure 21d). Along the stress-axis, line spacings increase with stress.
This indicates the additional stress required to exceed the next magnitude
threshold becomes progressively larger as the system evolves to higher stress
states. Consequently the largest line spacings occur for the largest magni-
tude thresholds at the largest stress states (lower right corner). The key
distinguishing feature of these two stress-dependent models is the intercept
of each line on the incremental Coulomb stress axis.
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11 Model evaluation

We take two complimentary approaches to evaluating model performance for
forecasting event magnitudes. The first compares out-of-sample posterior
model likelihood distributions for the most recent subset of observed events
(2012–2019). The second compares the observed and model-based simula-
tions of maximum magnitude and total seismic moment time series over the
entire history of gas production (1965–2019).

11.1 Out-of-sample likelihoods

We favour out-of-sample over in-sample likelihoods as a better measure of the
forecast performance required by seismic hazard and risk analysis. Typical
hazard and risk analysis periods for Groningen induced seismicity are 5 to
10 years and are always beyond the current observation period (Elk et al.,
2019). This means seismicity forecasts rely on near-term extrapolations of
the seismological models conditioned on a given gas production scenario. We
therefore choose to exclude all in-sample model evaluation methods, such
as the Bayesian Information Criterion, as these do not properly reflect this
out-of-sample forecast requirement.

The most reliable measure of forecast performance is a blind prediction
made prior to the observations required to evaluate forecast performance. In
our case, this means waiting for at least 5 years. To avoid such a delay, we
evaluate out-of-sample model performance using the existing observations.
To do this, we divide the observed earthquake data set, D, into two dis-
joint, time-contiguous parts, D1 and D2, corresponding to a training period,
T1, and an evaluation period, T2. In this study, when not specified other-
wise, these periods are T1 = 1/1/1995 to 31/12/2012, and T2 = 1/1/2013 to
1/6/2019. This choice splits the data into approximately two equal parts,
and also ensures the evaluation period covers at least 5 years to represent
the typical forecast demand for these seismological models. This is a form of
cross-validation where the choice of out-of-sample data is restricted to reflect
the forecast requirement. This is a retrospectively blind test where the choice
of the start time for the out of sample future events was made prior to, and
independent from, the later analysis. Nonetheless there remains a residual
possibility of unconscious researchers’ bias influencing our analysis. Indeed,
true forecast performance typically lags behind hindcast performance within
meteorological models.

To evaluate out-of-sample model performance we first sample the poste-
rior joint model parameter distribution, P (Θi), given D1 according to (26).
Then we sample the out-of-sample posterior predictive distribution of like-
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lihood values, L(D2|Θi), for the D2 data set given the sampled posterior
distribution P (Θi) obtained in the first step. These results are summarized
by the distribution of log-likelihood values evaluated as

`i = logL(D2|Θi). (33)

By this measure, every model has zero degrees of freedom to explain the out-
of-sample observations, D2, as it is not fitted to these data. Models with too
many degrees of freedom will tend to yield posterior distributions that over-
fit the in-sample observations, D1, with highly variable parameter values.
This likely increases bias and reduces precision in model-based forecasts for
the out-of-sample observations, D2, which systematically reduces the out-of-
sample log-likelihood values obtained according to equation (33). Likewise,
models with too few degrees of freedom, will likely fail to fit enough of the
observed variations within D1 and carry-over this deficiency. Limitations as-
sociated with small sample sizes may confound this evaluation due to chance
effects that increase performance variability and broaden the measured out-
of-sample log-likelihood distribution. This limits our ability to reliably rank
the model when their log-likelihood distributions overlap.

Instead, we use these distributions to measure the probability, Pij, of one
model, Mi, out-performing another model, Mj, according to the probability
of `i exceeding `j:

Pij = Pr(`i > `j). (34)

This probability Pij is estimated by the fraction of randomly sampled
pairs from their respective distributions that satisfy this criterion. Posterior
distribution sample sizes are made large enough to ensure sampling errors,
∆Pij are insignificant when comparing models (e.g. ∆Pij < 0.01). This was
verified but increasing the sample size to demonstrate the results at this level
of precision are reproduced. Accordingly, self-comparison of any model yields
Pii = 0.5.

Figure 22a shows the out-of-sample log-likelihood distributions obtained
for the three stress invariant models. Better performance appears as larger
log-likelihood values so the best and worst versions of a model are found in the
upper and lower tails of these distributions respectively. As the distributions
all overlap the ranking of model performance is somewhat ambiguous. So
although the best performances are associated with the upper tail of the
M3, the upper tails of M1 and M2 still exceed the performance of the lower
tail of M3. Nonetheless, the two models that allow for the presence of an
exponential taper, ζ 6= 0 (M2,M3), are both capable of better performance
than the baseline model without any exponential taper ζ=0 (M1) as shown
by the locations of their upper tails. Likewise, all stress-dependent models
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also exhibit better performance than the baseline model M1 (Figure 22b)
as their upper tails all exceed the upper tail of M1. However, within these
models the performance gain of an exponential taper appears much less clear
as the three models with the best performing upper tails include two with
ζ = 0 (M5, M7), and one that combines stress-dependent β and ζ effects
(M13).

The complete D2 data are dominated by the smallest magnitude events,
so for instance half of the observed events are in the range 1.5 ≤ M ≤
1.8 compared to the largest observed magnitude at M = 3.6. Since these
models are intended for probabilistic seismic hazard and risk assessment their
performance in forecasting larger magnitude events must be considered. We
start to do this by increasing the magnitude threshold, Mt, for the events
admitted into the D2 data set to obtain the subset D2t. Then the out-of-
sample likelihood analysis is repeated using the same posterior distributions
of parameter values as before, P (Θi), to evaluate the out-of-sample likelihood
values Lt(D2t|Θi). The modified likelihood function, Lt, is given by equations
(13) and (14) where Mc = Mt. In this manner the models are still trained
by all M ≥ 1.5 events within the training data but then evaluated only on
the larger M ≥Mt events within the out-of-sample evaluation data.

