

# Global Occurrence and Impact of Small-to-Medium Magnitude Earthquakes: A Statistical Analysis (Part 1)

Cecilia I. Nievas, Julian J. Bommer & Helen Crowley

Datum March 2017

Editors Jan van Elk & Dirk Doornhof

#### **General Introduction**

Earthquakes are complex phenomena, which can have a large impact on the people living in the vicinity of the epicentre. This can include damage to buildings ranging from cracks to collapse, damage to infrastructure and psychological effects on the community. Case studies of historical earthquakes can therefore contribute to the understanding of the diversity of the effects earthquakes can have on the built environment, the natural environment, the local economy, the community and individual people. Case studies of earthquakes are therefore an element of the assurance of the risk assessment (Ref. 1).

Many case histories of earthquakes are available, but these focus primarily on larger earthquakes, like the 1906 earthquake in San Francisco and the 1960 earthquake in Chile. These tectonic earthquakes are considerably larger than the earthquakes expected to contribute to the hazard of induced earthquakes in Groningen.

Several studies trying to learn from smaller earthquake in the range from 4 to 5.5 have been initiated. Because case histories for earthquakes in the magnitude range relevant for Groningen are more difficult to find, a compendium of earthquakes was compiled (Ref. 2). Additionally, an overview of all (potentially) human-induced earthquakes (Ref. 3) was prepared.

This report presents a statistical evaluation of earthquakes, focusing on earthquakes that occur in the upper crust in proximity to population centres and with a magnitude between M4 and M5.5. These earthquakes are most interesting for the human-induced earthquakes in Groningen.

#### References

- 1. Groningen Meet- en Regelprotocol, NAM, May 2017
- 2. A Database of Damaging Earthquakes of Moment Magnitude from 4.0 to 5.5, Cecilia Inés Nievas, Helen Crowley, Michail Ntinalexis and Julian J Bommer, June 2016
- 3. Human-induced Earthquakes, Gillian R. Foulger, Miles Wilson, Jon Gluyas and Richard Davies, June 2016.



| Title              | Global Occurrence and Impact of Small-to-Medium                                          | Date                | March 2017        |  |  |  |  |  |  |
|--------------------|------------------------------------------------------------------------------------------|---------------------|-------------------|--|--|--|--|--|--|
|                    | Magnitude Earthquakes: A Statistical Analysis (Part 1)                                   | Initiator           | NAM               |  |  |  |  |  |  |
| Author(s)          | Cecilia I. Nievas, Julian J. Bommer & Helen Crowley                                      | Editors             | Jan van Elk       |  |  |  |  |  |  |
|                    |                                                                                          |                     | Dirk Doornhof     |  |  |  |  |  |  |
| Organisation       | Team of Academic Experts                                                                 | Organisation        | NAM               |  |  |  |  |  |  |
| Place in the Study | Study Theme: Hazard and Risk Assessment                                                  |                     |                   |  |  |  |  |  |  |
| and Data           | Comment:                                                                                 |                     |                   |  |  |  |  |  |  |
| Acquisition Plan   | Earthquakes are complex phenomena, which can have a                                      | a large impact on t | the people living |  |  |  |  |  |  |
|                    | in the vicinity of the epicentre. This can include damage                                | e to buildings ran  | ging from cracks  |  |  |  |  |  |  |
|                    | to collapse, damage to infra-structure and psychologica                                  | l effects on the co | ommunity. Case    |  |  |  |  |  |  |
|                    | studies of historical earthquakes can therefore contribute to the understanding of the   |                     |                   |  |  |  |  |  |  |
|                    | diversity of the effects earthquakes can have on the built environment, the natural      |                     |                   |  |  |  |  |  |  |
|                    | environment, the local economy, the community and individual people. Case studies of     |                     |                   |  |  |  |  |  |  |
|                    | earthquakes are therefore an element of the assurance of the risk assessment (Ref. 1).   |                     |                   |  |  |  |  |  |  |
|                    | Many case histories of earthquakes are available, but these focus primarily on larger    |                     |                   |  |  |  |  |  |  |
|                    | earthquakes, like the 1906 earthquake in San Francisco and the 1960 earthquake in Chile. |                     |                   |  |  |  |  |  |  |
|                    | These tectonic earthquakes are considerably larger than the earthquakes expected to      |                     |                   |  |  |  |  |  |  |
|                    | contribute to the hazard of induced earthquakes in Groningen.                            |                     |                   |  |  |  |  |  |  |
|                    | Several studies trying to learn from smaller earthquake in the range from 4 to 5.5 have  |                     |                   |  |  |  |  |  |  |
|                    | been initiated. Because case histories for earthquakes in the magnitude range relevant   |                     |                   |  |  |  |  |  |  |
|                    | for Groningen are more difficult to find, a compendiu                                    | im of earthquake    | s was compiled    |  |  |  |  |  |  |
|                    | (Ref. 2). Additionally, an overview of all (potentially) h                               | iuman-induced ea    | arthquakes (Ref.  |  |  |  |  |  |  |
|                    | 3) was prepared.                                                                         |                     |                   |  |  |  |  |  |  |
|                    | This report presents a statistical evaluation of earthqua                                | kes, focusing on e  | arthquakes that   |  |  |  |  |  |  |
|                    | occur in the upper crust in proximity to population                                      | centres and with    | th a magnitude    |  |  |  |  |  |  |
|                    | between M4 and M5.5. These earthquakes are most ir                                       | nteresting for the  | human-induced     |  |  |  |  |  |  |
|                    | earthquakes in Groningen.                                                                |                     |                   |  |  |  |  |  |  |

| Directly linked                                                                  | (1) Hazard and Risk Assessment |
|----------------------------------------------------------------------------------|--------------------------------|
| research                                                                         | (2) Meet – en Regelprotocol    |
| Used data                                                                        | Open Literature.               |
| Associated                                                                       | Team of Academic Experts       |
| organisation                                                                     |                                |
| Assurance Report is based on compilation of academic papers and open literature. |                                |

# Global Occurrence and Impact of Small-to-Medium Magnitude Earthquakes: A Statistical Analysis

Cecilia I. Nievas, Julian J. Bommer & Helen Crowley

Version 1

November 2017

# **Table of Contents**

| 1. INTRODUCTION                                                                            | 1      |
|--------------------------------------------------------------------------------------------|--------|
| 2. WORLD DATABASE OF CRUSTAL SMALL-TO-MEDIUM MAGNITUDE EVENTS<br>URBANISED AREAS           | NEAR   |
| 2.1 General                                                                                | 2      |
| 2.2 Outline of the Methodology                                                             | 3      |
| 2.3 The WPG16 Magnitude-Homogeneous World Catalogue                                        | 6      |
| 2.4 The ISC Bulletin                                                                       | 7      |
| 2.5 Considerations Regarding Magnitude Scales                                              | 8      |
| 2.6 Incorporation of Events from the ISC Bulletin not in WPG16                             | 15     |
| 2.7 Resolution of Specific Issues                                                          | 21     |
| 2.7.1 Magnitude Estimates with Two Authors                                                 | 21     |
| 2.7.2 Repetition of Magnitude-Scale-Author Combinations                                    | 22     |
| 2.7.3 Several Origins with Same Magnitude- Scale-Author Combinations                       | 22     |
| 2.7.4 Identification of Events Already in WPG16                                            | 22     |
| 2.7.5 Flagging of (Potentially) Induced Earthquakes                                        | 23     |
| 2.7.6 Manual Modification of Outliers                                                      | 24     |
| 2.7.7 Potentially Duplicated Earthquakes                                                   | 24     |
| 2.8 Resulting Database                                                                     | 33     |
| 3. WORLD DATABASE OF SMALL-TO-MEDIUM MAGNITUDE EVENTS WITH CONSEQUENCES FOR THE POPULATION | 42     |
| 3.1 Description and Methodology                                                            | 42     |
| 3.2 Resulting Database                                                                     | 47     |
| 4. STATISTICAL ANALYSIS AND DISCUSSION                                                     | 49     |
| 4.1 Identification of the Earthquakes with Consequences within the General Datal           | base49 |
| 4.1.1 Events Not Complying with the Magnitude-Depth Criterion                              | 49     |
| 4.1.2 Events Not Complying with the Exposure Criterion                                     | 52     |
| 4.1.3 Events Not Found                                                                     | 54     |
| 4.1.4 Flagging of (Potentially) Induced Events                                             | 55     |
| 4.2 Statistical Analysis                                                                   | 56     |
| 4.2.1 Kinds of Consequences Observed                                                       | 56     |
| 4.2.2 Earthquakes with Consequences within the Complete World Database                     | 57     |
| 5. FUTURE DIRECTIONS                                                                       | 63     |
| 5.1 General                                                                                | 63     |
| 5.2 Maximum Depth Criterion                                                                | 63     |
| 5.3 Declustering                                                                           | 63     |
| 5.4 Intensity Prediction Models                                                            | 63     |
| 5.5 Magnitude Scales                                                                       | 64     |
| 5.6 Uncertainty in Depth, Magnitude and Intensity                                          | 64     |
| 5.7 Improvement of the Identification of Duplicate Events                                  | 64     |

| 5.8 Improvement of Flagging of Induced Events                                              | 65                   |
|--------------------------------------------------------------------------------------------|----------------------|
| 6. CONCLUSIONS                                                                             | 66                   |
| 7. ACKNOWLEDGEMENTS                                                                        | 69                   |
| <ul> <li>8. REFERENCES</li></ul>                                                           | 70<br>70<br>73<br>74 |
| APPENDIX I: WPG16 EVENTS WITHOUT DEPTH INFORMATION                                         | 75                   |
| APPENDIX II: HIERARCHY OF AGENCIES CONTRIBUTING TO THE ISC                                 | 79                   |
| APPENDIX III: LIST OF EVENTS IDENTIFIED AS DUPLICATES                                      |                      |
| APPENDIX IV: LIST OF SMALL-TO-MEDIUM MAGNITUDE EVENTS WITH CONSEQUENCES FOR THE POPULATION |                      |

## 1. INTRODUCTION

Studies have shown that events with moment magnitude (**M**) in the range 4.0-5.5 dominate the seismic hazard and risk estimates due to induced earthquakes in the Groningen field and, potentially, in many other areas of the world in which anthropogenic earthquakes pose a larger threat than tectonic seismicity (Bourne *et al.*, 2015; van Elk *et al.*, 2017). While earthquakes smaller than magnitude 5.0 will often be discarded in the estimation of seismic design loads (Bommer & Crowley, 2017), when examining the risk posed by induced earthquakes to a building stock constructed without consideration of seismic effects, these smaller-magnitude events can be important.

As part of the effort to quantify and understand the risk posed by the Groningen earthquakes, this work aimed to identify how many upper crustal earthquakes in the same magnitude range occur in close proximity to urbanised areas, and what proportion of these earthquakes cause damage and/or casualties. In order to do this, the work was divided in three fundamental parts, each of them explained in detail in each of the three chapters that follow. Firstly, a world database of crustal earthquakes in the range **M**4.0-5.5 that occurred sufficiently close to population or the built environment was generated. Secondly, a world database of earthquakes in the range **M**4.0-5.5 for which reports of damage and/or casualties exist was compiled. Finally, the two were confronted and a statistical analysis was carried out.

The challenges associated with all these three activities were many, and are described thoroughly all throughout the report. These range from dealing with multiple estimations of location and magnitude of earthquakes by different agencies, often involving large discrepancies, the definition of what "in close proximity to urbanised areas" means, the selection of appropriate magnitude scales, all the way through the scarcity of information regarding the damage caused by small-to-medium magnitude earthquakes, among many others.

## 2. WORLD DATABASE OF CRUSTAL SMALL-TO-MEDIUM MAGNITUDE EVENTS NEAR URBANISED AREAS

#### 2.1. General

As has been explained in detail by Weatherill *et al.* (2016), generating a magnitudehomogeneous global earthquake catalogue is not trivial. Among the many challenges that need to be faced are the comparison of reports of events from different sources, the selection of a final source location and start time for each event, and the homogenisation of magnitude scales. These usual challenges become exacerbated in the magnitude range of interest of this work, as the uncertainty in earthquake location tends to be higher for weaker events that are recorded by fewer networks. In many cases, small events are only reported by local agencies that use extremely heterogeneous magnitude scales.

In this work, a two-fold strategy was implemented to face these challenges. On the one hand, advantage was taken of the magnitude-homogeneous catalogue compiled by Weatherill *et al.* (2016), which covers events that have been reported by the main international agencies and a series of relevant studies, and provides them with an estimate of moment magnitude  $\mathbf{M}$  when the available magnitude estimates allow for robust conversions. This allowed to start from a solid base of events that have been gathered by means of a well-documented procedure, all of which have values of  $\mathbf{M}$ . On the other hand, it is known that the strategy followed for its compilation translates into an unknown number of events not having been included because of them not complying with the quality criteria set up by the authors. To countervail this, the catalogue of Weatherill *et al.* (2016) was confronted against events from the ISC Bulletin that complied with a significantly loser set of criteria, and events that were not found in the former were added to make up the final so-called merged catalogue. Once the merged catalogue was compiled, events were selected in terms of their magnitude, depth and vicinity to urbanised areas.

All procedures generated for the compilation of this database were designed to be automatic, as the immense volume of data processed herein would not allow for a manual selection and adjustment of events. This generated an additional challenge, as algorithms needed to be designed to work for the whole set of events and, at the same time, take into consideration the extensive list of peculiarities that were found along the way. Due to the nature of automatic processes, it is possible that certain solutions not be perfect, though the stability observed within intermediate stages of the compilation when iterating on the improvement of specific algorithms suggests that they appear to be fit for our purposes.

The sections that follow explain in detail the process followed to merge the catalogue of Weatherill *et al.* (2016) and the events selected to be added from the ISC Bulletin, and the criteria used to filter events outside the magnitude-depth range of interest and/or not close enough to population or the built environment to pose a threat. The resolution of specific challenges that were relevant to the work are also discussed in detail. The resulting database and its characteristics are finally presented at the end.

#### 2.2. Outline of the Methodology

The database of earthquakes in the range **M**4.0-5.5 was built using an updated version of the magnitude-homogeneous catalogue of Weatherill *et al.* (2016), referred to as WPG16 or WPG16v3b hereafter (*v3b* makes reference to the version). As the WPG16v3b catalogue does not include events for which the reported magnitudes do not allow what Weatherill *et al.* (2016) believe would be a sound conversion to moment magnitude, events present in the ISC Bulletin (ISC, see Web References) that are not part of WPG16v3b were added to the database if either a moment magnitude **M**, a surface-wave magnitude M<sub>s</sub> or a local magnitude M<sub>L</sub> were reported. As explained in Section 2.5, an assumption of equivalence between M<sub>s</sub>, M<sub>L</sub> and **M** was made in the relevant magnitude range. Events flagged as induced in the sources were flagged in our database as well, so as to allow for easy consideration or rejection of them in the statistical analysis.

The database was built for a 15-year time window starting on 1<sup>st</sup> July 1999 and finishing on 30<sup>th</sup> June 2014. This period was selected for a series of reasons:

- The ISC Reviewed Bulletin goes until 30<sup>th</sup> June 2014 at the time of starting this analysis (August 2017). This means that the WPG16v3b catalogue contains events from the ISC Reviewed Bulletin up to said date.
- The magnitude of the completeness of WPG16v3b decreases significantly from around 1998 onward, as will be shown in Section 2.3.
- The increasing popularity and penetration of the Internet during these years facilitates the search for information on damage for events in the magnitude range of interest. Focusing on this period made it relatively easier to retrieve information regarding damaging earthquakes.
- It is long enough to be of statistical significance and, at the same time, short enough to not pose an excessive computational demand.