Figure 23 shows the likelihood distributions obtained for magnitude thresh-
olds Mt = {1.75, 2.0, 2.5}. Once more, the better performing models are

(a)

(b)

Figure 22: Out-of-sample forecast performance of each alternative
magnitude-frequency models (Table 1) measured as the log likelihood dis-
tribution, `, of the 1/1/2012 to 1/6/2019 observed M ≥ 1.5 events, given
the posterior distribution of models inferred from the observed 1995–2012
events. (a) Stress invariant models {M1,M2,M3}. (b) Stress-dependent
models {M5,M7,M10,M11,M13}.
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(a)

(b)

(c)

Figure 23: Out-of-sample forecast performance of each magnitude-frequency
models (Table 1) measured as the the log likelihood distribution, `, of the
1/1/2012 to 1/6/2019 observed (a) M ≥ 1.75, (b) M ≥ 2.0, and (c) M ≥ 2.5
events, given the posterior distribution of models inferred given the observed
1995–2012 events.

Table 2: Out-of-sample magnitude forecast performance measured according
to the probability of each model out-performing the baseline model of a stress-
invariant β-values with ζ=0 (M1). Models were trained using the observed
1/2012–6/2019 M ≥ 1.5 events and evaluated using the observed 1/2012–
6/2019 M ≥ Mt events, where Mt = {1.5, 1.75, 2.0, 2.5}. Colours vary from
red to yellow to green denoting probabilities from 0 to 0.5 to 1 respectively.

46



located within the upper tails of each distribution. Table 2 summarise the
performance of all models relative to the baseline model, M1, according to
the Pi1 metric as specified by (34). As the magnitude threshold increases,
it is clear that the performance of ζ=0 models significantly decreases from
a top-ranked performance for M ≥ 1.5 to a bottom-ranked performance for
M ≥ 2.5. Furthermore, the only models that fail to exceed the baseline
model performance (Pi1 ≤ 0.5) are those with a stress-dependent β-values
(M5,M7,M13). This indicates that β-values which decrease with increasing
Coulomb stress do not describe the tail of the observed magnitude distri-
bution as well as any of the other models which all possess stress-invariant
β-values.

In contrast, the performance of ζ 6= 0 models with constant β-values either
improve (M2,M3) or remain stable (M10,M11) under increasing magnitude
thresholds. As expected, the presence of an exponential taper measurably
improves the out-of-sample forecast performance forMt ≥ 2 events. However,
within this analysis, there is no evidence for stress-dependent ζ-values as
stress-invariant ζ 6= 0 models perform marginally better against the baseline
model for Mt ≥ 2.
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11.2 Simulated seismic moments and magnitudes

Simulation of event catalogues using the different magnitude-frequency mod-
els allows their performance to be evaluated regarding the time series of max-
imum magnitudes and total seismic moment time series. Such an evaluation
differs from the previous consideration of out-of-sample likelihood given the
observed magnitudes by testing the simulation results and placing greater em-
phasis on forecasting the larger magnitudes that most-influence seismic haz-
ard and risk analysis. The time series of total seismic moments represents the
cumulative sum of seismic moments for all prior M ≥ 1.5 events. Likewise,
the time series of maximum magnitudes represents the largest magnitude
observed so far. These simulated time series depend on both the simulated
number and magnitude of events. Over the typical range of β-values associ-

(a)

(b)

Figure 24: Time series of observed and simulated maximum magnitudes (left)
and total seismic moments (right) for two stress-invariant models: (a) stress-
invariant β given ζ=0, M1, and stress-invariant β-ζ-model, M3. Given the
absence of field-wide M ≥ 1.5 earthquake monitoring until 1995, the total
seismic moment time series start in 1995. Dark grey lines, and light grey
regions denote the simulated median values and 95% prediction intervals
respectively.
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ated with this seismicity most of the total seismic moment is contributed by
the maximum magnitude event. As such, both time series are closely related,
but with one key distinction. The total seismic moment in 1995 is unknown
whereas the maximum magnitude is known to be Mmax = 2.4 from a regional
monitoring network reporting all M ≥ 2 events.

Figures 24 and 25 compare the observed and simulated time series of
maximum magnitudes and total seismic moments for 2 stress invariant and
3 stress-dependent magnitude-frequency models. All these results share the
same event occurrence simulations based on the posterior distribution of
Extreme Threshold Failure models (Bourne and Oates, 2017). The posterior
distribution of all models were obtained using the just D1 so the out-of-
sample observations in this case occur prior to 1/1/1995 and from 1/1/2013.
The simulations were run from 1965 to 2019 using the reservoir pore pressure
model.

...Are these just fits to the whole data set, or are these fit on date from
1993-2012 and then run forward and back in time with the reservoir com-
paction model for seismicity generation? This needs to be made explicit. It
is interesting that the uncertainty diminishes with time on the lower plots
as more data are obtained, and that the lower right plot has the greatest
accuracy and precision in recent years.

The model of stress-invariant β-values given ζ=0 (M1, uni) systematically
over-predicts both time series for all observed events and exceeds the 95% pre-
diction interval for maximum magnitudes. Maximum magnitude time series
residuals (Figure 26) indicate the absolute mean residual (∆Mmax = −0.5)
is significantly larger than the expected magnitude measurement error (±
0.1–0.2). The upper bound of the 95% prediction interval is always about 2
magnitude units above the observed maximum magnitude. A similar over-
prediction bias is seen in the total seismic moments time series where the
median time series always exceeds the observed total seismic moment after
1996. Including a stress-invariant taper of the frequency-magnitude distri-
bution (M3) significantly reduces the simulation bias whilst also significantly
increasing its precision. This is shown by the reduced width of the 95%
prediction interval that still contains all the variability in the observed total
seismic moment time series although the first half of the time series (1995-
2007) is systematically over-predicted. This early over-prediction bias is also
seen in the maximum magnitudes time series and even exceeds the 95% pre-
diction interval. The appearance of increasing precision with time does not
reflect the increase observational constraints but instead appears due to the
influence of the stress-invariant exponential taper that starts to significantly
lower the probability of M ≥ 3.5 events.