While the final time period starts on 1<sup>st</sup> July 1999 and finishes on 30<sup>th</sup> June 2014, events that have occurred between 1<sup>st</sup> July 1996 and 30<sup>th</sup> June 2017 were considered for the identification of foreshocks and aftershocks, which was carried out using the algorithm of Gardner & Knopoff (1974), as implemented in the OpenQuake Hazard Modeller's Toolkit (Weatherill, 2014), modified to take into consideration hypocentral depth. As it is extremely difficult to distinguish the damage caused by each of the events in the sequence, this flagging of foreshocks and aftershocks was used to be able to generate separate statistics considering only main shocks or considering all events.

The decision to consider an additional three years of events before and after the period of interest was made after analysing the OpenQuake (Pagani *et al.*, 2014) implementation of the time windows proposed for declustering by Gardner & Knopoff (1974), Grünthal (as reported in van Stiphout *et al.*, 2012) and Uhrhammer (1986). Three years is slightly larger than the windows of the first two for **M** equal to or larger than 6.5, while they are only exceeded for **M** above 8.0 by the latter.

Due to the characteristics of induced seismicity, only upper crustal events were considered. While the definition of a threshold for a hypocentral depth to be considered an upper crustal event or not is not trivial, the magnitude-dependent criterion adopted herein is shown in Table 2.1.

| Magnitude Range      | Maximum Depth |
|----------------------|---------------|
| 4.0 ≤ <b>M</b> < 4.5 | 15 km         |
| 4.5 ≤ <b>M</b> < 5.0 | 20 km         |
| 5.0 ≤ <b>M</b> ≤ 5.5 | 25 km         |

Table 2.1. Adopted depth criterion.

To eliminate earthquakes happening in extremely underpopulated areas, oceans or deserts that clearly pose no threat or minimal threat to human settlements, the number of people exposed to expected Modified Mercalli Intensity (MMI) values equal to or larger than IV was determined for each event. Expected MM intensities were calculated using the intensity prediction equation (IPE) of Allen *et al.* (2012), and the population exposed to each intensity level was estimated using the 2015 population counts from Gridded Population of the World GPW v4.0 (CIESIN, 2016). For each earthquake, the procedure was as follows:

- 1. Using the IPE of Allen *et al.* (2012), determine the epicentral distance at which the predicted MMI is 3.0. Select the part of the complete GPW v4.0 grid that falls within a square with sides equal to double that distance, centred in the epicentre of the earthquake.
- 2. Compute the estimated MMI for the centroid of each cell of the GPW v4.0 grid within the selected area. A constrained area was selected instead of working directly with the complete grid due to limits imposed by computational capacity.
- 3. Identify the cells whose MMI values are equal to or larger than 4.0.
- Add the population counts of these cells to obtain the number of people exposed to MMI ≥ IV.
- 5. Identify the maximum value of population density within those cells.
- 6. Keep the event if any of the following two conditions are met:
  - maximum density in area where MMI ≥ IV: ≥ 300 people/km<sup>2</sup> (from 5) OR
  - cumulative population count for MMI ≥ IV: ≥ 2,500 people (from 4).

The IPE of Allen *et al.* (2012) was originally developed for earthquakes with moment magnitudes in the range 5.0-7.9. While here it was applied outside of this range, it was selected due to it being a well-established model that has been derived using a relatively large dataset of events from a variety of geographical locations. While perhaps lacking a guarantee of accuracy, its behaviour in the 4.0-5.0 range does not raise concerns with respect to stability or consistency, as shown in Figure 2.1. The three continuous lines correspond to a null hypocentral depth and, consequently, the highest values of MMI that can be obtained for the earthquakes of the database, given the constraints imposed by Table 2.1. For epicentral distances equal to or larger than, approximately, 0.5 km, these three lines behave as expected: the largest magnitude earthquake produces the largest MMI. For

smaller distances, the lines cross. This is not due to being outside the range of applicability in terms of magnitude, but to the epicentral distances instead. As Allen *et al.* (2012) express, their model should not be used for hypocentral distances smaller than 6 km. Though here it is being applied at smaller distances, this does not pose a problem, as the results are not being used to compare one earthquake against the other but to estimate population exposure, and the MMI values keep on increasing with decreasing epicentral distance for a particular magnitude, which is the expected behaviour. Moreover, this only occurs for very shallow depths, as the 6 km limit applies to hypocentral (not epicentral) distances.



Figure 2.1. Modified Mercalli Intensity (MMI) predicted by the model of Allen *et al.* (2012) for three different magnitudes (M4.0, light grey, M4.5, middle grey, M5.0 black) and hypocentral depths (indicated in the legend), against epicentral distance (R<sub>epi</sub>).

The population thresholds of step 6 were selected based on definitions of urbanisation by different sources. According to UNICEF (2012), the minimum population to define an urban settlement is around 2,000 people, though this number varies greatly around the world and can range between 200 and 50,000. For the 2010 census, the United States' Census Bureau defined an urbanized area as that having 50,000 people or more and a density of at least 1,000 people per square mile (386 people/km<sup>2</sup>), and an urban cluster as that having between 2,500 and 50,000 people. According to Eurostat (2017), the European Union defines urban areas by first identifying grid cells of 1km<sup>2</sup> in which the population density is equal to or larger than 300 people/km<sup>2</sup>, and then grouping adjoining cells that satisfy this criterion: if the resulting group of cells adds up to, at least, 5,000 people, it is considered an urban area. Most consulted sources highlight the fact that making the distinction between urban and rural populations is neither trivial nor objective, and that density-based criteria can be strongly dependent on the size of the grid or the areas used to calculate the density. As Eurostat specifies the grid cell size and it coincides with that of GPW v4.0, this number was adopted directly.

While a MMI of V or larger would have been a more logical threshold to assess population exposure, as it is described as the onset of damage, MMI IV was used herein because the minimum epicentral MMI predicted by the IPE of Allen *et al.* (2012) for the magnitude and

depth ranges considered is IV, as was shown in Figure 2.1. If a higher threshold was selected, a series of magnitude-depth combinations would be automatically excluded. A MMI of IV is described (Wood & Neumann, 1931) as being felt indoors by many, though outdoors only by few, and causing fear only in exceptional cases. It is characterised by the rattling of dishes, windows and doors (but without any of these breaking or cracking), the creaking of walls and frames, and the swinging of hanging objects. A MMI of V would, in turn, involve some instances of damage such as broken dishes and/or cracked windows, as well as the overturning of unstable objects.

No uncertainty in moment magnitude, depth or the IPEs was initially considered, though such uncertainty may be incorporated in the future.

#### 2.3. The WPG16 Magnitude-Homogeneous World Catalogue

The  $31^{st}$  July 2017 version of the magnitude-homogeneous world catalogue of Weatherill *et al.* (2016), referred to as WPG16v3b hereafter, was used as the starting point because it explicitly deals with the issue of magnitude conversion, which is quite relevant for the range of earthquakes being considered herein. While moment magnitude **M** is currently the preferred scale for seismic hazard analysis, it is often not calculated for earthquakes smaller than **M**5.0, which are most commonly reported in terms of the surface-wave (M<sub>s</sub>), body-wave (m<sub>b</sub>) and Richter/local (M<sub>L</sub>) magnitude scales. Weatherill *et al.* (2016) addressed this issue by creating a series of tools that facilitates the simultaneous analysis of events from different catalogues and the homogenization of their magnitude estimates in terms of **M**.

The original version of the catalogue, WPG16v1, gathers events from the global ISC-GEM v3.0 catalogue (Storchak et al., 2015), the ISC Reviewed Bulletin (ISC, 2014), the NEIC bulletin (United States Geological Survey, USGS, 2015), the ISC-EHB bulletin (Engdahl et al., 1998), the Global Centroid Moment Tensor (GCMT) catalogue (Ekström et al., 2012), the Pacheco & Sykes (1992) catalogue, and the bulletin of the National Research Institute for Earth Science and Disaster Prevention of Japan (NIED, 2015), and uses a well-defined set of hierarchy rules as well as a series of magnitude conversion models to assign one value of moment magnitude and one location per event. As this catalogue does not include anthropogenic earthquakes, Weatherill (2017, pers. comm.) compiled a new version of it that includes events flagged as geothermal, mining, reservoir, induced and any other anthropogenic origins, except for those from explosions, or with nuclear or chemical origins. This new version also gathers updated versions of some of the catalogues considered, such as the global ISC-GEM v4.0 catalogue (released in January 2017, Storchak et al., 2015), the complete GCMT catalogue and NEIC bulletin until the end of 2016, and the ISC Reviewed Bulletin up to and including events from June 2014, and lowers the threshold magnitude from 3.0 to 2.5, of any kind of magnitude scale.

Not all the events from these catalogues are included in WPG16v3b. Only those for which there exists magnitude information in certain scales and coming from agencies for which enough information exists to develop an empirical conversion equation to moment magnitude **M** were included. Moment magnitude values from ISC-GEM, GCMT and Pacheco & Sykes (1992) were taken directly (without conversion), while moment magnitude

from NEIC and NIED were adjusted to account for systematic differences between the different agencies. Surface-wave ( $M_s$ ) and body-wave ( $m_b$ ) magnitude estimates by the ISC and NEIC were converted to moment magnitude as well. WPG16v3b contains 630,960 events with dates as early as 1900.

Figure 2.2 shows the distribution of events in the WPG16v3b catalogue in time. The algorithm of Stepp (1971), as implemented in the OpenQuake Hazard Modeller's Toolkit (Weatherill, 2014), estimates the catalogue to be complete above **M**3.0 from 1998 onward. However, a close observation of Figure 2.2 suggests that the completeness magnitude is possible not as low as 3.0, though a significant improvement in the number of smaller magnitude events captured can be observed around the year 1998.



Figure 2.2. Distribution of events in the WPG16v3b catalogue in time and by magnitude.

#### 2.4. The ISC Bulletin

The ISC Bulletin gathers reports of seismic events from an extensive list of agencies from around the world that contribute to it. The data is automatically processed and grouped into events to which an event ID is assigned. Each event may contain one or several estimates of origin and magnitude, each of which have their own origin ID and magnitude ID. Within the ISC Bulletin, the term "origin" refers to hypocentral location, date and time, that is, origin in a four-dimensional space, though it is possible for the hypocentral depth to be missing in some cases. A certain origin (and origin ID) may be associated with more than one magnitude estimate, either because the agency that calculated that origin produced estimates of magnitudes in different scales or because other agencies may have not calculated the origin by themselves but may have used an origin from a different agency to calculate magnitude. Figure 2.3 shows an example of an event in the ISC Bulletin. As can

be observed, many origins are associated with more than one magnitude estimate and, in particular, origin ID 02744957 by NEIC is associated with a body-wave magnitude estimate of 4.2 by NEIC itself and a local magnitude of 4.2 by the National Seismological Centre of Universidad de Chile (acronym GUC in Figure 2.3).



Figure 2.3. Example of an event from the ISC Bulletin.

The ISC only generates its own origin and magnitude estimates when reviewing the Bulletin, a process that is usually two years behind real time, though it is around three years at the time of writing (November 2017). According to the website of the ISC, all events with at least one magnitude estimate (in any scale) equal to or above 3.5 are reviewed. The example of Figure 2.3 includes an estimate by the ISC, which is marked as #PRIME, meaning that it is the ISC's preferred solution. #PRIME tags are also automatically assigned by an algorithm before the ISC reviews the events, so they can correspond to agencies other than the ISC itself for the period not covered by the Reviewed Bulletin.

#### 2.5. Considerations Regarding Magnitude Scales

Moment magnitude **M** (Hanks & Kanamori, 1979) is, nowadays, the preferred magnitude scale for most seismic hazard applications (*e.g.* Di Giacomo *et al.*, 2015). However, moment magnitudes tend to be calculated only for earthquakes above a certain threshold, which leads to a large proportion of the earthquakes that occur worldwide still being reported in other scales, most commonly surface-wave magnitude  $M_s$ , body-wave magnitude  $m_b$ , duration magnitude  $M_d$ , and Richter local magnitude  $M_L$ . (*e.g.*, Gasperini *et al.*, 2013; Weatherill *et al.*, 2016). In view of this, a rational decision was needed with respect to the magnitude scales to consider for the incorporation of events from the ISC Bulletin not in WPG16v3b to the merged world catalogue.

The four most commonly used magnitude scales other than moment magnitude **M**, can be grouped in two pairs:  $M_s$  and  $m_b$ , which are calculated from teleseismic data, and  $M_L$  and  $M_d$ , which are local by nature in their need to have a region-specific correction term (Scordilis, 2006; Gasperini *et al.*, 2013, Di Giacomo *et al.*, 2015). Studies aiming at developing relationships between these scales and moment magnitude for use in global catalogues (and global applications in general) focus on the first two, as any relation between the latter and **M** is necessarily regional.

Among these studies, those of Scordilis (2006) and Di Giacomo *et al.* (2015) stand out for their general robustness and impact on the community. They both focus on  $M_s$  and  $m_b$ , and arrive at similar conclusions, which are supported as well by the more recent work of Weatherill *et al.* (2016):

- M<sub>s</sub> appears to hold almost a 1:1 relation with **M** for magnitudes greater than, approximately, 6.0;
- dispersion is larger for the relation between  $m_b$  and **M** than for the relation between  $M_s$  and **M**.

Figures 2.4 and 2.5 show the results obtained by the three studies. Due to this behaviour of  $M_s$  and  $m_b$ , Di Giacomo *et al.* (2015) prefer  $M_s$  over  $m_b$  to obtain an estimation of **M**. While the 1:1 relationship between  $M_s$  and **M** does not hold in the magnitude range of interest for the present work,  $M_s$  is also deemed herein as having a more satisfactory behaviour than  $m_b$ , in view of its smaller dispersion. Scordilis (2006) obtained standard deviations of 0.17 and 0.29 for their models for  $M_s$  and  $m_b$ , respectively. Similarly, Weatherill *et al.* (2016) obtained standard deviations of 0.147 and 0.317.



Figure 2.4. Relation between moment magnitude **M** (M<sub>w</sub>) and surface-wave magnitude M<sub>s</sub> according to Scordilis (2006, left), Di Giacomo *et al.* (2015, centre), and Weatherill *et al.* (2016, right). Each plot was taken from the corresponding publication.

While it would be possible to apply these conversion equations to obtain values of moment magnitude for those events of the ISC Bulletin that are not in the WPG16v3b catalogue and are to be added, it was herein preferred to assume a 1:1 relation, even in the range  $4.0 \le M \le 5.5$  (or  $4.0 \le M_s \le 5.5$ ). The reason for this is that no model guarantees an exact conversion, and the estimates of M<sub>s</sub> would come from agencies other than the ISC or the USGS (events that have M<sub>s</sub> from either of the two are part of WPG16v3b), for which the relationship with **M** might be slightly different, as it is influenced by the specific methodologies used to calculate them. To illustrate this, Figure 2.6 (left) shows the relation between M<sub>s</sub> values calculated by the ISC and M<sub>s</sub> values calculated by the USGS, as per Weatherill *et al.* (2016). While the overall tendency is that of a 1:1 relation, the existing dispersion means, for example, that an estimate of M<sub>s</sub>=4.0 by the USGS can easily correspond to values in the range  $3.5 \le M_s \le 5.0$  by the ISC, as shown in the plot. This suggests

that there is not guarantee that applying a conversion equation to  $M_s$  values calculated by a diverse set of agencies would yield more accurate values than the **M**=M<sub>s</sub> assumption. Figure 2.6 (right) shows that the situation is even worse for  $m_b$ , supporting the idea that  $m_b$  might not be a sufficiently reliable scale for the purpose of this work.



Figure 2.5. Relation between moment magnitude **M** (M<sub>w</sub>) and body-wave magnitude m<sub>b</sub> according to Scordilis (2006, left), Di Giacomo *et al.* (2015, centre), and Weatherill *et al.* (2016, right). Each plot was taken from the corresponding publication.



Figure 2.6. Relation between  $M_s$  (left) and  $m_b$  (right) estimates of the ISC (vertical axes) and the USGS (horizontal axes) for the events in the WPG16 catalogue. From Weatherill *et al.* (2016).

Figure 2.7 illustrates the implications of the  $\mathbf{M}=M_s$  assumption in terms of the acceptance or rejection of events. If the relation between  $\mathbf{M}$  and  $M_s$  were exactly as shown in Figure 2.7, irrespective of where the  $M_s$  estimation comes from, the  $\mathbf{M}=M_s$  assumption would lead us to reject the events within the rectangles labelled A and C, and to keep the events within the rectangle labelled B in the database. According to the moment magnitude scale (vertical axis), events within rectangles A and C should be included in the database, while events within rectangle B should be rejected. If the relation between  $\mathbf{M}$  and  $M_s$  were to be true, the

number of events within rectangle C should be small, and the analysis can focus on rectangles A and B. According to the Gutenberg-Richter relation (Gutenberg & Richter, 1956), the number of events in A should be much larger than the number of events in B, so it is likely that the number of events that should be included and are rejected would be larger than the number of events that are included and should be rejected. Moreover, those that are rejected and should be included are less likely to cause damage than those that are included and should be rejected. As a consequence, the statistics regarding the proportion of earthquakes of the database that cause damage would be conservative, because more damaging earthquakes would be included, even though they should. For this and the reasons above, the  $\mathbf{M}=\mathbf{M}_{s}$  assumption was adopted in this work.



Figure 2.7. Relation between moment magnitude **M** ( $M_w$ ) and surface-wave magnitude  $M_s$  according to Weatherill *et al.* (2016), modified so as to show the impact of the **M**= $M_s$  assumption.

Regarding local magnitudes, Deichmann (2006) has analytically demonstrated that if the source characteristics of all earthquakes of a certain magnitude were constant, and those of the path and site were perfectly accounted for, then Richter local magnitude  $M_{L}$  and moment magnitude **M** would be the same in all magnitude ranges. Deichmann (2017) then demonstrated that this 1:1 scaling is lost for **M**<3.0, and a relation of the kind  $M_{L}\alpha$ 1.5**M** is observed and theoretically justified. This idea of a change of slope in the relation between the two scales is supported by the compilations carried out by Dost *et al.* (2016, Figure 2.8) and Strasser & Mangongolo (2012, Figure 2.9) of different models available in the literature. Both plots show, as well, a tendency for  $M_{L}$  to be larger than M, which was also reported by Braunmiller *et al.* (2005). In view of all this, the **M**=M<sub>L</sub> assumption for the range 4.0≤**M**≤5.5 appears as reasonable and opens up access to a wider amount of data, because local networks tend to report magnitudes in terms of M<sub>L</sub>.



Figure 2.8. Relation between moment magnitude **M** and Richter local magnitude M<sub>L</sub> according to studies available in the literature. From Dost *et al.* (2016).



Figure 2.9. Relation between moment magnitude **M** and Richter local magnitude M<sub>L</sub> according to studies available in the literature. From Strasser & Mangongolo (2012).

It is relatively common practice for local agencies to estimate a local magnitude based on the duration of the coda of the seismogram, the result of which is indicated as M<sub>d</sub>. Gasperini *et al.* (2013) found that, at least for Italy, M<sub>d</sub> tends to underestimate M<sub>L</sub> at large magnitudes and overestimate it at low magnitudes, as shown in Figure 2.10, which is based on the ISIDE database of revised locations for Italy (Amato *et al.*, 2006). A similar tendency has been observed by Weatherill (2017, *pers. comm.*) for the solutions reported to the ISC by the Istituto Nazionale di Geofisica e Vulanologia (INGV, Italy), and for those of the National Observatory of Athens (NOA, Greece), as shown in Figures 2.11 and 2.12, though not so pronounced for those of the Kandili Observatory and Earthquake Research Institute (KOERI, Turkey) or the Disaster and Emergency Management of the Presidency (AFAD, Turkey), as shown in Figures 2.13 and 2.14. The comparisons of moment magnitude **M** against M<sub>L</sub> and M<sub>d</sub> shown in Figures 2.11 through 2.14 suggest that the former relation is closer to 1:1 and

presents less scatter than the latter. These observations further support the  $M=M_{\perp}$  assumption and suggest that  $M_d$  might not be sufficiently reliable.

In light of this brief analysis, only moment magnitude **M**, surface-wave magnitude  $M_s$  and local magnitude  $M_L$  were considered when retrieving information from the ISC Bulletin, and a 1:1 relation was assumed among the three.



Figure 2.10. M<sub>L</sub> vs. M<sub>d</sub> for events from the Italian Seismic Instrumental and parametric DatabasE (ISIDE) (Amato *et al.*, 2006). From Gasperini *et al.* (2013).



Figure 2.11. **M** vs. M<sub>L</sub> (left), **M** vs. M<sub>d</sub> (centre) and M<sub>L</sub> vs M<sub>d</sub> (right) for events reported by the INGV (ltaly) to the ISC, retrieved from the ISC Bulletin. Courtesy of Weatherill (2017, *pers. comm.*).



Figure 2.12. **M** vs.  $M_L$  (left), **M** vs.  $M_d$  (centre) and  $M_L$  vs  $M_d$  (right) for events reported by the NOA (Greece) to the ISC, retrieved from the ISC Bulletin. Courtesy of Weatherill (2017, *pers. comm.*).



Figure 2.13. **M** vs.  $M_L$  (left), **M** vs.  $M_d$  (centre) and  $M_L$  vs  $M_d$  (right) for events reported by the KOERI (Turkey) to the ISC, retrieved from the ISC Bulletin. Courtesy of Weatherill (2017, *pers. comm.*).



Figure 2.14. **M** vs. M<sub>L</sub> (left), **M** vs. M<sub>d</sub> (centre) and M<sub>L</sub> vs M<sub>d</sub> (right) for events reported by the AFAD (Turkey) to the ISC, retrieved from the ISC Bulletin. Courtesy of Weatherill (2017, *pers. comm.*).

As will be explained in Section 2.8, 717,285 events from the ISC Bulletin that are not found in the WPG16v3b catalogue were not considered within the final merged catalogue due to them not complying with the requisites established regarding information on origin and magnitude, and the agencies deemed relevant for each region of the world. Of these, 278,375 events have at least one estimate in terms of M<sub>d</sub>, but no m<sub>b</sub>, and 159,336 events have at least one estimate in terms of m<sub>b</sub>, but no M<sub>d</sub>. 438,986 have either an M<sub>d</sub> or m<sub>b</sub> estimate, while 717,285 – 438,986 = 278,299 events have neither an  $M_d$  nor an  $m_b$  value. If M<sub>d</sub> or m<sub>b</sub> were to be considered as acceptable magnitude scales, not all the 438,986 events could be added, because some of them would not comply with criteria related to the availability of information on depth and/or relevance of the agency reporting the estimation. An analysis carried out considering 4 years (48 months) suggests that around 98.7% of the 438,986 events would be finally included in the database, after considering all other criteria. This means that if M<sub>d</sub> and m<sub>b</sub> were considered herein, around 433,279 events could be further added to the merged catalogue, resulting in 1,549,552 events instead of the current 1,116,273 (note that this number of events includes all magnitudes and depths, and not just those of interest to the present work, as will be explained).

#### 2.6. Incorporation of Events from the ISC Bulletin not in WPG16

The process started by querying the ISC Bulletin with the following criteria:

- magnitudes and locations from any agency;
- any magnitude estimates in the range M<sub>any</sub>≥2.5;
- dated between 1<sup>st</sup> July 1996 and 30<sup>th</sup> June 2017
- not flagged as "explosion", "chemical" or "nuclear".

The toolkit published alongside the paper of Weatherill *et al.* (2016) was used to carry out the query over the ISF format files provided by the ISC in their FTP site, for the period before 30<sup>th</sup> June 2014, and for the ISF format files manually downloaded from their website, for the period starting on 1<sup>st</sup> July 2014.

It is noted that the filtering of events according to rejection keywords such as "explosion", "chemical" or "nuclear" is likely to not be perfect, as the number of specific cases that can be found when parsing the ISF files is quite large. Moreover, and as Weatherill *et al.* (2016) point out, this filtering relies on the flagging carried out by contributing agencies.

The initial search cannot be restricted to the magnitude range or the time window of interest because declustering algorithms need to be run over the whole catalogue and a period of time that allows to identify foreshocks and aftershocks within the events closer to the time edges. The resulting raw catalogue was then compared against WPG16v3b, so as to determine if the events were already there or not. The search was carried out by means of a combination of strategies, first in terms of event IDs and origin IDs, and then using a time window of 60 seconds and a distance window of 100 km, as explained in Section 2.7.4. The outcome of this step was a list of events to be retrieved from the ISC Bulletin and a list of events to be taken directly from WPG16v3b.

The events to be retrieved from the ISC Bulletin may have more than one origin and magnitude estimations, authored by different agencies and using different magnitude scales. In order to select one location and one magnitude per event, a hierarchy of reporting agencies and magnitude scales was needed. The adopted hierarchy was the following:

- 1. Main agency, **M**.
- 2. Local agency, **M**.
- 3. Regional agency, **M**.
- 4. Main agency, Ms.
- 5. Local agency, Ms.
- 6. Regional agency, M<sub>s</sub>.
- 7. Main agency,  $M_L$ .
- 8. Local agency, ML.
- 9. Regional agency, M<sub>L</sub>.

As can be observed, only moment magnitude **M**, local magnitude  $M_L$ , and surface-wave magnitude  $M_s$  were accepted, while all other magnitude scales were rejected. Magnitude scales were filtered in a case-insensitive fashion, which means that ML=MI=mI=mL, for example. This is not necessarily true, as different agencies sometimes use different conventions to specify slightly different ways of calculating a particular scale. However, taking this into consideration in the present analysis is a challenge in itself, and so the issue was subsequently ignored. Moreover, an equivalency of  $M=M_s=M_L$  is assumed for the range  $4.0 \le M \le 5.5$ . The reasons for these choices are explained in detail in Section 2.5.

The criterion was evaluated in a sequential manner, stopping whenever a locationmagnitude pair that satisfied the rule was found. It is possible to find cases in which the author of the magnitude estimate is different from the author of its associated location estimate. The overall author to be compared with the selection criterion was that of the magnitude estimate. As there are cases in which the location estimation does not include information on depth, an additional condition of depth being available was also included.

The application of this criterion required the classification of all possible contributing agencies as "main", "regional" or "local", and a definition of which local and regional agencies to consider for each event, based on their location. The list of all possible agencies was retrieved from the website of the ISC. Table 2.2 shows the agencies classified as "main" and the ranking assigned to them. The first 16 agencies follow the criteria used by Weatherill *et al.* (2016), but include aliases (*i.e.*, alternative acronyms used to refer to the same agency, sometimes because of changes in denomination with time) not considered by them. The ISC and its associated special collaborative projects (ISC-GEM, ISC-EHB) are regarded as primary sources due to the fact that the ISC collects data from an extensive list of agencies and uses it to carry out their own estimations. The United States Geological Survey (USGS) and the National Earthquake Information Center (NEIC) are also fundamental, as they record seismic events with their own network with extensive global coverage, and have a long legacy of processing and analysing earthquake data by means of well-documented procedures. The Global Centroid Moment-Tensor Project (GCMT) is the most complete

database from which moment magnitude is derived. Like the ISC but at a continental level, the European-Mediterranean Seismological Center (EMSC/CSEM) gathers and reprocesses data from multiple sources within Europe and the Mediterranean area. The International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is the oldest global network directly recording their own data, and uses state-of-the-art well-documented processing techniques. Their estimates can be of particular relevance for our magnitude range of interest, due to their origins and main objective of detecting worldwide nuclear testing. The Geophysical Survey of the Russian Academy of Sciences and the China Earthquake Networks Center are of relevance due to their extensive spatial coverage within their own countries and their high quality instrumentation and processing. The German Research Centre for Geosciences (GFZ) expanded its network to gain global coverage at the beginning of the 21<sup>st</sup> century, achieving this objective around 2008. While they provide rapid estimates, these are not revised after the events when more data becomes available.

| Acronym | Name                                                                | Country                        | Ranking | Comments   |
|---------|---------------------------------------------------------------------|--------------------------------|---------|------------|
| GEM     | ISC-GEM Global Instrumental Earthquake Catalogue                    | United Kingdom                 | 1       | -          |
| ISC-GEM | ISC-GEM Global Instrumental Earthquake Catalogue (alias)            | United Kingdom                 | 2       | Alias GEM  |
| ISC-EHB | ISC-EHB                                                             | United Kingdom / United States | 3       | -          |
| EHB     | Engdahl, van der Hilst and Buland                                   | United States                  | 4       | -          |
| ISC     | International Seismological Centre                                  | United Kingdom                 | 5       | -          |
| ISC1    | International Seismological Centre (alias)                          | United Kingdom                 | 6       | Alias ISC  |
| ISCJB   | International Seismological Centre                                  | United Kingdom                 | 7       | -          |
| NEIC    | National Earthquake Information Center                              | United States                  | 8       | -          |
| NEIS    | National Earthquake Information Service                             | United States                  | 9       | Alias NEIC |
| PDE     | Preliminary Determination of Epicentres                             | United States                  | 10      | Alias NEIC |
| USCGS   | United States Coast and Geodetic Survey                             | United States                  | 11      | Alias NEIC |
| CGS     | Coast and Geodetic Survey of the United States                      | United States                  | 12      | Alias NEIS |
| USGS    | United States Geological Survey                                     | United States                  | 13      | -          |
| GS      | U.S. Geological Survey                                              | United States                  | 14      | Alias USGS |
| GM      | U.S. Geological Survey                                              | United States                  | 15      | Alias USGS |
| GCMT    | The Global CMT Project                                              | United States                  | 16      | -          |
| HRVD    | Harvard University                                                  | United States Mainland         | 17      | Alias GCMT |
| HRVD_LR | Department of Geological Sciences, Harvard University               | United States Mainland         | 18      | Alias HRVD |
| CSEM    | Centre Sismologique Euro-Méditerranéen (CSEM/EMSC)                  | France                         | 19      | -          |
| IDC     | International Data Centre, CTBTO                                    | Austria                        | 20      | -          |
| MOS     | Geophysical Survey of Russian Academy of Sciences                   | Russian Fed.                   | 21      | -          |
| BJI     | China Earthquake Networks Center                                    | China                          | 22      | -          |
| GFZ     | Helmholtz Centre Potsdam GFZ German Research Centre For Geosciences | Germany                        | 23      | -          |
| IRIS    | IRIS Data Management Center                                         | United States                  | 24      | -          |
| EIDC    | Experimental (GSETT3) International Data Center                     | United States                  | 25      | -          |
| IASPEI  | IASPEI Working Group on Reference Events                            | United States                  | 26      | -          |

Table 2.2. List of main agencies contributing to the ISC Bulletin and the ranking assigned to them herein.

Agencies or sources were classified as "regional" when their coverage was related to a region of the world other than a country. Finally, all other agencies providing estimates at the country-level were classified as "local". For each country, they were ranked according to their relevance. Whenever the agencies were not particularly known at the international level and it was, thus, not possible to determine their relevance, the information provided within

the ISC website regarding their activity and level of contribution was used as a supplementary criterion. Whenever there was an obvious national organization, this was selected as the most relevant for the country, unless it was already classified as a main agency, as main agencies were given priority over local ones. Well-established and well-instrumented local networks were ranked next, followed by national and seismic laboratories, as well as state or provincial level agencies. Universities and temporary experiments were considered last. The list of all contributing agencies and their ranking within each country or region can be found in Appendix II.