The inverse power-law model for stress-dependent β-values with ζ=0 (M5,
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ets0.ipc3), exhibits the same systematic tendency for over-prediction of both
maximum magnitudes and total seismic moments albeit to a lesser extent and
without exceeding the 95% confidence interval. The absolute mean maximum
magnitude bias (∆Mmax = 0.4) is still significant relative to the magnitude
measurement errors. In contrast, the exponential stress-dependent ζ-model
with β = 2/3 (M11, ets0.ltc3) exhibits no bias in either maximum magnitudes
or total seismic moments and does not exceed the 95% prediction interval
despite this interval being significantly smaller than the previous two mod-
els. Moreover, the observed variability approaches both the upper and lower
bounds of the simulated variability. As such this model demonstrates zero
bias and a simulated variability consistent with the observed variability.

Figure 27 shows the distributions of out-of-sample likelihood, Ls(D2t|Θi),
for observed maximum magnitudes, Dmax,2, given the simulated maximum
magnitude time series. We obtained the maximum magnitudes data set,
Dmax by selecting the subset of events within the complete data set, D, that
are larger than all previous events. This data set is then partitioned according
to event origin times to yield the out-of-sample maximum magnitudes data
set Dmax,2.

We estimate the out-of-sample likelihoods, Ls, using the distribution of
simulated maximum magnitude time series according to the posterior model
distribution, P (Θi|D1). We performed these simulations in a nested manner
to yield simulated maximum magnitude time series, Sijk, where i denotes
the model, j denotes a single random sample from the posterior distribution,
P (Θi|D1), and k denotes the simulation index. In this manner, time series
Sijk represents the kth simulation of the jth posterior sample from the ith

model.
For each i and j, and observed event within Dmax,2, we select the set

of simulated maximum magnitudes at the observed origin times. Using a
Gaussian kernel density estimate for the probability density function of these
simulated maximum magnitudes, we compute the likelihood of this observed
maximum magnitude. Repeating this for all Dmax,2 events Ls is estimated
as the product of these single-event likelihood values. Repeating this for
all values of j yields the posterior distribution of likelihood value for model
Mi. Repeating all of these steps for all values of i results in the collection
of likelihood distributions shown by Figure 27. Better performing models
appear with likelihood distributions located to the right of poorer performing
models. However, as all these distributions overlap with different tail shapes
the relative performance ranking is not completely clear. Nonetheless it is
clear the top two models are both include stress-dependent ζ-values.

As these distributions substantially overlap, we summarize the overall rel-
ative performance according to the probability of one model yielding a better
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out-of-sample likelihood than another model, Pij, according to (34). Table 3
shows the pairwise probabilities Pij that model Mi out-performs model Mj

given their respective out-of-sample maximum magnitude likelihood distri-
butions. If the models are listed in rank order of performance then this
matrix, Pij would show monotonically increasing values as i increases (mov-
ing top to bottom in each column of Table 3) and as j decreases (moving
right to left in each row of Table 3). In this case, the results are less clear

(a)

(b)

(c)

Figure 25: As Figure 24, except for three stress-dependent magnitude-
frequency models: (a) stress-dependent β-values, M5, (b) stress-dependent
ζ-values, M11, and (c) stress-dependent β-ζ-values, M13.
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Figure 26: The distribution of all residuals between the observed and simu-
lated time series of maximum magnitudes.

in the sense that no such complete and unambiguous ranking exists. This
is because the relative performance of several middle-ranking models are so
similar, likely due to the small out-of-sample size available. Nonetheless, we
may still confidently identify the best-performing models.

The baseline model (M1) is out-performed by all other models, although
none exceed 95% probability, although two models (M11,M13) are close with
a 94% chance of exceeding the baseline performance. The only common
feature of these two models is a stress-dependent ζ variation. One stress-
dependent β model (M7) does indicate a 91% chance of exceeding the base-
line performance, but its chances of out-performing the leading two models
are just 25% and 19% respectively. Ranking all models by increasing per-
formance based on this metric yields {M1,M2,M3,M5,M10,M7,M11,M13}.
This is essentially the numerical model sequence shown in Table 3 except
the best-performing stress-dependent β-model, M7, exchanges places with
the worst performing stress-dependent ζ-model, M10. We attribute this to
a poor parametrization choice for M10 resulting in a large trade-off between
the θ2 and θ3 parameters shown in Figure 16 associate with insufficient in-
formation to constrain the location of the critical point, θ3.

As previously discussed in section 10, a key diagnostic is the time series
of counts for events that exceed a given magnitude threshold (see Figure 21),
especially the early time evolution. To revisit this, we compute the mean
simulated cumulative event count time series over a range of magnitude ex-
ceedance thresholds. Figure 28 compares these simulated time series with
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the observed events from 1995 to 2019. The simulated M ≥ 1.5 cumulative
counts are identical for all models as this depends on the activity rate model
alone which is shared by all magnitude-frequency models. For larger mag-
nitude exceedance thresholds, the simulated time series differ between the
different magnitude-frequency models.

For the stress-invariant β-model with ζ=0 (M1, Figure 28a), the simulated
count time series is systematically over-predicted for magnitudes M ≥ 2.5
during their early time evolution. This error increases with magnitude thresh-
old, such that the simulated M ≥ 4 counts are comparable to the observed

Figure 27: Out-of-sample forecast performance for the maximum magnitude
time series. Training period 1995 to 2012. Simulation period 1965 to 2019.
Evaluation period before 1995 and after 2012.

Table 3: Relative pairwise model forecast performance for the observed out-
of-sample maximum magnitude time series as measured by the probability,
Pij, of model Mi out-performing model Mj. Colours vary from red to yellow
to green denoting probabilities from 0 to 0.5 to 1 respectively. By definition,
Pij + Pji = 1, so the above diagonal cells contain the same information as
their below diagonal counterparts.
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M ≥ 3.5 counts. A similar bias is also apparent in the stress-dependent β
model (Figure 29a), although in this case over-prediction is only apparent for
magnitudes M ≥ 3.0. The stress-invariant beta-zeta model (M3, Figure 28b)
improves the fit for larger magnitudes (M > 3) at the end of the time pe-
riod but also over-predicts for magnitudes M ≥ 2.5 during their early time
evolution.