In order to determine the hierarchy of agencies to adopt for each event, average epicentral coordinates were calculated from all location estimates. These average coordinates were compared against bounding boxes for countries (or separate offshore regions), obtained from Nearby UK (see Web References) and slightly modified for this work. Given that bounding boxes are rectangles that contain the whole area of each country, it is perfectly common for them to overlap and for an epicentre to fall within more than one country. Neighbouring countries were considered as well, neighbours being defined as those countries whose bounding boxes intersect in any way the bounding boxes of the countries in which the epicentre is directly contained. A first round of listing countries was carried out dilating the bounding boxes by 70 km, acknowledging that an earthquake occurring in the border between two countries might be at risk of not being considered within all relevant countries if the bounding box was kept at the exact most extreme coordinate of the country profile. A second round of selection was carried out dilating the bounding boxes by 500 km, with the purpose of further adding countries to the list, in case no estimation from closer agencies was found first. This was prompted by the observation of cases for which no location or magnitude had been selected due to the epicentre falling far enough from a relevant agency. The ranking of countries was nevertheless carried out so that countries in which the epicentre is contained appear first (primary countries, hereafter), followed by neighbours identified with the 70-km dilation (70km-neighbours, hereafter), and finally followed by neighbours identified with the 500 km dilation (500km-neighbours, hereafter). The 70 km were selected as the epicentral distance for which the IPE of Allen et al. (2012) estimates a Modified Mercalli Intensity of IV for a hypothetical zero-depth M5.5 earthquake (*i.e.* worst possible conditions in our range).

Local agencies corresponding to each country were ranked with this criterion in mind. The agencies from primary countries and 70km-neighbours were ranked going first by ranking and then by country. As an example, if country A had agencies A1, A2 and A3, country B had agencies B1 and B2, and country C had agencies C1, C2 and C3, the final hierarchy was A1, B1, C1, A2, B2, C2, A3, C3. Then, the same logic was applied to the agencies from the 500km-neighbours, which were ranked after the former. Within the primary countries, 70km-neighbours and 500km-neighbours, countries were ranked in no particular order.

Figure 2.15 shows, as an example, the primary countries and 70km-neighbours for a hypothetical epicentre located in Groningen. The red rectangles are the bounding boxes of the Netherlands and Germany, the two primary countries, the larger ones corresponding to the 70-km dilation, and the smaller ones being their un-dilated counterparts. The yellow rectangles are the 70-km dilated bounding boxes of the 70km-neighbours. As can be

observed, they intersect either the 70-km bounding box of the Netherlands or that of Germany, condition for which they are classified as neighbours. The 500km-neighbours are defined in a similar fashion. The final list of relevant countries (and offshore regions separated from the mainland) for this hypothetical earthquake would be (in order of consideration):

- Primary countries: Germany, the Netherlands.
- 70km-neighbours: Austria, Belgium, Croatia, Czech Republic, Denmark, France, Hungary, Italy, Liechtenstein, Luxembourg, Poland, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom.
- 500km-neighbours: Canada, Albania, Andorra, Belarus, Bosnia-Herzegovina, Bulgaria, Estonia, Greece, Isle of Man, Kosovo, Latvia, Lithuania, Macedonia, Moldova, Montenegro, Norway, Romania, Russia, San Marino, Serbia, Spain, Turkey, Ukraine, Finland, Greenland, Ireland, Portugal, Algeria, Faroe Islands, Iceland, Libya, Malta, Morocco, Tunisia, United States Mainland, United States Alaska.



Figure 2.15. Example of determination of relevant countries for the hierarchization of local agencies for a hypothetical epicentre located in Groningen.

While it is acknowledged that the list of 500km-neighbours might seem an exaggeration in terms of how distant to the epicentre some of these countries are, it is noted that it is not very likely that an event does not have any origin or magnitude estimate from any of the primary countries or the 70km-neighbours. The 500km-neighbours were incorporated because it was observed that in some cases of events that occurred in islands, the estimate of the primary country may not satisfy other criteria (magnitude scale, availability of depth

information), and the only other estimate was from a neighbouring country that was relatively far, but was still the closest to the event. Considering the list of countries in sequence allowed to make sure that the most relevant countries were taken into consideration first. The list of local agencies under consideration for this example would be (in order of hierarchy, and only showing the first ten):

- BGR: Bundesanstalt für Geowissenschaften und Rohstoffe (Germany)
- DBN: Koninklijk Nederlands Meteorologisch Instituut (Netherlands)
- VIE: Zentralanstalt für Meteorologie und Geodynamik (Austria)
- UCC: Royal Observatory of Belgium (Belgium)
- ZAG: Seismological Survey of the Republic of Croatia (Croatia)
- PRU: Geophysical Institute, Academy of Sciences of the Czech Republic (Czech Republic)
- DNK: Geological Survey of Denmark and Greenland (Denmark)
- LDG: Laboratoire de Détection et de Géophysique/CEA (France)
- KRSZO: Geodetic and Geophysical Reasearch Institute, Hungarian Academy of Sciences (Hungary)
- ROM: Istituto Nazionale di Geofisica e Vulcanologia (Italy)
- ...

It is acknowledged that, within the 50km-neighbours in the example above, the hierarchy could be improved. However, any kind of automatic refinement is likely to improve the situation for some cases and make it worse for some others. It is clear that the determination of how many countries and which countries are considered for each event by means of this method is not exact, as it strongly depends on the size and shape of the countries surrounding the epicentre. The method is, nevertheless, deemed sufficient for the purpose of this work.

The next step consisted of merging the selected events with the WPG16v3b catalogue. First, events in the latter for which depth values are not available were purged (see Appendix I), and events within the time window of interest were selected. After merging, declustering was carried out using the algorithm of Gardner & Knopoff (1974), as implemented in the OpenQuake Hazard Modeller's Toolkit (Weatherill, 2014), with a Gardner & Knopoff (1974) window and the same time span considered for both foreshocks and aftershocks. As the most commonly used declustering methods, and this one in particular, do not include depth in their algorithms, a small modification was introduced for this to be the case. Consequently, the distance window was not applied to the horizontal distance between epicentral coordinates but to the distance in three-dimensional space between the hypocentres.

As a result of declustering, each event was assigned two new parameters: a flag that indicates if it is a foreshock (-1), a main shock (0) or an aftershock (1), and an integer that indicates the cluster to which it belongs, which is zero if the event does not belong to any cluster.

Finally, events were filtered according to the depth criterion defined in Table 2.1. As this criterion is magnitude-dependent, the filtering was carried out considering each magnitude-depth pair, taking the opportunity to narrow down the magnitude range to that of interest, *i.e.* $4.0 \le \mathbf{M} \le 5.5$ , and the overall database to the final 15 years between 1<sup>st</sup> July 1999 and 30<sup>th</sup> June 2014.

To sum up, an event that was originally in the ISC Bulletin and not in the WPG16v3b catalogue may not be part of the final set of events to add to WPG16v3b because of any of the following reasons:

- The event had no magnitude estimates that used any of the selected scales (M,  $M_L$ ,  $M_s$ ) and whose value was in the range of interest.
- The location associated with the accepted magnitudes did not have information on depth.
- The depth did not comply with the maximum depth criterion defined in Table 2.1.
- No main agency or relevant local agency had reported estimates for the event.

#### 2.7. Resolution of Specific Issues

Alongside the general procedure described above, a series of smaller challenges needed to be addressed along the way.

#### 2.7.1. Magnitude Estimates with Two Authors

Conventions to specify authors of magnitude estimations within the ISC Bulletin have evolved with time. There are several earthquakes from the years 1996, 1997 and 1998 for which certain magnitude estimates are assigned two authors. In most cases, the first author is a local agency, while the second one is the United States National Earthquake Information Center (NEIC). While no explanation has been found in the documentation regarding the meaning of this double-authorship, the website of the Advanced National Seismic System (ANSS) Composite Earthquake Catalogue indicates that NEIC sometimes incorporates data from different sources, and enumerates a series of agencies. Within these it is possible to find several of the agencies mentioned in the years 1996-1998 in the ISC Bulletin for these double-authorship cases, which are not listed within the contributing agencies of the ISC. This suggests that magnitudes with double-authorship have been estimated by the first author, and endorsed by the second one. This interpretation was adopted herein, and the first author was consequently adopted as the one and only author of each magnitude estimation. It is worth noting that, in many cases, these magnitude estimations were associated with origin estimations of the second author, which were kept this way (no double-authorship was observed for origins).

#### 2.7.2. Repetition of Magnitude Scale–Author Combinations

There are events for which there exist magnitude estimates with the exact same scale and exact same author associated with the exact same origin. More of these cases are artificially generated due to the use of upper/lower case letters indistinctively, as explained above (*e.g.*,  $M_L=M_I=m_I$ ). These repetitions of magnitude scale-author combinations were addressed by means of the following criteria:

- If the magnitude estimates include the number of stations used for their determination, the estimate with the largest number of stations was selected.
- If there is more than one magnitude estimate with the same (maximum) number of stations, one of them was randomly selected.
- If some estimates had numbers of stations and some did not, the latter were treated as having lower numbers of stations than the former.
- If the numbers of stations were not available, one estimate was randomly selected.

#### 2.7.3. Several Origins with Same Magnitude Scale–Author Combinations

As explained above, the hierarchy of agencies was first tested within the magnitude estimates. Whenever a certain combination of magnitude scale and author existed for more than one origin estimate, the hierarchy was then tested within the origins as well.

#### 2.7.4. Identification of Events Already in WPG16

As the comparison of different catalogues to identify events present in both is not a trivial task, this step was tackled with a combination of strategies, with the aim of minimizing the number of misclassified events.

For the period between 1<sup>st</sup> July 1996 and 30<sup>th</sup> June 2017, WPG16v3b contains events from five different sources: ISC, NEIC, EHB, ISC-GEM and GCMT. The first three preserve the event IDs from the ISC Bulletin, while this is not guaranteed a-priori for ISC-GEM and certainly not always the case for GCMT. Events from WPG16v3b whose original main source was ISC, NEIC or EHB were first compared against all events retrieved from the ISC Bulletin in terms of event IDs and origin IDs. At the time at which the WPG16v3b catalogue was compiled, the ISC Bulletin had only revised events until 31<sup>st</sup> May 2014. At the time of carrying out the merging of WPG16v3b and the ISC Bulletin, June 2014 and July 2014 have been revised as well. This means that WPG16v3b only contains events whose main agency is ISC until 31<sup>st</sup> May 2014, while later events come from either NEIC (albeit retrieved from the ISC Bulletin) or GCMT. It was thus observed that several events that were originally enumerated by the ISC Bulletin for June and July 2014, and were included in WPG16v3b, had been modified, eliminated or merged at the time of the analysis. It was also noted that, even if not fully reviewed, events from August 2014 whose main origins were NEIC or GCMT had also been modified, even if a direct calculation by the ISC was not available yet. As the merging or elimination of events implies the disappearance of some event IDs, the

comparison was carried out also in terms of origin IDs, which are preserved even when events originally identified as separate are merged as being one unique event.

Whenever it was found that one event ID from WPG16v3b could be linked to more than one event from the most updated query of the ISC Bulletin, or that one event from the latter could be linked to more than one event from WPG16v3b, the event/s from WPG16v3b were eliminated, and the corresponding ones from the ISC Bulletin were retrieved instead, under the philosophy that these events appear to require an update. When, on the contrary, a unique relation between an event from WPG16v3b and an event from the ISC Bulletin could be established, the event from WPG16v3b was kept.

Events from WPG16v3b and the ISC Bulletin that remained unmatched after this first analysis were compared in terms of time and space, using windows of 60 seconds and 100 km.

As it was noted that some events from WPG16v3b whose original source were the ISC-GEM or GCMT catalogues did preserve event IDs from the ISC Bulletin, the comparison in this case was carried out in two stages. Firstly, event IDs from one and other were matched. Whenever the event ID was found in both, an additional check was executed to verify that the two events were sufficiently close in time and space, using the same 60-second and 100-km windows as before. This was done to prevent an unintended matching of event IDs to occur by accident for events that were not actually the same. Events that remained unmatched after this first round were then compared just in terms of the time and space windows, irrespective of their event IDs.

Regarding the uniqueness of event IDs in the ISC Bulletin it was noted that, for the events retrieved within this work, around 900 that have occurred about one decade apart had repeated event IDs. In particular, this is observed for events happening in 1997 through 2001, whose event IDs can be found again in 2010, the reason being unknown. This was, however, no problem for the comparison of the WPG16v3b catalogue and the ISC Bulletin, as the comparison was carried out on a monthly basis.

#### 2.7.5. Flagging of (Potentially) Induced Earthquakes

The toolkit published alongside the paper of Weatherill *et al.* (2016) contains a feature to flag potentially induced earthquakes if their comments include a series of keywords related to anthropogenic activities. The keywords used herein were "geothermal", "reservoir", "mining", and "anthropogenic". Just like for the case of filtering with rejection keywords, this classification may not be perfect.

All events added from the ISC Bulletin were assessed and flagged accordingly using this tool. Events already present in WPG16v3b were assessed in a similar fashion. Each of them was looked up within the ISC Bulletin and the toolkit was used to carry out the classification. Events whose main sources were ISC, NEIC or EHB were identified directly by means of their event ID, while those from the ISC-GEM catalogue and GCMT were identified following

the double-step check used in Section 2.7.4 based on event ID and proximity in time and space.

#### 2.7.6. Manual Modification of Outliers

As explained before, the volume of data involved in the compilation of this database does not allow for manual processing of individual events in a large scale. However, it was not always possible to find straightforward algorithmic solutions whenever a particular case was observed. In the various visual inspections of the results obtained, two events were identified as problematic, as they appeared as having magnitudes 9.8 and 9.9. The two original reports from the ISC Bulletin are shown in Figure 2.16. As can be observed, it is very likely that these large magnitude estimations be some kind of error from the contributing agencies. Due to the adopted hierarchy of magnitude scales, it was these two large values (9.8 and 9.9) that were being selected to represent each event. The two were manually modified to be 4.0 and 2.2, respectively, moving on in the hierarchy to adopt  $M_L$  instead of  $M_s$ . In the future, the processing of data from the ISC Bulletin could be modified to first eliminate any obvious outlier magnitude values like the ones shown herein by comparing all magnitude estimates for each event. Such a solution would need to account for the dispersion that can be observed between different magnitude scales (see Section 2.5).

| Event 9514154 Sulu   | Sea     |              |           |      |      | test of test set and |                   |       |            |        |          |
|----------------------|---------|--------------|-----------|------|------|----------------------|-------------------|-------|------------|--------|----------|
| Date Time            | Err     | RMS Latitude | Longitude | Smaj | Smin | Az Depth             | Err Ndef Nsta Gap | mdist | Mdist Qual | Author | OrigID   |
| 2006/09/10 04:26:33. | . 61    | 9.6140       | 121.9610  |      |      | 9.0                  |                   |       |            | MAN    | 8182061  |
| Magnitude Err Nsta   | Author  | OrigID       |           |      |      |                      |                   |       |            |        |          |
| mb 2.4               | MAN     | 8182061      |           |      |      |                      |                   |       |            |        |          |
| ML 4.0               | MAN     | 8182061      |           |      |      |                      |                   |       |            |        |          |
| MS 9.8               | MAN     | 8182061      |           |      |      |                      |                   |       |            |        |          |
| Event 610730892 Cold | ombia   |              |           |      |      |                      |                   |       |            |        |          |
| Date Time            | Err     | RMS Latitude | Longitude | Smaj | Smin | Az Depth             | Err Ndef Nsta Gap | mdist | Mdist Qual | Author | OrigID   |
| 2015/02/16 12:33:31. | 50 1.31 | 0.500 4.0820 | -76.3130  | 2.6  | 3.4  | -1 131.3             | 5.8 19 96         |       |            | RSNC   | 08575401 |
| Magnitude Err Nsta   | Author  | OrigID       |           |      |      |                      |                   |       |            |        |          |
| ML 2.2               | RSNC    | 08575401     |           |      |      |                      |                   |       |            |        |          |
| ms 9.9               | RSNC    | 08575401     |           |      |      |                      |                   |       |            |        |          |

Figure 2.16. Two events from the ISC Bulletin with unusual magnitude values.