The stress-dependent β model (M11, Figure 29a) slightly improves the
early time prediction of M ≤ 2.5 events relative to the stress-invariant mod-
els, but systematically over-predicts events counts for M ≥ 3.5 events. The
stress-dependent ζ model (M11, Figure 29b) shows the best match to the ob-
served rates with no apparent bias for any of the observed magnitude thresh-
olds especially at later times when the fractional count errors are smallest.
The higher dimensional, hybrid model with stress-dependent β- and ζ-values
(M13, Figure 29c) clearly under-predicts the numbers of M ≥ 2.5 and M ≥ 3
events. This result would be counter-intuitive if model performance was
evaluated on the same data used for model inference. In this case, the extra
degrees of freedom should give a better fit. However, we evaluate the model
on data not previously used for model inference. This means any over-fitting

(a)

(b)

Figure 28: Observed event count time series compared to expected event
counts obtained by model simulations from 1995 to 2019 for (a) stress-
invariant β-values,M1, and (b) stress-invariant β-ζ-values, M3. See Table 1
for model details.
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associated with too many degrees of freedom will likely appear as bias in this
out-of-sample evaluation.

(a)

(b)

(c)

Figure 29: As Figure 28, except for (a) stress-dependent β-values, M7, (b)
stress dependent ζ-values, M11, and (c) stress-dependent β- and ζ-values,
M13. See Table 1 for model details.
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12 Discussion

12.1 Probabilities of larger magnitudes

Central to the analysis of seismic hazard and risk induced by Groningen gas
production is the reliable forecasting of larger than previously experienced
magnitudes. Probabilistic analyses for Groningen show magnitudes in the
range 4.5–5.5 provide the largest contribution to seismic hazard and risk
metrics associated with public safety within the built environment (Bourne
et al., 2015; Elk et al., 2019). Smaller magnitudes are always too small
to influence the hazard and risk metrics, whilst larger magnitudes are too
infrequent to influence the hazard and risk metrics.

Using the gas production history and a single future gas production sce-
nario (2019 GTS Raming) we simulated earthquakes catalogues for the en-
tire history of gas production (1965–2019), and the next 5 years of future gas
production (2019–2024). Earthquake occurrence was simulated used the pos-
terior distribution of Extreme Threshold Failure models (Bourne and Oates,

(a)

(b)

Figure 30: The distribution of maximum magnitudes according to model
simulations for the periods (a) 1965–2019, and (b) 2019–2024. The vertical
black line denotes the observed M = 3.6 maximum magnitude. The expected
maximum magnitudes are 4.3, 3.6, 4.1, 3.6, 3.7 for the M1, M2, M7, M11,
and M13 models respectively.
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2017) inferred using the 1995–2019 M ≥ 1.5 events and a poro-elastic thin-
sheet Coulomb stress model (section 5). Earthquake magnitudes were simu-
lated using the M1,M3,M7,M11,M13 magnitude-frequency models in turn.

Figure 30 shows the distribution of maximum simulated magnitudes as-
sociated with the first 54 years (1965–2019) and the next 5 years (2019–2024)
according to the different magnitude-frequency models. Over the observed
period (1965–2019) the exponentially-tapered ζ-models (M3, M11, M13) most
closely match the observed maximum magnitude, M = 3.6. Models that lack
such a taper (M1, M7) over-predicted this magnitude 80–90% of the time with
a mean over-prediction bias of 0.5–0.7 in magnitude. Maximum magnitudes
are an important model performance metric as they typically form part of
traffic light systems used to trigger interventions as is the case for Groningen
induced seismicity.

Simulation-based forecasts for the next 5 years yield different distributions
for the maximum magnitude event all with the same mode M = 3.2 and simi-
lar medians (Table 4, 50%, M=3.2–3.5). However, hazard and risk are driven
by larger, less-likely magnitudes in the upper tail of these distributions and
differences between these upper tails are considerable. Table 4 shows mod-
els with an exponential taper (M2,M3,M10,M11,M13) exhibit much lower
magnitudes with a 1% chance of exceeding (3.9–4.5) than the other mod-
els (M1,M5,M7,M11) that lack an exponential taper (5.3–5.5). This is a
difference of 0.8–1.6 in magnitude.

Forecasts over longer periods necessarily face increasing uncertainties as-
sociated with larger extrapolations of the pore-pressure depletion model given
the observed depletion history, and also larger extrapolations of the seismo-
logical model given the observed seismicity history. Limiting forecast periods
to 5 years or less limits our exposure to extrapolation related uncertainties.

(a) (b)

Figure 31: Magnitude exceedance rate according to model simulations over
the periods (a) 1965 to 2019, (b) 2019 to 2024.
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Model 50% 10% 1%
M1 (uni1) 3.36 4.18 5.29
M2 (uni1.zeta) 3.16 3.58 3.95
M3 (uni2) 3.18 3.58 3.88
M5 (ipc3) 3.33 4.25 5.48
M7 (htc3) 3.34 4.21 5.32
M10 (cps3) 3.29 3.81 4.45
M11 (ltc3) 3.20 3.74 4.32
M13 (b3.z2) 3.24 3.84 4.47

Table 4: Comparison of the magnitudes with a 50%, 10%, and 1% chance over
exceedance between 2019 and 2024 according to simulations of the different
magnitude-frequency models without imposing an upper bound, Mmax, to
these probability distributions. These results are based on the 2019 GTS
Raming production scenario.

12.2 Including an upper bound

The magnitudes models, as formulated so far, do not include an upper bound,
corresponding to a maximum possible magnitude, Mmax. For any finite sys-
tem there must be a finite limit on the magnitude of earthquakes within
that system. This quantity is not directly observable within the Groningen
earthquake catalogue, but we are still able to incorporate a prior distribu-
tion for Mmax within the magnitude-frequency models. Following Cornell
and Van Marke (1969), the survival function of a magnitude distribution
may be truncated to reflect some prior belief in a maximum possible seismic
moment, Mmax, providing an upper bound to the distribution, according to

P (≥M|Mm ≤M ≤Mmax) =
P (M)− P (Mmax)

1− P (Mmax)
(35)

where the un-truncated survival function P (M) is given by (11). In the
case of Groningen induced seismicity, van Elk et al. (2017) reported a collec-
tive expert-judgement based prior discrete distribution of maximum possible
magnitudes with a 3.75–7.25 range and a 4.8 median and 5.0 mean. For the
most-part, the influence of the posterior distribution of exponential tapers
occurs at significantly lower magnitudes than this prior distribution of Mmax.

For the data analysed in this study, incorporating stress-dependent ex-
ponential tapering of the power-law seismic moment distribution alongside
an upper bound in earthquake magnitude-frequency models used for proba-
bilistic hazard and risk analysis of induced seismicity within the Groningen
gas field reduces bias that may otherwise in this case over-state the hazard
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and risk. Utilizing data-driven, stress-dependent ζ-models also reduces the
impact of imposing a maximum magnitude based on an expert judgement.
This procedure is therefore more robust to possibility of expert bias.

13 Conclusions

In summary, the stress-dependent ζ-model with constant β (M10,M11) offer
higher performance magnitude-frequency forecasts than the stress-dependent
β-models with ζ = 0 (M5,M7) 75–85% of the time (Table 3) and lower the
magnitude with a 10% and 1% chance of exceedance from 4.3 to 3.8 and
from 5.5 to 4.5 respectively. Likewise, stress-dependent ζ-models outperform
stress-invariant ζ-models (M2,M3) about 90% of the time, although in this
case the stress-dependence of ζ increases the magnitude with 1% chance of
exceedance from 3.9 to 4.4–4.5. The hybrid model with stress-dependent
β and ζ values, M13, includes all these possibilities in one joint posterior
distribution, resulting in a 1% magnitude of 4.6, which is much closer to
the stress-dependent ζ models than any of the other frequency-magnitude
distributions (Figure 31).

There are two possibilities for incorporating these alternative magnitude-
frequency models into a probabilistic seismic hazard and risk analysis.

1. Treat these model selection uncertainties as aleatory and rely on the
M13 model alone to represent all possible models within the Monte
Carlo simulations of induced seismicity, hazard and risk.

2. Treat model selection as an epistemic uncertainty and include each in-
dependent model class as different branches on a logic tree of alternative
Monte Carlo simulations. To do this, we may use the evidence-based
weight factors given by Table 3. So for the mutually independent and
collectively exhaustive model set {M1,M2,M7,M11} would be repre-
sented by the logic tree branch weights {0.04, 0.08, 0.18, 0.7}. Given,
the small weights attached to the first two models, and the need to limit
the computational cost of probabilistic seismic hazard and risk assess-
ments we recommend truncating this to the top two models {M7,M11}
with weights {0.2, 0.8}.

We recommend the second option, as it explicitly includes both the cur-
rent seismological model used for hazard and risk analysis (M7) and the
new model (M11) with its likely improved performance. Including both on
the logic tree would allow the influence of each model on hazard and risk
to be independently assessed. The new stress-dependent exponential-taper
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power-law model introduced here likely offers better forecast performance and
better represents the physical processes of failure size distributions within a
heterogeneous material under increasing stress. The limited sample size of
Groningen earthquakes means we cannot be definitive in our preference for a
single frequency-magnitude model. Instead, we represent our currently lim-
ited knowledge using a range of different models weighted by their measured
performance evidence rather than expert judgement. Over time, further
earthquake observations within Groningen, other analogue fields, or labora-
tory experiments may be decisive.
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A Brittle failure as a weak damage process

In this appendix we review the key theoretical results that find the frequency-
size distribution of weak damage failure events with long-range (mean field)
interactions follow a power-law distribution with a stress-dependent expo-
nential taper. Following the formulation of Toussaint and Pride (2005), a
weak damage model is specified as:

1. Regular lattice of dimension d, with N cells at locations, x.

2. Each lattice cell possess a local stress and strain, experiences isotropic
elastic interactions with other cells, and is in one of two damage states:
intact, ϕx = 0, or failed, ϕx = 1.

3. Homogeneous elastic moduli and homogeneous initial damage field ϕ =
0 at zero strain and stress.

4. Strain is progressively applied by a uniform monotonic displacement l
of the external boundaries of the lattice.

5. A cell breaks at constant applied l when the reduction in total stored
elastic energy, ∆Ep, due to the break exceeds the cell’s breaking energy,
ex.

6. The configuration of cell breaking energies, {ex} is an random quenched
threshold field sampled independently from a probability density func-
tion p(x).

7. Stress is re-distributed from the failed cell to the other cells according
to elastic interactions across the lattice.

8. Elastic interactions are assumed to be sufficiently weak that interac-
tions between three or more cells are negligible (first Born approxima-
tion). This is valid whenever the stress change due to a failed cell is
much less than the mean lattice stress.

The elastic potential energy, Ep, of this system is

Ep[ϕ, l] = (C0 + C1 + C2) l2,

C0 = N,

C1 = −c
∑
x

ϕx,

C2 = −ε
∑
x,y

Jxyϕxϕy ,

(36)
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where c is a constant in the range 0 < c ≤ 1 that describes the fraction of a
cell’s energy reduced by its failure, ε is a constant in the range 0 < ε� c that
determines the mean strength of stress interactions between cells, and Jxy are
linear coupling constants for stress redistribution between cells at positions
x and y when at least one of these cells has failed. This energy state does
not depend on the prior sequence of failures, but only on the current failure
configuration, ϕ, and the applied relative displacement, l.

For Jxy = 0, failed cells transfer stress to all other cells in a global load
sharing model. Local load sharing models correspond to Jxy 6= 0. For nearest-
neighbour local load sharing, Jxy ∼ 1 for nearest neighbour xy cell pairs but
otherwise Jxy = 0. For elastic load sharing, Jxy ∼ (`/|x − y|)d, where ` is
the lattice cell size. However, if elastic load sharing is mediated via cells
connections to an elastic plate, in which case d = 2 and Jxy ∼ (`/|x− y|).

As the applied relative displacement, l, is monotonically increased, the
evolution of damage follows Griffiths principle. For a system in damage
state ϕF under displacement l, the cell at location x will fail if the release in
potential energy, Ep, under constant l is equal to the surface energy cost of
this failure. This means:

∆Ep[ϕ
F , l, x] = ex, (37)

where
∆Ep[ϕ

F , l, x] = (C1 + C2) l2. (38)

If this single cell fail occurs, then the damage state advances from ϕF to ϕE

through the inclusion of x in the list of failed cell locations.
While the external displacement, l, is kept constant, there will be further

failure due to stress transferred from the previous failure if there is some
intact cell y such that

∆Ep[ϕ
E, l, x] ≥ ey. (39)

If more than one cell location meets this failure criterion, then the cell that
maximizes the potential energy reduction fails next (first Born approxima-
tion). This process continues under constant l until the failure configuration
is stable. Then the cycle repeats by increasing l until the next cell fails
according to (37). This cascading failure process yields a probability dis-
tribution of failure sizes that evolves with the external strain load. These
energy-based failure criteria could equivalently be expressed as stress-based
failure criteria.