#### 2.7.7. Potentially Duplicated Earthquakes

Location of earthquake sources in time and space is not a trivial task. A quick look through the ISC Bulletin reveals how variable the estimates from different agencies can be. Differences of a few tens of seconds and several tens of kilometres for different estimates of the same event are not uncommon. As explained in the website of the ISC, before the Bulletin is reviewed (something that happens around two years after the time at which the earthquakes occurred) the process of grouping information received from all the contributing agencies is automatic. Depending on scores assigned to the different hypocentral locations as a function of the phase data that gave rise to them, as well as other parameters, groups of origins are created, merged or split. As a result, it is possible that one event be reported as two separate events.

The extent to which this can happen becomes clear when given the chance to compare older and newer versions of the ISC Bulletin, as occurred along the duration of this work, or

when looking at events that have been studied in detail. For example, at the time of writing (November 2017), the **M**7.9 Gorkha (Nepal) earthquake of  $25^{\text{th}}$  April 2015 appears reported as two different events with IDs 607208674 and 610587872, each of which contains 17 and 3 origins. Moreover, 16 of the 17 origins of event 607208674 indicate that the earthquake started around 06:11:20 UTC, while one (OrigID 08495668) says 06:45:23 instead. This is clearly an error, but not all cases are as extreme and easy to identify as this one.

The **M**7.9 Gorkha earthquake, and all earthquakes after 31<sup>st</sup> July 2014 in general, have not been reviewed to elaborate the Reviewed ISC Bulletin yet (at the time of the analysis). When comparing the ISC Bulletin against the WPG16v3b catalogue, note was taken of events that were part of the latter but could not be found in the former. In some cases, this is due to some events being repeated in the WPG16v3b catalogue itself. In others, the events simply cannot be found anymore, because of the version of the ISC Bulletin used to compile WPG16v3b being older than the one used herein (downloaded on 25<sup>th</sup> August 2017). Having observed this reinforces the decision to consider only events up to 30<sup>th</sup> June 2014 for the final database, and using up to 30<sup>th</sup> June 2017 only for declustering purposes.

Errors in earthquake location can be originated in a variety of reasons, the most relevant being the difficulties associated with the accurate picking of arrival times in the waveforms and the limitations of the travel-time models of the Earth and, in particular, the upper mantle, used for standard location procedures (Engdahl *et al.*, 1998; Richards *et al.*, 2006). This difficulty in identifying reports that correspond to the same event that the ISC faces is similar to that of comparing two different earthquake catalogues and trying to determine which events are present in both.

Visual inspection of the merged catalogue (i.e., the catalogue that results from the combination of WPG16v3b and the additional events from the ISC Bulletin selected as described in Section 2.6) suggested the possible presence of duplicate events. For this reason, a thorough study was carried out to try to identify these cases and make decisions with respect to them. A 100% conclusive determination of which events are duplicates of others and which are independent would only be possible by means of a complete reprocessing and analysis of the waveforms that were used to determine the origins of the seismic events. Besides requiring access to this information, this would be an extremely time-demanding task that is clearly outside the scope of this work. Moreover, the usual challenges associated with the location of earthquake sources would persist. In other words, this would be a complete research topic on its own. With this in mind, the methodology described in what follows aimed at trying to identify reasonable parameters for the automatic identification of duplicate events. The process needed to be automatic, as the amount of data involved makes it impossible for a manual one-by-one analysis to be carried out. Nevertheless, randomly selected events were subject to a visual inspection in order to assess the congruity of the results. It is clear that there can be false positives (*i.e.*, events identified as duplicates that were in reality two different events) and there can also be duplicates that are not caught by the algorithms. As a consequence, results should not be judged on a case-by-case basis but on their overall improvement of the merged catalogue.

First, a set of potential duplicate pairs of events was identified using pre-defined time and distance thresholds, which were selected based on predictions of significant duration of seismic events and distance windows commonly used for declustering. As only pairs of events pre-selected in this way were analysed further, the pre-selection criteria was set as loose as possible, but avoiding at the same time an unnecessary computational burden. If computational capacity was infinite, this step would be skipped and all possible pairs of events in the merged catalogue could be considered as potential duplicates. This logic is clearly extreme, as it is impossible to believe that events identified as happening years and thousands of kilometres apart are the same event, but it illustrates the need for defining a threshold.

The maximum magnitude that can be found in the merged catalogue corresponds to the **M**9.1 Tohoku (Japan) earthquake of 11<sup>th</sup> March 2011. According to the implementation of the models of Gardner & Knopoff (1974) and Grünthal (van Stiphout *et al.*, 2012) in OpenQuake (Pagani *et al.*, 2014), around 130 km would be a relevant distance within which to search for events associated with a **M**9.1 main shock. The model of Uhrhammer (1986) gives a much larger value of 540 km. As the present analysis aims at the identification of potentially duplicated entries in the database, this last value was discarded for being too large. While variations in the location of the epicentre of events can be in the order of tens of kilometres, it is extremely unlikely that they can reach the order of magnitude suggested by Uhrhammer (1986). The behaviour of the three models against magnitude is depicted in Figure 2.17.



Figure 2.17. Declustering distance windows according to three different models.

Two models for the prediction of the significant duration of earthquakes were used to set the time threshold: that of Bommer *et al.* (2009) and that of Afshari & Stewart (2016). For the former, a 0 km depth to the top of rupture was used, while for the model of Afshari & Stewart (2016) an unknown focal mechanism and location other than California or Japan were indicated. A  $V_{s30}$  value of 100 m/s was used in both cases. All these parameters were selected so as to obtain duration values that would cover a relevant proportion of events of the merged catalogue. As both predictive models were derived using events with

magnitudes up to M7.9, caution should be taken when analysing their output for M9.1. As shown in Table 2.3, the model of Bommer *et al.* (2009) predicts a longer duration right above the seismic source than 100 km away from it, which is physically impossible, while the model of Afshari & Stewart (2016) yields unrealistically long values. In view of the inapplicability of the models for this magnitude, the calculations were repeated for M7.9 and the values reported in Table 2.4 were obtained. A threshold of 120 seconds was finally adopted.

Table 2.3. Significant duration (5-95% of Arias intensity definition) predicted by different models for M9.1, V<sub>s30</sub>=100 m/s, and other parameters specific of each model.

| Distance | Model                             | Duration (s) | Duration (min) |  |
|----------|-----------------------------------|--------------|----------------|--|
| 0 km     | Bommer, Stafford & Alarcón (2009) | 89.4         | 1.49           |  |
| U KIII   | Afshari & Stewart (2016)          | 1353.3       | 22.55          |  |
| 100 km   | Bommer, Stafford & Alarcón (2009) | 41.4         | 0.69           |  |
|          | Afshari & Stewart (2016)          | 1380.5       | 23.01          |  |

Table 2.4. Significant duration (5-95% of Arias intensity definition) predicted by different models for **M**7.9,  $V_{s30}$ =100 m/s, and other parameters specific of each model.

| Distance | Model                             | Duration (s) | Duration (min) |
|----------|-----------------------------------|--------------|----------------|
| 0 km     | Bommer, Stafford & Alarcón (2009) | 36.0         | 0.60           |
| U KITI   | Afshari & Stewart (2016)          | 71.1         | 1.19           |
| 100 km   | Bommer, Stafford & Alarcón (2009) | 39.6         | 0.66           |
| TOO KITI | Afshari & Stewart (2016)          | 98.4         | 1.64           |

While having tried to follow a rational approach for their definition, the values selected herein are still arbitrary. The ideas behind the process followed to define them were:

- If two location estimates of the same event were further apart than 130 km, it would not even be possible to consider them part of the same cluster of events. If a distance larger than 130 km makes it unlikely for them to be part of the same cluster, it should make it even less likely for them to be the same event.
- Whether two estimates of the starting time of an event are too close or too distant is highly influenced by what the duration of the event is. If the event lasted 30 seconds, then two estimates that are 10 seconds apart might still correspond to the same event, while if the event lasted 3 seconds, a 10-second difference might be too large. With this in mind, the threshold of 120 seconds was chosen so that it would be very unlikely that one large event followed by another one could be mistaken by two estimations of the same event.

The 100 km used in Tables 2.3 and 2.4 are also arbitrary. The same 130 km defined above could have been used, but 100 km is the upper bound of applicability of the model of Bommer *et al.* (2009) and, ultimately, the difference between the results from the two is minimal. Bearing in mind that it is unlikely that large events not be well constrained and that they present an issue of potential duplicate events, the idea behind this value was to
consider the duration at a relatively maximum distance at which a local network operated by a local agency could have recorded the event under analysis.

As a first measure, potential duplicate pairs whose event ID was identical were assumed to be the same event. Only two cases like this were identified in the merged catalogue. The first, event ID 7432797 of 8<sup>th</sup> November 2004, was already present as two events in WPG16v3b. As the algorithms used to compare the latter with the ISC Bulletin and merge them does not explicitly check for duplicates within WPG16v3b, it was only at this stage that it was caught. The second event, event ID 13876558, was present as one event in WPG16v3b and was then added again from the ISC Bulletin. This was due to the code comparing WPG16v3b against the ISB Bulletin checking not only event IDs but also differences in distance and time when the main agency indicated in WPG16v3b is GCMT, for which the use of the same ID of the ISC Bulletin is not guaranteed, as is the case with this event. The time check was correct (12 seconds between the UTC of both instances of the event), but the distance between the two hypocentres (around 110 km) was slightly larger than the 100 km used for the verification. Both events, ID 7432797 and ID 13876558, were thus purged at this stage.

Each remaining potential duplicate pair was then assessed in detail, considering a series of possibilities. As shown in Figure 2.18, a first classification of cases was carried out on the basis of whether the two events can be found within the ISC Bulletin or not, as this determines whether or not the retrieval of origin times estimated by different agencies is possible. Whenever this information could be redeemed, the time ranges (understood as the period in time during which the event has been estimated to have started) for the two events were determined and compared against each other. The two overlapping was taken as an indication of potential duplication, as was the case when the time ranges expanded assuming that the largest variability in time estimations applied for both events overlapped as well. When none of these cases of overlapping occurred, the pair was then treated as if no information from the ISC Bulletin could be retrieved, and predictions of ground motion duration were used instead of the time ranges. Each of these steps are explained in detail in what follows.



Figure 2.18. Flowchart for identifying duplicate events.

The final two possible cases depicted in Figure 2.18, namely "time range-distance- $\Delta_{M}$ -prime criteria" and "duration-distance- $\Delta_{M}$ -prime criteria", refer to two sets of rules that differ mainly in the way that the time of occurrence of the earthquakes was analysed. As explained above, the expression "time range" makes reference to the minimum time period that contains all the estimates of starting times of an event. Representing it as a box, Figure 2.19 shows all the possible cases that can arise when comparing the time ranges for the two events. Assuming that the starting time selected to characterise each event (*i.e.*, the starting time within the merged catalogue) was older for event 1 than for event 2 (*i.e.*, the start of event 1 precedes the start of event 2), case A was impossible. While case B implies no overlap, a further possibility was analysed, as illustrated in Figure 2.20. The variability defined by the maximum time range of the two events was assumed to be applicable to both (*i.e.* it was assumed that there could be other time estimates that would cause the same variability in both). The median time of occurrence and a new extreme value resulting from the latter and half of the maximum time range were calculated for each event. If the resulting time ranges overlapped, they were treated as if their original time ranges had overlapped. Cases C and D in Figure 2.19 make reference to partial overlapping of the time ranges, while in E and F the time range of one event is completely contained within the other. Cases D and F appear to violate the condition that the start of event 1 precedes the start of event 2, but they do not, as the condition was applied to the one time estimate that was used to characterise each event in the merged catalogue, and not to the complete ranges of time estimates.



Figure 2.19. Possible cases of time ranges of the two events.

Whenever the time ranges were not available or did not overlap, the model of Bommer *et al.* (2009) was used to predict the 95%-of-Arias-intensity significant duration of the ground motion at 0 and 100 km from the fault rupture, using the largest of the two magnitude values,  $V_{s30}$  of 100 m/s (duration increases for decreasing values of  $V_{s30}$ ), and 0 km depth to the top of the rupture (duration increases for decreasing values of depth). The choice of  $V_{s30}$  and depth to the top of rupture was made so as to obtain the largest possible values of duration, while the two distances of 0 and 100 km were selected as representing the duration right above the epicentre and at a large distance from it. Figure 2.21 illustrates the order of

magnitude of significant durations that were obtained. The symbols  $\Delta t_0$  and  $\Delta t_{100}$  are used in what follows to make reference to the significant duration values at 0 and 100 km, respectively. Both values were compared against the difference between origin time estimates of the two events ( $\Delta t$ ) and used to define the criteria to identify duplicate events, as will be explained below.



Figure 2.20. Case of overlap of time ranges of the two events under the assumption that the maximum variability of the two applies to both.



Figure 2.21. 95%-of-Arias significant duration predicted by the model of Bommer *et al.* (2009):  $\Delta t_0$  (black line with circles) and  $\Delta t_{100}$  (grey line with squares) against magnitude, for V<sub>s30</sub> of 100 m/s and 0 km depth to the top of the rupture.

When the time ranges of the two events overlapped in any of the ways described earlier, or the difference between the origin time estimates fell within the limits defined by  $\Delta t_0$  and  $\Delta t_{100}$ , the final decision of whether the two events were the same or not was left in the hands of a series of three additional variables: the difference in magnitude, the distance between hypocentral coordinates, whether the two events had origin estimates by the same agencies or different ones, and whether one or both events had an estimate indicated as being the preferred solution for the ISC.

For events that have already been reviewed by the ISC (*i.e.* events older than 1<sup>st</sup> August 2014 at the time of elaborating this database), both events having a preferred solution

(tagged as #PRIME in the ISC Bulletin) suggests that they both had a certain level of credibility as separate events, and was thus used as a hint against the possibility of the two being duplicates of each other. If, on the other hand, one of the events has a preferred solution and the other one does not, it is more likely that they are indeed the same event, and that the estimates from the event without a #PRIME solution are less reliable than those of the other one. This criterion could not be applied to events that do not belong to the reviewed period, as the #PRIME tagging is clearly done automatically. Moreover, it was observed that, within the 252 months being studied herein to make up the merged catalogue, 33 do not have any #PRIME indication (all 24 months of 2004 and 2005, and some months of 2001, 2002 and 2003). As the ISC expresses that, if an ISC solution is reported for an event, it is the prime solution, events with ISC solutions were considered as having prime solutions, irrespective of whether this was explicitly indicated or not. Events without ISC solutions and without #PRIME tagging were assumed to not have a prime solution, even though this might not be necessarily true for the 33 months identified above. No explanation could be found within the ISC website regarding a possible change in tagging criteria during these months.

The criterion regarding whether the two events had origin estimates by the same agencies or different ones was set after observing that pairs of events that were obviously the same earthquake usually contained estimates authored by different agencies. This is logical, as each agency would have detected the earthquake once, but then the grouping of data from different agencies to make up the ISC Bulletin would have ended up splitting the whole set in two. In view of this, the two events having estimates from different agencies was taken as a sign of them being a duplicate (when all other criteria was met as well).