Within the weak damage model, the failure size distribution depends on
the interaction strength relative to the threshold disorder, and the range
of these interactions. For weak or infinite range interactions (mean field)
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this weak damage model becomes equivalent to a percolation model. For
non-negligible, nearest-neighbour interactions the damage model becomes
an Ising model, whereas if interactions decay as an inverse-power law of
separation it becomes a fully-interacting Ising model (Gould and Tobochnik,
2010) otherwise named the Curie-Weiss model (Kac, 1968).

One possible physical realization of a weak damage model is the fibre
bundle model, such as a set of N elastic beam fibers are connected between
two elastic half spaces (Figure 32). The relative shear displacement of these
half-spaces, l, controls the external shear strain that loads the fibers. As
fibers break, elastic interactions between fibers occur via the elastic half-
spaces. The assumption of weak damage process is satisfied if the elastic
half-spaces are much stiffer than their connecting fibers.

Another possible realization is the slider-block model limited to the first
failures of each lattice site and in the mean field limit this model is equivalent
to the global load sharing fiber bundle model (Sornette and Physique, 1992).
The distribution of simultaneous fiber failures within a global load sharing
fiber bundle model is known analytically (Hemmer and Hansen, 1992; Hansen
and Hemmer, 1994; Kloster et al., 1997; Pradhan, 2010).

A.1 Fiber bundle model with global load sharing

Analytic solutions for the failure size distribution exist for fiber bundle mod-
els under monotonic strain loads with global load sharing (Hemmer and
Hansen, 1992; Hansen and Hemmer, 1994; Kloster et al., 1997; Pradhan,
2010). External relative displacement, l, of the fiber ends creates an ap-
plied fiber stress, σ. The quenched random distribution of fiber failure stress
thresholds is defined by the probability density p(σ) and the associated cu-
mulative distribution function, P (σ). For any p(σ) distribution with a single
mode, failures of size ∆ occurring within the load interval (0, σ) are dis-

Figure 32: Representation of brittle failures on a pre-existing fault under an
external shear load as a fiber-bundle model.
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tributed as D(∆) such that (Pradhan, 2010, equation 147).

D(s, σ)

N
= C1∆−

5
2 e
− 1

2
m′(σc)2 ∆

∆ζ

∆ζ = (σc − σ)−
1
2

(40)

where σc is the critical load corresponding to peak stress within the fiber
bundle where σc solves the equation

p(σc)σc = 1− P (σc), (41)

and m(σ)′ = dm(σ)/dσ, and m(σ) is a function of the quenched random
threshold distribution such that:

m(σ) = 1− σp(σ)

1− P (σ)
, (42)

and C1 is a constant of threshold distribution defined as

C1 =
σcp(σc)

2

√
2π(σcp′(σc) + 2p(σc)

. (43)

This is a power-law distribution with an exponential taper characterised
by two universal constants. At the critical state, sigma = σc, this distribu-
tion is a pure power-law, ∆−

5
2 , with a universal exponent of 5/2. Below this

critical state, σ < σc, the stress-dependent exponential taper has a character-
istic scale, ∆ζ that varies as an inverse power-law of σc − σ with a universal
exponent of 1/2. Both of these constant do not depend on the particular
choice of the threshold distribution, p(σ), so long as it has a single maxi-
mum. This distribution is insensitive to the choice of threshold distribution
conditional on this distribution yielding a single maximum in the average
total force acting on the fiber bundle under monotonic strain loading.

At the critical point σ = σc, this distribution reduces to the pure power-
law ∝ ∆−

5
2 . The burst-size distribution for the next burst due to further

strain loading from a stable configuration under load ε is (Pradhan, 2010,
equation 175).

D(s, σ)

N
= C2∆−

3
2 e
− 1

2
m′(σc)2 ∆

∆ζ

∆ζ = (σc − σ)−
1
2 ,

(44)

where C2 is a different constant of threshold distribution defined as

C2 =
p(σc)m

′(σc)√
2π

. (45)

73



This is a power-law distribution with an exponential taper characterised
by two universal critical exponents; 3/2 defines the power-law scaling and
1/2 describes the inverse power-law stress dependency of the exponential
taper. For some special cases of fiber stress threshold distributions the value
of the universal power-law exponent depends on the details of the threshold
distribution (Harris and Bourne, 2019).

A.2 Fiber bundle model with local load sharing

The global load sharing mechanism between surviving fibers is a simplifi-
cation, as nearby fibers are more likely to carry most of the re-distributed
load. Kloster et al. (1997) developed a theoretical solutions in the limit of
nearest-neighbour load sharing in one dimension. This results in a failure
size distribution that only approximates a pure power-law for sufficiently
small failure sizes, and with a non-universal exponent that is larger than for
global load sharing models and increases with the size of the system. The
maximum load, F , prior to complete failure of the system also scales with
the initial number of fibers, N , such that F ∝ N/ logN . Local load sharing
mechanisms do therefore create the possibility of further complexity in the
frequency-magnitude distributions response to increasing external loads. In
this example, the power-law exponent remains stress-invariant, but becomes
scale-dependent. This possibility of greater complexity motivates us to test
a wide variety of alternative earthquake magnitude distribution models for
the Groningen field.

B Brittle failure as a percolation process

In this appendix we review the key theoretical results map brittle failure
processes with negligible neighbour interactions onto a percolation process
to find the frequency-size distribution of percolation cluster failure events
follow a power-law distribution with a stress-dependent exponential taper.

When the variability in strength thresholds is much larger than the stress
transfers from a failed cell to the surrounding cells due to elastic interactions
the failure process is governed by the weakest cell first mechanism. Under
these conditions of infinite threshold disorder, brittle failure is equivalent to
a stochastic percolation process (Roux et al., 1988).