The difference in magnitude was calculated as the absolute difference between the magnitude values used to characterise each event in the merged catalogue, that is, not considering all magnitude estimates, as this would be complex in terms of volumes of data and variety of magnitude scales used. It is noted that, while events taken directly from WPG16v3b have a moment magnitude estimate, events taken directly from the ISC Bulletin can have either **M**, M<sub>s</sub> or M<sub>L</sub>, and the comparison carried out herein was carried out laying firmly on the assumption that **M**=M<sub>s</sub>=M<sub>L</sub> in the range of interest. The difference in magnitude  $\Delta_M$  so obtained was compared against a predefined threshold of 0.35 units. This threshold was selected by observing the standard deviations associated with the events in WPG16v3b for the period taken herein to compile the merged catalogue. As depicted in Figure 2.22 (note the logarithmic scale used for the vertical axis), an upper limit of 0.35 covers most of the events. While this is not conclusive in any way, it suggests that 0.35 might be a reasonable limit that allows for a plus/minus standard deviation in the magnitude estimates. Selection of larger values would increase the chances of concluding that two events are the same even when they are not.



Figure 2.22. Standard deviation of moment magnitude estimates of events in the WPG16v3b world catalogue for the period comprising (and including) July 1996 through December 2016.

The proximity of the hypocentres in space was evaluated in relation with the declustering windows defined by Gardner & Knopoff (1974), Grünthal (van Stiphout et al., 2012) and Uhrhammer (1986), as implemented in OpenQuake (Pagani et al., 2014) (Figure 2.17). Using the maximum of the two magnitude values, the maximum and minimum distance windows were identified and labelled D<sub>decl max</sub> and D<sub>decl min</sub>, respectively, and were used in combination with the other parameters to determine whether a pair of events was a case of duplication or not, as shown in Table 2.5. The three rows correspond to three possible cases related to time, while the three columns correspond to three possible cases in space. Within the former,  $\Delta t$  refers to the difference between the origin time estimates for the cases in which the events were not found in the ISC Bulletin, or those in which their time ranges did not overlap. If the time difference  $\Delta t$  was larger than  $\Delta t_{100}$  or if the distance between the two hypocentres **d** was larger than D<sub>decl max</sub>, it was assumed that both events were independent, irrespective of the other parameters. If, on the other extreme,  $\Delta t$  was smaller than  $\Delta t_0$  and the distance between the two hypocentres was smaller than D<sub>decl min</sub>, the two events were assumed to be the same. In all other cases, namely,  $\Delta t$  falling between  $\Delta t_0$  and  $\Delta t_{100}$  and **d** being smaller than  $D_{decl max}$ , or  $\Delta t$  being smaller than  $\Delta t_0$  and **d** being larger than  $D_{decl min}$  but smaller than  $D_{decl max}$ , a further check was carried out in terms of  $\Delta_M$  and #PRIME tagging: if  $\Delta_{M}$  was less than the 0.35 limit set earlier and at least one of the two events did not have a preferred (#PRIME) solution, then they were classified as being the same event, while if neither of these two criteria were fulfilled, they were kept as independent events.

|                                                     | 0 ≤ d ≤ D <sub>decl min</sub> | D <sub>declmin</sub> < d ≤ D <sub>declmax</sub> | d > D <sub>decl max</sub> |
|-----------------------------------------------------|-------------------------------|-------------------------------------------------|---------------------------|
| $0 \leq \Delta \mathbf{t} \leq \Delta \mathbf{t}_0$ | duplicated                    | decide based on $\Delta_M$ and #PRIME           |                           |
| Δt₀ < Δt ≤ Δt₁₀₀<br>or overlapping                  | decide based on               | $\Delta_M$ and #PRIME                           |                           |
| $\Delta t > \Delta t_{100}$                         |                               |                                                 | keep both                 |

Table 2.5. Criteria used to identify duplicate events.

Once the decision regarding whether to keep both events or treat them as one has been made, the need to define which of the two to keep arises. The answer to this was tackled differently depending on the case. If the time range of event 2 was contained within that of event 1, event 1 was kept, while event 2 was kept when its time range contained that of event 1. If the two time ranges overlapped partially, or overlapped only once the maximum observed variability was applied to the two events (Figure 2.20), or the comparison was made in terms of predicted durations of ground motion, the following criteria were applied:

- If both events were in the WPG16v3b catalogue, the one whose agency had priority over the agency of the other according to the criteria established by Weatherill *et al.* (2016) was selected.
- If one event was in the WPG16v3b catalogue but the other one was not, the one from WPG16v3b was kept.
- If neither of the two were in the WPG16v3b catalogue, but both could be found in the ISC Bulletin, the following criteria were applied in sequential order:
  - If event 1 had a preferred (#PRIME) solution and event 2 did not, event 1 was kept.
  - If event 2 had a preferred (#PRIME) solution and event 1 did not, event 2 was kept.
  - If neither of the two conditions above were satisfied, the one with the largest number of estimates was kept.
  - $\circ\,$  If none of the above were satisfied, one of the two events was randomly selected.
- If neither of the two were in the WPG16v3b catalogue or the ISC Bulletin, one of the two events was randomly selected.

# 2.8. Resulting Database

The world catalogue of WPG16v3 contains 404,971 events in the period 1<sup>st</sup> July 1996 - 31<sup>st</sup> December 2016 (the last day included). Of these, 215 lack information on depth and were consequently discarded, though without major consequences to the database, given that all of them can be found in the ISC Bulletin and were treated in the same way as all other events that are not part of WPG16v3b (for more details, refer to Appendix I). Of the remaining 404,756, 67 were identified as either not existing anymore (3) or needing an

update (64) from the ISC Bulletin, as per the procedure described in Section 2.7.4. These left 404,689 earthquakes to be taken directly from WPG16v3.

At the time of retrieving the information (25<sup>th</sup> August 2017), the ISC Bulletin contains 1,833,908 events satisfying the search criteria described in Section 2.6 for the period 1<sup>st</sup> July 1996 – 30<sup>th</sup> June 2017, 1,429,356 of which got classified as either not being in WPG16v3, or as required to update it. Of these, 712,071 ended up being added to those in WPG16v3, while the other 717,285 got discarded for lacking any origin and/or magnitude estimates that satisfy the criteria regarding magnitude scales, availability of depth information, and/or author being either a main global agency or a relevant local one.

The 404,689 events from WPG16v3b plus the 712,071 events added from the ISC Bulletin make up the merged catalogue of 1,116,760 events whose magnitude and depth distribution is shown in Figure 2.23. In order to understand the composition of the merged catalogue it is interesting to take a look at the same plot but with the events from WPG16v3b separated from those added from the ISC Bulletin. This is shown in Figure 2.24. From the plot on the left, it can be observed that WPG16v3b has its largest bulk of events in the range **M**4.5-5.0, while the number of events added from the ISC Bulletin decreases progressively as magnitude increases. Several points should be made in this respect. First, that the magnitude distribution of events of the merged catalogue is being influenced by the completeness of WPG16v3b. Second, that adding the events from the ISC Bulletin is not being able to sufficiently compensate this (reflected in the darker stripe of the range M4.5-5.0 being present in Figure 2.23), possibly due to the combined effect of the conversion of  $M_s$  and  $m_b$  into **M** to generate the WPG16v3b catalogue, and the addition of events with **M**, M<sub>s</sub> and M<sub>L</sub> from the ISC Bulletin without conversion. The plots on the right of Figures 2.4 and 2.5, which depict the conversion models used by Weatherill et al. (2016) to generate their catalogue, show that smaller numerical values of Ms and mb become larger numerical values of M. If similar conversion equations were used on the events added from the ISC Bulletin, the distribution of magnitudes shown in Figure 2.24 (right) would likely shift slightly to higher values, its extent depending on the proportion of events with either of the three scales (M, M<sub>s</sub> or M<sub>L</sub>). This confirms what was stated in Section 2.5 (and explained by means of Figure 2.7) regarding the decision of not converting  $M_s$  into **M** being conservative, as a smaller number of events in the range **M**4.0-5.5 is finally selected thanks to this decision. Figures 2.23 and 2.24 illustrate as well the effects of considering local agencies and M<sub>L</sub> in the elaboration of a world catalogue on its completeness.

While the discussion above is relevant to understand the origin of the data that will finally give rise to the final database, a series of modifications and filtering steps still followed. The two instances of earthquakes with magnitudes in the range 9.5-10.0 that can be observed in Figure 2.23 correspond to the two cases identified in Section 2.7.6, which were manually modified at this stage. The total number of events was reduced from 1,116,760 to 1,116,273 after identifying 487 duplicate events as per the procedure described in Section 2.7.7. Of these 487 cases, whose complete enumeration can be found in Appendix III, 44 correspond to the time period already covered by the Reviewed ISC Bulletin (pre-August 2014 in this work), while 443 correspond to events that have not been reviewed by the ISC yet. This significant larger number of unreviewed events was expected, as the grouping of data is

carried out automatically before revision. 147 of the 443 pairs were identified using the duration-distance- $\Delta_M$ -prime criteria, and 340 were identified by means of the time range-distance- $\Delta_M$ -prime criteria (Figure 2.18).



Figure 2.23. Magnitude-depth distribution of the 1,116,760 events in the merged catalogue, spanning from 1<sup>st</sup> July 1996 through 30<sup>th</sup> June 2017. Dashed lines enclose magnitude and depth range of interest. Grey scale indicates number of events.



Figure 2.24. Magnitude-depth distribution of the 404,689 events from WPG16v3 (left) and the 712,071 events added from the ISC Bulletin (right), for the period spanning from 1<sup>st</sup> July 1996 through 30<sup>th</sup> June 2017. Dashed lines enclose magnitude and depth range of interest. Grey scale indicates number of events.

The 1,116,273 events of the merged catalogue were then declustered and filtered according to the magnitude-depth criteria defined in Table 2.1 and the final time interval of interest (1<sup>st</sup> July 1999 – 30<sup>th</sup> June 2014). Out of the 1,116,273 events, 871,169 corresponded to the time

interval of interest. Of these, 62.7% lay outside the magnitude range of interest. Of the 324,578 events within the range **M**4.0-5.5, 68.8% were filtered out for not complying with the depth criteria defined in Table 2.1, representing a 25.6% of the total in the time interval of interest. After all this filtering, 101,248 events remained, 32,842 of which were classified as main shocks. Figure 2.25 shows this decomposition. Of all the events that occurred between 1<sup>st</sup> July 1999 and 30<sup>th</sup> June 2014, only 11.6% were kept. The percentage of events kept and discarded changes slightly by month, as shown in Figure 2.26. It is interesting to note that the percentage of events discarded for not complying with the depth criteria seems to decrease in time. It is possible that this be related to the USGS having changed their criteria to fix depths at 10.0 km instead of 33.0 km when the depth cannot be reliably computed, as explained in their website.









88.1% of the 101,248 events from the filtered merged-catalogue were taken directly from WPG16v3b, while the remaining 11.9% were added from the ISC Bulletin. It is interesting to notice how the proportion changes after the filtering. When merging the catalogues, 36.2% corresponded to WPG16v3b events, while the remaining 63.8% were added from the ISC Bulletin. This change is due to the largest amount of added data corresponding to

magnitudes below 4.0 that are not considered to build the final database. Figure 2.27 shows that the proportion of events taken from each source stays, in general, relatively stable in time. A more detailed decomposition of the sources of the events in the filtered merged catalogue at this stage is shown in Table 2.6, and their location is depicted in Figure 2.28. Flagging of induced events was carried out as described in Section 2.7.5.



Figure 2.27. Proportion of events taken from WPG16v3b (black) and the ISC Bulletin (light grey) for each month in the final database (before applying exposure criteria).

Table 2.6. Number of events in the database for the period 01/07/1999-30/06/2014, with  $4.0 \le M \le 5.5$ , and depths constrained by Table 2.1. Percentages make reference to the total 101,248 (All Events) and 32,842 (Only Mainshocks) events.

| <b>Sourco</b> | Induced        | All E   | vents  | Only Mainshocks |        |  |
|---------------|----------------|---------|--------|-----------------|--------|--|
| Source        | induced        | Number  | %      | Number          | %      |  |
|               | Induced        | 359     | 0.35%  | 81              | 0.25%  |  |
| WPG16v3b      | Not Induced    | 88,806  | 87.71% | 27,977          | 85.19% |  |
|               | Not Classified | 53      | 0.05%  | 32              | 0.10%  |  |
| ISC Bullatin  | Induced        | 15      | 0.01%  | 7               | 0.02%  |  |
| ISC Bulletin  | Not Induced    | 12,015  | 11.87% | 4,745           | 14.45% |  |
| Total         |                | 101,248 | -      | 32,842          | -      |  |

Having defined the database of upper crustal events of magnitude **M**4.0-5.5 for the time period of interest, the final step for the building of the database was to establish which of these events occurred sufficiently close to the population and the built environment to pose a threat, which was done according to the procedure described in Section 2.2. As shown in Table 2.7, the total number of events reduced from 101,248 to 35,654, that is, to around one third. Similarly, the subset of main shocks reduced from 32,842 to 11,968. Figure 2.29 shows that a large number of the events that were rejected according to the exposure criterion occurred within seas and oceans, as would be expected. Figures 2.30 and 2.31 show the events that make up the final database, separated into main shocks, in the former, and fore-and aftershocks, in the latter.



Figure 2.28. Database of 101,248 events obtained for the period 01/07/1999-30/06/2014, with  $4.0 \le M \le 5.5$ , and depths constrained by Table 2.1.

Table 2.7. Number of events in the database for the period 01/07/1999-30/06/2014, with 4.0≤**M**≤5.5, depths constrained by Table 2.1, and either maximum population density greater than 300 people/km<sup>2</sup> or cumulative population count larger than 2,500 people in areas with MMI≥IV. Percentages make reference to the total 35,654 and 11,968 events.

| Sourco       | Induced        | All E    | vents  | Only Mainshocks |        |  |
|--------------|----------------|----------|--------|-----------------|--------|--|
| Source       | induced        | Number % |        | Number          | %      |  |
|              | Induced        | 355      | 1.00%  | 78              | 0.65%  |  |
| WPG16v3b     | Not Induced    | 31,676   | 88.84% | 10,460          | 87.40% |  |
|              | Not Classified | 4        | 0.01%  | 4               | 0.03%  |  |
|              | Induced        | 14       | 0.04%  | 7               | 0.06%  |  |
| ISC Builetin | Not Induced    | 3,605    | 10.11% | 1,419           | 11.86% |  |
| Total        |                | 35,654   | -      | 11,968          | -      |  |



Figure 2.29. Events of the world catalogue of Figure 2.28 that do not satisfy the population exposure criteria. Colour scale depicts total number of people exposed to MMI≥IV. Left: less than 1,000 people. Right: more than 1,000 people but less than 2,500 people.



Figure 2.30. The 11,968 mainshocks of the database for the period 01/07/1999-30/06/2014, with 4.0≤**M**≤5.5, depths constrained by Table 2.1, and either maximum population density greater than 300 people/km<sup>2</sup> or cumulative population count larger than 2,500 people in areas with MMI≥IV. The three events marked are used as examples in Figure 2.32.



Figure 2.31. The 23,687 foreshocks and aftershocks of the database for the period 01/07/1999-30/06/2014, with  $4.0 \le M \le 5.5$ , depths constrained by Table 2.1, and either maximum population density greater than 300 people/km<sup>2</sup> or cumulative population count larger than 2,500 people in areas with MMI $\ge$ IV.

While earthquakes coinciding with seas and oceans were expected to be filtered out of the catalogue, the presence of some of the events of the final database can be surprising. Three examples of such events are marked in Figure 2.30. They can call the reader's attention for being located in remote areas but still complying with the exposure criterion. Figure 2.32 demonstrates that their inclusion in the database is no error, but simply a consequence of them being borderline cases. In the case of ID 13530522, in northern Canada, the total population count is 858 people, clearly below the 2,500 people threshold, but the maximum density is 1,146 people/km<sup>2</sup>, significantly above the 300 people/km<sup>2</sup> threshold, albeit being extremely localised, as shown in Figure 2.32 (left). The situation is very similar to that of ID 12695886, in Greenland (Figure 2.32, centre). For ID 17339413, near Easter Island, the situation is the opposite, as the maximum density is 33 people/km<sup>2</sup> and does not overcome the threshold, while the total count of population exposed is 5,514.



Figure 2.32. Contour lines of MMI values predicted with the model of Allen *et al.* (2012) for three earthquakes taken as examples. Background colour scale indicates population density in people per square kilometre (data from GPW v4.0, CIESIN, 2016).

# 3. WORLD DATABASE OF SMALL-TO-MEDIUM MAGNITUDE EVENTS WITH CONSEQUENCES FOR THE POPULATION

# 3.1. Description and Methodology

The compilation of a database of crustal small-to-medium magnitude earthquakes carried out in the previous chapter would be meaningless if it was not possible to know which of those events caused casualties and/or damage to the built environment. For this reason, a fundamental part of this work consisted on the generation of a database of small-to-medium magnitude events that have been reported to have consequences for the population.

It could be thought that the natural procedure for the generation of this second database would be to go one by one the events identified in Chapter 2 and assess whether reports for damage or casualties exist for each of them. However, there are two main reasons for which this may not be the most efficient strategy. Firstly, because the number of events identified in the previous chapter for the time interval of interest is very large. Secondly, because the 11,968 main shocks or the 35,654 total events have undergone two filtering processes, one based on depth and magnitude, and the other based on an estimation of the population exposed. Several points should be made with respect to the latter. While the criteria used to define which events are kept and which events are discarded have been defined rationally, they are still, to a certain extent, arbitrary. The hypothetical example of keeping a M5.1 at 24 km depth but discarding a M5.1 at 26 km depth exemplifies the issue. Moreover, depth is the most difficult parameter to constrain of an earthquake, and is thus linked to a large uncertainty. It is possible that the M5.1 at 26 km depth event may have been located at 18 km, and the M5.1 at 24 km occurred, in fact, at 32 km instead. With this in mind, the most logical thing would be not to focus on the final 11,968 or 35,654 events, but to consider all 871,169 events in the time interval of interest. Going back to the first point, going one by one 871,169 events is, undoubtedly, a colossal task.

For these reasons, the database of earthquakes with consequences for the population was compiled from various sources that report on earthquake damage and casualties, and the events were later reconciled with their corresponding entries in the database of Chapter 2. The main sources of information for this endeavour were the following:

- The International Events Database (referred to as well as the Emergency Events Database) of the Université Catholique de Louvain, Belgium (EM-DAT in what follows).
- The Signigicant Earthquake Database of the National Centers for Environmental Information of the National Oceanic and Atmospheric Administration (NOAA) of the United States (NOAA in what follows).
- The EXPO-CAT catalogue of human population exposure and the PAGER-CAT losses database of Allen *et al.* (2009).
- The earthquake catalogue of the United States Geological Survey (USGS).
- The ISC Bulletin.
- Earthquake-Report.com and its associated Damaging Earthquakes Reports.

- Scientific journal papers and reports.
- ReliefWeb, the digital service of the United Nations Office for the Coordination of Humanitarian Affairs (OCHA).
- Online newspapers and news agencies.
- Online blogs, personal websites, etc.

The range of magnitudes of interest was, of course, the same as in Chapter 2, that is, **M**4.0-5.5. However, given that in many of the sources it is not clear what kind of magnitude is being reported, and there is variability in the magnitude estimates made by different authors/agencies even when using the same scale, the limits were made flexible during the compilation phase. Then, if more reliable information was found and the magnitude was clearly outside of the **M**4.0-5.5 range for some events, they were eliminated. Magnitudes close to the lower and upper bounds (*e.g.*, **M**3.8, **M**5.6) were kept, as the final magnituderange filtering was carried out in terms of the magnitude and depth values contained in the world database of crustal earthquakes of Chapter 2. Following a similar logic, location and magnitude values were usually retrieved from the USGS catalogue, the ISC Bulletin or relevant local agencies if readily available, as the final values would still correspond to those defined in Chapter 2.

In order to include an event in the database, at least one of the following criteria had to be met:

- At least one death or serious injury.
- At least five slightly injured.
- At least one building with major damage.
- Damaged infrastructure.
- At least five buildings with minor damage.
- Reports exist of damage claims in terms of money (of at least a few thousand USD).
- Reports exist of economic losses (measured or estimated).

As in many cases it is difficult to find exact numbers, expressions such as "some" and "a few" in reference to damaged/destroyed buildings or casualties were considered enough to include the event as well. The event could be later excluded if:

- It was part of an earthquake series with any shocks above **M**5.5 and it is not unambiguously clear which shocks caused the reported damage.
- The damage and/or casualties were not a direct or indirect result of the earthquake. For example, explosions and mine collapses get often reported as earthquakes, and the casualties and losses related to them are usually a consequence of the explosion or the collapse itself and not of the earthquake that followed. These cases were excluded. However, if the earthquake was the cause of the damage, even if one of the consequences was the collapse of a mine, then it was included. Cases in which the damage or casualties were due to phenomena triggered by the earthquakes (*e.g.*, landslides) were included.

Regarding the first exclusion criterion, it is noted that it can also happen that an earthquake is part of a series for which all the shocks are smaller than M5.5 and it might still not be clear how the damage evolved with the different shocks. Whenever situations like this have been identified, note has been taken that the consequences might refer to more than one event.

The kind of information that was sought for the compilation of the database was the following:

- City/province/state/small administrative subdivision, Country and Region in which the event occurred and/or where the consequences were observed.
- Date and time (UTC) of occurrence.
- Hypocentral coordinates (latitude, longitude, depth).
- Magnitude:  $\mathbf{M}$ ,  $M_L$ ,  $m_b$  and/or  $M_s$ .
- Whether the event was part of a seismic series/swarm.
- Maximum intensity (MMI).
- Focal mechanism.
- Nature of the event (induced or tectonic).
- Population exposed to the ground shaking.
- Total number of people affected.
- Total number of deaths.
- Number of deaths due to shaking.
- Number of injured people.
- Number of homeless, evacuated, trapped and/or missing.
- Causes of death and/or injury.
- Number of damaged buildings.
- Number of destroyed buildings.
- Whether the infrastructure was affected or not.
- Maximum peak ground acceleration.
- Occurrence of landslides and/or liquefaction.
- Monetary losses.

Information regarding the consequences of small-to-medium magnitude earthquakes is often scarce and even contradictory. It is common to find events listed in databases like NOAA for which only a general estimation of monetary losses exist, and to not be able to find any specific information regarding the damage or the casualties. It has been observed as well that, sometimes, this information only exists in the local language (this has been observed for events occurring in countries whose language is known to the authors of this work, and is thus inferred that it also happens in languages outside our area of expertise). In view of this, the list above reflects what was aimed at, but does not mean that all that information is readily available for all, or even for most, events.

Estimations of monetary losses are often the hardest to find. Real reported values are rare, and availability of this information often reduces to either estimations reported by government officials to the media or estimations found in databases like EM-DAT or NOAA.

The latter are usually available in terms of broad ranges that are assigned based on a system to translate a description of damage into monetary terms. NOAA, for example, defines five different levels for economic losses: none, limited (less than 1 million USD), moderate (between 1 and 5 million USD), severe (between 5 and 24 million USD) and extreme (25 million USD or more). Whenever a better estimate was not found and the event had an estimate range in NOAA, the whole range was noted. If an independent, seemingly more precise estimate that lay within the range, the independent estimate was noted.

While it is usually more common to find reports of number of buildings damaged or destroyed than it is to find the equivalent monetary loss, there are many cases in which losses databases provide numbers of buildings in terms of ranges as well. For example, NOAA defines the following: none, 1-50, 50-100, 100-1,000, and more than 1,000. There are also many cases in which this information is not available and all there is are verbal descriptions from the USGS catalogue or online media reporting "a few buildings", "some buildings", "several buildings" damaged. In many cases, the phrase "damaged or destroyed" is used, so it is not clear what proportion of the total number or description corresponds to one or the other. Moreover, many cases have been observed in the NOAA database in which a nongeneric (e.g., something like 123, and not 100) number of damaged and destroyed buildings is provided, and it is exactly the same for both. This suggests that it is possible that the original source used by NOAA reported a number of "damaged or destroyed" buildings, without further specifications. In many other cases, descriptions are only limited to phrases like "slight" damage, without any hint of the number of buildings involved. Conversion of terms into numbers has not been attempted at this stage, so whenever information like this was found it was reported in the same way in the database.

Similar inaccuracies can be found in the reporting of deaths and injuries. The distinction between deaths and injuries due to ground shaking and those due to causes like heart attacks or panic reactions to the earthquake cannot always be found. Whenever a cause was identified, it was reported in the database.

It was noted that, many times, the number of homeless or evacuated coincides with the number of damaged or destroyed buildings, as if the assumption of one person per building had been made. If the information was reported under the titles "homeless" or "evacuated", it was kept, but no inference was made when only information regarding the number of damaged or destroyed buildings was available. The purpose of this was to be as clear as possible regarding the kind of information that is available in the sources. If there was a certain number of destroyed buildings, then it is guite reasonable to think that there was also a certain number of people left homeless, but the readers can easily make these inferences on their own. Moreover, carrying out an estimation of number of homeless or evacuated based on the number of buildings reported to be damaged or destroyed entails making a series of assumptions regarding the building typologies, the number of dwellings per building, and the number of people per welling. In many sources, a damaged building can be a one-family house, a 3-storey building, or a 20-storey building, the occupancy of which are very different from one another. Most of the times, this information is not readily available, and its estimation from global sources like the PAGER Inventory Database (Jaiswal & Wald, 2008) would be an immense task of its own.

The compilation of information regarding the total number of affected people was carried out along these same lines. It could be thought that a number could be estimated from the number of deaths, injuries, homeless, etc. However, the number of evacuated, homeless, trapped, missing and injured can overlap, and an estimation of this kind can prove meaningless. It has been observed, however, that the total number of affected people reported in EM-DAT does correspond to the sum of number of injured, number of homeless and number of affected. The criterion followed herein was that if a source explicitly reported a "number of affected people", it was then noted as such in the database, but no calculations were made when this was not the case. The reason for doing this is that, in many cases, the source for the total number of affected people is newspapers and online reports that do not specify what this number specifically refers to, as they may just say "this earthquake affected over 1,000 people". In order to be as flexible as possible with the sources, numbers were thus included as found reported, the only exception to these being the events that have been studied in detail as part of the separate report by Nievas *et al.* (2018), as the amount of information collected allowed for some well-informed estimations to be made.

The number of people exposed to the shaking followed a similar logic. Whenever a number reported directly as "exposed population" was found, it was directly included. However, most of the times this data was obtained from EXPO-CAT (Allen *et al.*, 2009) as the sum of the estimation of number of people exposed to MMI values of IV and above, which is what said source reports. These values are estimations obtained by combining the information regarding macroseismic intensities from USGS ShakeMaps of the events with Landscan 2006 (Dobson *et al.*, 2000; Bhaduri *et al.*, 2002), a global population database. As such, they are conceptually similar to what has been done herein in Chapter 2, though ShakeMaps are expected to be better estimations of macroseismic intensity than the use of one intensity prediction equation.

The maximum MMI and peak ground acceleration values gathered in the database correspond to values reported as part of detailed studies or observations, when available, ShakeMaps, or Did You Feel It data (when applicable). The soundness of these sources is clearly different, and detailed studies or observations were preferred over the rest. However, just like with all other data related to small-to-medium magnitude events, the latter are rare.

While a conscious effort was made to discard unreliable sources and make rational decisions in the face of contradictions, it is, in general, very difficult to judge which source is more or less trustworthy than the others for each particular earthquake. It is noted that the main sources of information have been EM-DAT, NOAA, EXPO-CAT, PAGER-CAT, the USGS catalogue, and the ISC Bulletin, and other online sources have been used in a smaller number of cases.

### 3.2. Resulting Database

The database of shallow crustal small-to-medium magnitude events that have caused damage and/or casualties in the period  $1^{st}$  July  $1999 - 30^{th}$  June 2014 is made up of 412 events, whose location is depicted in the map of Figure 3.1. The complete list, subdivided into three categories that result from the analysis presented in Chapter 4, can be found in Appendix IV. As the compilation of this database is still work in progress, consequences are expressed in Appendix IV in qualitative rather than quantitative terms.



Figure 3.1. World database of small-to-medium magnitude earthquakes with consequences for the population or the built environment, for the period 1<sup>st</sup> July 1999 – 30<sup>th</sup> June 2014.

Within these 412 events, there are 17 for which analysis of the sources suggests that reports on damage and/or casualties may refer to more than one event. Of these, four correspond to either foreshocks or aftershocks whose consequences may include those of the main shock, though the sources suggest as well that these events caused damage of their own. The remaining 13 correspond to cases of series of earthquakes or mainshocks whose consequences include those of fore- or aftershocks. Additionally, there are four events for which the description of their consequences includes the phrase "Additional damage to...", making reference to the damaged caused previously by an earthquake earlier in the sequence. These numbers are the ones that have been noted down, but it does not imply that it is clear that the consequences listed for all the other earthquakes belong only to themselves.

Having identified some of these events, there is the temptation of adding a certain number to the number of events with consequences. However, one should also wonder up to what extent the damage kept on building up over structures weakened by the previous shocks. It may not be fair to conclude that each shock individually could have caused a similar amount of damage on its own. If each shock could be applied to a hypothetical set of buildings that reset themselves to undamaged state each time, it is quite likely that the consequences would be less than those of the complete real series. For this reason, no direct attempt of adding a number of damaging events was done at this stage, though this analysis will be considered later in Section 4.2.

It is noted, once more, that the numerous challenges associated with compiling a database of this kind, imply that it is unlikely that the list contains all events that have caused damage or casualties in the time interval of interest. Whether events end up being included in the database or not depends not only on their actual consequences but also on what has been reported, the language in which it has been reported, and how accessible these reports are to the general public. As will be discussed in Chapter 4, this is strongly dependent as well on the seismicity of the area and the perception of seismic hazard by the population, as areas that are used to constant ground shaking are less likely to report on the small nonstructural damage caused by a weak event.

# 4. STATISTICAL ANALYSIS AND DISCUSSION

## 4.1. Identification of the Earthquakes with Consequences within the General Database

As explained in the previous chapters, the generation of the world database of crustal smallto-medium magnitude earthquakes and the world database of crustal small-to-medium magnitude earthquakes with consequences for the population was carried out in parallel. This implied that, at a certain point in the process, the two needed to be confronted in order to identify the latter within the former. When doing so, the following outcome emerged:

- 282 out of the 412 damaging events were directly identified in the final filtered database of crustal small-to-medium magnitude earthquakes (*i.e.* within the 35,654 events of Table 2.7);
- 122 out of the 412 damaging events were not part of the final filtered database composed of 35,654 events because their magnitude-depth combinations did not comply with the criteria set in Table 2.1;
- 5 out of the 412 damaging events were not part of the final filtered database composed of 35,654 events because they did not pass the exposure criterion described in Section 2.2, though their magnitude-depth combinations did comply with the criteria set in Table 2.1;
- 3 out of the 412 damaging events could not be found in the broader unfiltered merged catalogue at all.

The complete listings of each of these groups can be found in Appendix IV, while their characteristics are discussed herein.