In this case, the probability distribution of failure sizes follows the dis-
tribution of percolation cluster sizes. This connection provides some general
insights into the physical processes governing the form of the frequency-
magnitude distribution of acoustic emissions and its evolution with increas-
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ing probability of failure under increasing stress. This percolation problem
can be solved analytically for processes embedded in a space with one dimen-
sion (d = 1) space, or in an infinite number of dimensions (d =∞) within a
Bethe lattice (e.g. Stauffer and Aharony, 1994).

B.1 Percolation in 1D

Starting with a 1D percolation process, where there is just a single geometric
configuration for each scale of failure, the probability, ns(p) of failure size s
occurring is

ns(p) = (pc − p)2ps

= (pc − p)2es log p

= (pc − p)2e
− s
sζ

(46)

where p is the independent probability of failure within a single cell and the
percolation probability pc = 1. Within this system, the frequency-size distri-
bution is just an exponential taper reflecting the simple multiplicative decline
in probability with increasing failure size. The characteristic scale of this ta-
per depends on the single-cell failure probability, p, such that sζ = −1/ log p.
The probability threshold for an infinitely extended percolation cluster is
pc = 1 since any intact cells will terminate the cluster. As the percolation
threshold is approached, p → pc, the characteristic scale of the exponential
taper diverges, sζ →∞. Rewriting log p as log(1− (pc−p)) and approximat-
ing with the Taylor expansion around p = pc leads to the inverse power-law,
sζ = (pc − p)−1, with a universal exponent of 1. As failure probability will
scale with stress or strain, the presence of a stress-dependent exponential ta-
per within the failure-size distribution arises simply from the exponentially
declining probability of larger collections of independent failures.

B.2 Percolation in many dimensions

In higher dimensions, the number of configurations of possible failure geome-
tries increase rapidly with the size of the failure (Figure 33), so we may write
a general expression for the cluster size distribution as

ns(p) =
∑
t

gs,t(1− p)tps, (47)

where gs,t is the number of different lattice configurations, known as lattice
animals, with size s (cluster area) and perimeter t. Now, the probability of
larger failure clusters occurring, ns(p), depends on the competition between
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the growth of alternative failure configurations and the exponential decline in
the probability of collective failure. Ultimately, for sufficiently large failures,
the exponential taper must dominate to ensure stability and a normalizable
probability distribution, ns(p). Nonetheless, the body of this distribution
may exhibit a much slower initial monotonic decline due to the population
growth of lattice animals delaying the onset of the exponential tail. Another
way to view this process, is that although larger failures are exponentially
less probable, their larger external boundaries offer more possibilities for at
least one more failure to occur. Counting lattice animals, becomes immensely
difficult with increasing cluster size and percolation dimensions (Luther and
Mertens, 2011). Nonetheless, some general bounds on any power-law scaling
prior to the exponential tail are possible.

For p < pc, the probability of a site failing is equivalent to the probability
of that site being any of the sites within a finite cluster of any size, so

p =
∞∑
s=1

sns(p) for p < pc. (48)

Likewise, the probability, ps of a given failed site being connected to a cluster
of size, s, is

ps =
sns(p)

p
. (49)

consequently, the mean size of these clusters is

S(p) =
∞∑
s=1

pss (50)

Combining these last three results means

S(p) =

∑∞
s=1 s

2ns(p)∑∞
s=1 sns(p)

. (51)

By definition, as p→ pc, then S(p)→∞, which in turn requires the numer-
ator to diverge faster than the denominator. This requirement is satisfied by
a general power-law scaling at the percolation threshold:

ns(pc) ∝ s−τ , (52)

for sufficiently large s such that the divergent numerator becomes

∞∑
s=1

s2−τ =∞ (53)
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This geometric progression only diverges if 2 − τ ≥ −1, which establishes
an upper bound on the power-law exponent of τ ≤ 3 to ensure an infinite
cluster appears at the percolation threshold.

Similarly, below the percolation threshold, a lower bound exists from the
requirement that a failed site must belong to a finite cluster. Rewriting (48)
using ns(p) ∝ s−τ means

∞∑
s=1

s1−τ = p. (54)

This geometric progression only converges if 1 − τ < −1 meaning τ > 2.
Combining both bounds limits τ to the range

2 < τ ≤ 3. (55)

At the percolation threshold, the percolating cluster geometry is a random
fractal where the fractal dimension measured by the box-counting method is
a non-integer (Stauffer and Aharony, 1994). Clusters above the percolation
threshold are not fractal. Below the percolation threshold, the finite clusters
are fractal on length-scales up to the correlation length-scale of the clusters.
The associated fractal dimension, df , of these clusters is a universal constant
that scales with τ as (Stauffer and Aharony, 1992)

τ = 1 +
d

df
, (56)

where d is the number of dimensions of the embedding space such that d ≥ df .
This is consistent with the lower bound, τ > 2.

To connect this result back to the distribution of seismic moments, we
first map the number of sites in the cluster to the seismic slip area, A, such
that probability density distribution of slip area follows as

p(A) ∝ A−τdA. (57)

Then, from the definition of seismic moment, s = µAu, where µ is the shear
modulus, and u is the mean seismic slip, we see the distribution of seismic
moments depends on the distributions of slip area and mean slip. In general,
the mean slip scales as u ∝ Aα. In fracture mechanics, a circular crack with
constant stress drop has a mean slip that scales with crack length, such that
α = 1

2
. Correspondingly, seismic moments scale with slip area as s ∝ A1+α,

so that:
p(A) ∝ A−τdA ∝ s−

τ
1+αdA ∝ s−

τ+α
1+α ds ∝ p(s). (58)

Integration of this probability density leads to a survival function of the form

P (> s) ∝
∫
p(s)ds ∝

∫
s−

τ+α
1+α ds ∝ s−

τ−1
1+α , (59)
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and comparison with (3) shows, the power-law exponent for the distribution
of seismic moments is

β =
τ − 1

1 + α
. (60)

The upper and lower percolation bounds on τ given by (55), place bounds
on β as

1

1 + α
< β ≤ 2

1 + α
. (61)

For α = 1/2 this means
2

3
<β ≤ 4

3
,

1 <b < 2.
(62)

The particular case of the lower bound, τ = 2, corresponds to the usually
observed value of β = 2/3.

King (1983) proposed an alternative relationship between β and the frac-
tal dimension, df , of the active fault network geometry:

β =
df
d
, (63)

This implies a more restrictive upper bound β ≤ 1. However, King (1983)
obtains (63), under the implicit assumption that all faults within the fractal
fault network acquire their slip in single earthquake events. This one earth-
quake to one fault assumption means the frequency distribution of fault sizes
determines the frequency distribution of earthquake sizes. However, an in-
dividual fault may host multiple earthquakes with a distribution of various
seismic moments that sum to the total fault slip distribution. In this way,
the distribution of earthquake sizes may not necessarily be equal to the dis-
tribution of fault sizes. This means the fractal dimension of fault network
geometry, df , does not necessarily a strong constraint on the β-value of the
seismic moment distribution.

...A distribution of asperities over a fault network subject to

rate and state frictional failures leads to a power-law distribution

of failure sizes (Dublanchet et al., 2013)

...I guess not entirely though. There is quite a good correlation of expo-
nents for acoustic emissions and measured fracture lengths in Hatton, C.G.,
I.G. Main & P.G. Meredith (1993. A comparison of seismic and structural
measurements of fractal dimension during tensile subcritical crack growth, J.
Struct. Geol. 15, 1485-1495), just not an exact equivalence in the exponents.

...Hatton et al. (1993) showed there is some constraint, just not a straight-
forward equivalence.
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B.3 Percolation in a Bethe lattice

In a Bethe lattice each site has z neighbours (Figure 33). For z = 2, the
Bethe lattice reduces to a 1D lattice. Due to the branching structure, there
are no closed loops of connected neighbours. Within any Bethe lattice there
is a unique perimeter size t for a given cluster size s, and from inspection of
Figure 33 we see that,

t = (z − 2)s+ 2. (64)

For large s the ratio of perimeter to cluster size is a constant, t/s = z − 2.
A Bethe lattice shares these properties of no closed loops and a constant
perimeter-size ratio within hyper-cube lattices in the limit d→∞.

The percolation threshold within a Bethe lattice also takes a simple form

Figure 33: Illustration of percolation cluster geometries as a function of
cluster size, s, for (a) 1D lattice percolation, (b) 2D lattice percolation, and
(c) Bethe lattice percolation with a coordination number, z = 3. The number
of alternative geometric configurations increases rapidly with the scale of
failure for all except 1D percolation. Grey denotes the cluster of failed cells,
white denotes the external boundary cluster of intact cells, and within the
Bethe lattice, dark grey cells denotes failed cells surrounded by other failed
cells to help distinguish the different geometries.
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as a cluster may only extend to infinity if at least one of the sites connected
to a failed site is also failed meaning pc(z − 1) = 1, and so

pc =
1

z − 1
. (65)

Because determining gs,t for large s is so difficult, let us avoid this by
considering the cluster number probability, ns(p), relative the cluster number
probability at the percolation threshold, ns(pc). Combining (47), (64), and
(65) this leads to

ns(p)

ns(pc)
=

(
1− p
1− pc

)2

e
− s
sζ (66)

such that
1

sζ
= − log

(
p

pc

(
1− p
1− pc

)z−2
)
. (67)

Taylor expansion of the function appearing inside the logarithm, f(p), about
the percolation threshold, p = pc, which involves f(pc) = 1, f ′(pc) = 0, and
f ′′(pc) = −8, and then using (65) and the approximation log(1+f(p)) = f(p)
leads to the result

sζ =
1

4
(pc − p)−2 as p→ pc. (68)

The characteristic size of the exponential taper, sζ scales with the failure
probability, p, as an inverse power-law, (pc − p)−2 with a universal exponent
of 2. Combining (52) with the exponential taper appearing in (66) means
the general form of the solution is:

ns(p) ∝ s−τe
− s
sζ , (69)

where τ is still to be determined.
Previous general arguments about the mean cluster size, S(p), placed

bounds on τ given by (55). Within a Bethe lattice, the mean cluster size,
S(p), takes a simple exact form. Starting with a failed site at the origin and
representing the average length of connected failed sites along each lattice
branch leading away from the origin as T , it follows that

S(p) = 1 + zT. (70)

As all sites are geometrically equivalent within an infinite Bethe lattice, this
symmetry means T may be expressed as the failure probability of the first
site in the chain multiplied by the average number of connected failed sites
from this point along the chain. i.e.

T = p(1 + (z − 1)T ). (71)
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Solving for T and combining with (65) and (70) yields

S(p) =
1 + p

1− p
pc

= (1 + p)pc(pc − p)−1. (72)

As expected, if site failure probabilities increase towards the percolation
threshold, p → pc, the mean cluster size diverges, according to an inverse-
power law, S(p) ∼ (pc − p)−1, with a universal scaling exponent of 1.

From (51) the mean cluster size may also be expressed as

S(p) ∝
∞∑
s=1

s2ns(p)

∝
∫ ∞

1

s2−τe
− s
sζ ds

∝ s3−τ
ζ for p→ pc

(73)

Substituting this result into (68) and equating with the previous result (72)
means

S(p) ∝ (pc − p)2τ−6 ∝ (pc − p)−1, (74)

which requires

τ =
5

2
. (75)

This is identical to the power-law exponent of the asymptotic distribution
of failure sizes within the equal load sharing class of fibre bundle models, as
expected given their isomorphism (Toussaint and Pride, 2005). The Bethe
lattice percolation model of brittle failure predicts earthquake seismic mo-
ments will be distributed as a power-law with an exponential taper where
the power-law exponent, β, is the constant given by (60) and (75).

C Poro-elastic thin-sheet model inference

Figure 34 shows the marginal posterior distributions of the poro-elastic thin-
sheet intra-reservoir stress model parameters defined in section5.
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(a)

(b)

(c)

Figure 34: Marginal posterior distributions of the the poro-elastic thin-sheet
intra-reservoir stress model parameters defined in section5 obtained in com-
bination with (a) the extreme threshold failures model for space-time distri-
bution of earthquake occurrence (st.etc2), (b) the stress-dependent β-model
of earthquake magnitudes (M8, htc3), and (c) the stress-dependent ζ-model
of earthquake magnitudes (M11, ltc3).
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