# 4.1.1. Events Not Complying with the Magnitude-Depth Criterion

The criterion set up by Table 2.1 entails the possibility that earthquakes that caused damage or casualties get excluded of the database for two reasons. Firstly, because of the inherent arbitrariness of keeping a M4.3 earthquake with a 15 km depth and discarding a M4.3 one with a 15.1 km depth. Secondly, because depth is one of the most difficult parameters to constrain, and the uncertainty associated with either 15 or 15.1 km in the previous example is usually large.

Due to this, there are 122 events that make up the database of earthquakes with consequences to the population that are not part of the general database of crustal earthquakes once it is filtered according to the criterion of Table 2.1. Their magnitudes and depth, as they appear in the world database defined in Chapter 2, are depicted in Figure 4.1 (left), together with the limits set by Table 2.1. There can be several reasons for these 122 earthquakes to have been identified as damaging but getting discarded due to their magnitude-depth ranges:

• The final magnitude value is out of the **M**4.0-5.5 range.

- The magnitude-depth criterion is being applied to the magnitude and depth selected for each earthquake in the compilation of the world database of crustal small-tomedium magnitude events. There could be other depth estimations for the same earthquake that satisfy the criterion.
- No agency has been able to produce an accurate depth estimation due to the poor quality of the available waveforms or their scarcity and, thus, the depth is probably wrong.
- The earthquake may have not been actually damaging and its presence in the sources used to compile the database in Chapter 3 was an error.
- The use of a rigid boundary to define the depth limits in Table 2.1 makes depth estimations that can be 0.1 km apart fall on different sides of the selection (the 15 versus 15.1 km example above).



Figure 4.1. Magnitude and depth of the damaging events that do not pass the magnitude-depth criterion of Table 2.1 (continuous black line): depth as in the world database of crustal **M**4.0-5.5 events (left) and depth as collected for the world database of damaging events (right).

Regarding the first point, within these 122 earthquakes there are 4 cases with magnitude smaller than M4.0, and 20 cases with magnitude larger than M5.5. As explained in Section 3.1, events with smaller and larger magnitudes were included in the database of earthquakes with consequences for the population, so as to make sure that the filtering was carried out in terms of the magnitude values selected in Chapter 2. This means that only the remaining 98 cases correspond to earthquakes whose magnitude belongs to the M4.0-5.5 range, but whose depth does not comply with the criterion defined in Table 2.1.

An example of an event for which a different depth could have been selected is the **M**5.4 Denpasar (Indonesia) earthquake of 15<sup>th</sup> September 2004, which is event 7401641 in the ISC Bulletin and has entered the world catalogue with a depth of 107 km. As shown in Figure 4.2, the difference between depth estimations from different agencies is colossal, and the range goes from 2 km all the way through 107.9. As has been explained before, determining which of the estimations is the best is not trivial, and even less so is determining if any of the estimations is good at all. It is noted that, of all the depth estimations shown in Figure 4.2, only the 2-km one would have avoided this earthquake to be discarded. However, taking a look at the range of depth estimations, the 2-km one seems unlikely.

| Event  | 7401  | 641 | Bali  | regio  | n     | 955   | 1122  |       | 11      |          | <ul> <li>10.0001</li> </ul> |       |         |       |        |      |       |          | 2526222 |      |        |               |
|--------|-------|-----|-------|--------|-------|-------|-------|-------|---------|----------|-----------------------------|-------|---------|-------|--------|------|-------|----------|---------|------|--------|---------------|
| Date   | е     |     | Time  |        | Err   | RMS   | Lati  | tude  | Longit  | ide Sma  | j Smin                      | Az    | Depth   | Err   | Ndef   | Nsta | Gap   | mdist    | Mdist   | Qual | Author | OrigID        |
| 2004/0 | 9/15  | 08: | 34:58 | .90    |       |       | -8.   | 2357  | 115.2   | 339      |                             |       | 2.0     |       |        |      |       |          |         |      | CSEM   | 6154135       |
| 2004/0 | 9/15  | 08: | 35:01 | .90    | 0.79  |       | -8.   | 6550  | 115.2   | 910 20.  | 7 9.0                       | 113   | 39.0    |       | 38     |      |       |          |         |      | MOS    | 7149554       |
| 2004/0 | 9/15  | 08: | 35:03 | .70    |       |       | -8.   | 7770  | 115.3   | L10      |                             |       | 39.0    |       |        |      |       |          |         |      | SYO    | 6809755       |
| 2004/0 | 9/15  | 08: | 35:09 | .97    | 0.50  | 1.26  | -8.   | 7050  | 115.4   | 207 14.  | 1 6.9                       | 57    | 92.5    | 4.0   | 68     |      | 62    | 21.44    | 169.59  | U    | k IDC  | 6511450       |
| 2004/0 | 9/15  | 08: | 35:10 | .80    | 0.20  |       | -8.   | 9900  | 115.2   | 500 1.   | 1 1.1                       | -1    | 104.7   | 1.5   | 215    | 71   |       |          |         |      | HRVD   | 6303107       |
| (#CEN  | TROID | )   |       |        |       |       |       |       |         |          |                             |       |         |       |        |      |       |          |         |      |        |               |
| (#MOM  | TENS  | sc  | MO    | fCLVD  | M     | RR    | MTT   | M     | PP M    | TM T     | P MP                        | R NS  | r1 NST2 | Auth  | or     |      |       |          |         |      |        |               |
| (#     |       |     | eM0   | eCLVD  | e     | RR    | eTT   | e     | PP e    | RT eT    | P ePi                       | R NCO | 01 NCO2 | Dura  | tion   |      |       |          |         |      |        |               |
| (#     |       | 17  | 1.270 |        | 0.9   | 10 0  | .520  | -1.4  | 40 -0.3 | 00 -0.16 | 0 -0.07                     | 0     | 61 71   | HRVD  | 1      | 1    |       |          |         |      |        |               |
| (#     |       |     |       |        | 0.0   | 20 0  | .020  | 0.0   | 30 0.0  | 0.02     | 0.02                        | ) I   | 35 130  |       | 1.10   |      |       |          |         |      |        |               |
| (#FAU  | LT_PL | ANE | Тур   | Strike | Di    | p     | Rake  | NP    | NS Pla  | ne Autho | r)                          |       |         |       |        |      |       |          |         |      |        |               |
| (#     |       |     | BDC   | 339.00 | 50.0  | 0 5   | 1.00  |       |         | HRVD     | )                           |       |         |       |        |      |       |          |         |      |        |               |
| (+     |       |     |       | 210.00 | 54.0  | 0 12  | 6.00  |       |         |          | )                           |       |         |       |        |      |       |          |         |      |        |               |
| (#PRI  | NAX s | C ' | T_val | T_azi  | m T_  | pl B  | val   | B_az  | im B_p  | P_val    | P_azim                      | P_]   | ol Auth | or    | )      |      |       |          |         |      |        |               |
| (#     | 1     | 7   | 1.080 | 181.0  | 0 61. | 00 0  | .370  | 6.    | 00 29.0 | 0 -1.460 | 275.00                      | 2.0   | 00 HRVE | )     | )      |      |       |          |         |      |        |               |
| (nsta  | 1 ref | ers | to b  | ody wa | ves,  | cutof | f=40s | s. ns | ta2 ref | ers to s | urface                      | vave: | s, cuto | ff=50 | s.)    |      |       |          |         |      |        |               |
| 2004/0 | 9/15  | 08: | 35:10 | .80    |       | 2.80  | -8.   | 8000  | 115.4   | 000      |                             |       | 98.0    |       |        | 57   |       |          |         |      | BJI    | 6317984       |
| 2004/0 | 9/15  | 08: | 35:10 | .84    | 0.41  | 1.08  | -8.   | 7730  | 115.3   | 570 6.   | 5 4.3                       | 224   | 98.4    | 3.6   | 157    |      | 23    | 0.18     | 174.08  | C    | e NEIC | 7245706       |
| (One ] | perso | n k | illed | and t  | wo in | jured | at I  | )enpa | sar. Fe | lt [V] a | t Matar                     | am, 1 | Lombok  | and [ | II] at | Bany | yuwar | ngi, Jav | va.)    |      |        | NO. 101103060 |
| 2004/0 | 9/15  | 08: | 35:11 | .40    | 0.16  | 1.56  | -8.   | 6463  | 115.1   | 157 7.   | 3.7                         | 176   | 80.0f   |       | 13     | 12   |       | 0.17     | 10.33   | k    | e DJA  | 7033839       |
| 2004/0 | 9/15  | 08: | 35:10 | .37    | 0.40  | 1.417 | -8.   | 8779  | 115.2   | 121 4.84 | 1 3.946                     | 99    | 107.9   | 3.59  | 321    | 369  | 38    | 0.11     | 99.10   | mid  | le ISC | 7532250       |
| (#PARA | AM pP | DE  | PTH=9 | 3+3)   |       |       |       |       |         |          |                             |       |         |       |        |      |       |          |         |      |        |               |

Figure 4.2. The M5.4 Denpasar (Indonesia) earthquake of 15<sup>th</sup> September 2004 in the ISC Bulletin.



Figure 4.3. Earthquakes for which damage or casualties are recorded, but that do not pass the depth-magnitude criterion of Table 2.1. Events marked in yellow would pass the criterion if the depth used to characterise them had been that adopted in the database of earthquakes with consequences instead of the database of crustal earthquakes.

Figure 4.1 (right) shows the depths with which the 122 out-of-range events are characterised in the database of earthquakes with consequences. The 30 events shown in yellow on the map of Figure 4.3 would not be discarded according to the magnitude-depth criterion if these depths had been used instead, though this does not mean that they would have passed the exposure criterion. Why were these depths not used herein? Because of the difficulties associated with defining the best origin and magnitude estimates for each event discussed in Chapter 2. The depths noted in the compilation of the world database of events with consequences (Chapter 3) were those that were readily available when searching for the damaging events, usually coming from either the USGS catalogue, the ISC Bulletin, or a relevant local agency, when easy to determine. The criteria set up in Chapter 2 to compile the database of crustal earthquakes of small-to-medium magnitude, as well as that used by Weatherill *et al.* (2016), were intended for the process to be as automatic and objective as possible. While 122 is a small enough number of events that would allow for a manual assessment of the depth estimations adopted to be feasible, doing so without revising all the other earthquakes in the database of crustal earthquakes would be strongly inconsistent.

# 4.1.2. Events Not Complying with the Exposure Criterion

There are 5 events with consequences for the population that could be part of the world catalogue but are not because they get filtered out by the exposure criterion defined in Section 2.2 (see Figure 4.4). These are:

- 5<sup>th</sup> August 2005 18:07:12 UTC, M5.0, Ho Chi Minh, Vietnam (C97): There is not much information about the consequences of this earthquake, except for the ISC Bulletin reporting a statement by the USGS saying that minor damage occurred at Ho Chi Minh city, and NOAA assigning an economic loss of less than 1 million USD. The epicentre was located over 90 km away from the cost, and the hypocentral depth is reported as 10 km. With these parameters, the IPE of Allen *et al.* (2009) yields an epicentral intensity of VI, and a distance to the MMI III isoseismal of 88 km. As a consequence, the estimation of population exposure is zero.
- 8<sup>th</sup> November 2005 07:54:37 UTC, M5.3, Ho Chi Minh, Vietnam (M169): There is not much information about the consequences of this earthquake either, except for the ISC Bulletin, the USGS catalogue and Ngo *et al.* (2008) reporting one death with no specified cause. Phuong & Truyen (2014) describe this earthquake as the main shock of a series of which the event of 5<sup>th</sup> August 2005 was a foreshock, but do not make any reference to damage or casualties caused by the series. With epicentral coordinates very close to the previous event, and slightly larger magnitude and shallower depth, the IPE of Allen *et al.* (2009) yields an epicentral intensity of VII, and 125 km to the MMI III isoseismal, which does not seem to be enough for any population to fall within predicted MMI values of IV and larger.
- 20<sup>th</sup> April 2010 00:17:10 UTC, M4.5, Kalgoorlie-Boulder, Australia (M55): Information about the damage caused by this earthquake is more detailed than for the previous two cases. Edwards *et al.* (2010) describe damage observed in around 60 buildings and a few minor injuries. The earthquake is believed to be connected to mining activities in the area. It is clear that this earthquake is of relevance to the database, but it gets filtered out based on low population exposure. The epicentral MMI predicted by the model of Allen *et al.* (2009) is slightly above V, and the MMI IV isoseismal passes aright by the side of the towns of Kalgoorlie and Boulder (Figure 4.5, left), where the damage was observed.
- 6<sup>th</sup> September 2010 22:48:34 UTC, **M**5.0, Porangahau, New Zealand (C51): Information regarding the damage caused by this earthquake appears to be contradictory. It has an estimate of economic losses in NOAA, and the USGS

catalogue indicates the occurrence of slight damage. However, online newspapers suggest that there were no reports of damage (Otago Daily Times, 2010; Radio New Zealand, 2010). It is noted, though, that it is possible that damage reports may not have made the news, but may have been collected by the scientific community. Unlike the previous cases, the MMI IV isoseismal predicted by Allen *et al.* (2009) encloses population, as shown in Figure 4.5 (righ), but not enough to satisfy the exposure criterion.

 26<sup>th</sup> November 2012 05:33:49 UTC, M5.1, Ruoqiang, China (C68): According to NOAA, this earthquake caused damage to around 50 to 100 buildings, amounting to monetary losses of less than 1 million USD. Information in online news sites does not seem to be abundant (at least in English), but the George Herald (2012) mentions homes having been damaged. The plot of isoseismals against population density is similar to that of Figure 4.5 (left), the area being severely underpopulated, as confirmed by the George Herald (2012) as well.

It is possible that some events of those discarded due to their magnitude-depth ranges may not satisfy the exposure criterion either. This possibility was not checked at this stage.

The fact that these events get filtered out of the world database for not satisfying the population exposure criterion reflects its imperfect nature. Alternatives to tackle this are discussed in Section 5.4.



Figure 4.4. Earthquakes from the 1<sup>st</sup> July 1999 – 30<sup>th</sup> June 2014 world database of small-tomedium magnitude earthquakes with consequences for the population or the built environment, within the magnitude and depth of interest, that do not pass the population exposure criterion.



Figure 4.5. Contour lines of MMI values predicted with the model of Allen *et al.* (2012) for the 2010 Kalgoorlie-Boulder (left) and the 2010 Porangahau (right) earthquakes. Background colour scale indicates population density in people per square kilometre (data from GPW v4.0, CIESIN, 2016).

## 4.1.3. Events Not Found

The following 3 of the 412 earthquakes contained in the world database of small-to-medium magnitude events with consequences for the population could not be found in the merged catalogue:

- 1<sup>st</sup> March 2004 23:55:19 UTC, Celikhan, Turkey (M231): The USGS catalogue and the ISC Bulletin contain this earthquake, but its consequences cannot be found in neither EM-DAT nor NOAA. It is not part of the merged catalogue because it only has one magnitude estimate in terms of M<sub>d</sub>. Both sources report 6 deaths and 2 injuries in Celikhan, Turkey. A Turkish news site (Hürriyet, 2004) specifies that the 6 deaths were due to the collapse of a house made of stone and mud. No estimate of monetary losses was found.
- 1<sup>st</sup> May 2005 12:23:00 UTC, Chuschi, Peru (M188): For unknown reasons, this earthquake and its consequences are only mentioned by governmental reports and offices from Peru, and is, therefore, not part of the merged catalogue. While information on damage and casualties is not fully consistent and is, in many ways, subject to the interpretation of the choice of words, analysis of the available sources suggests that at least around 2,000 people were affected by this earthquake, more than 300 buildings were damaged, and over 200 were destroyed (INDECI, 2005a, 2005b; Tavera *et al.*, 2016).
- 13<sup>th</sup> March 2007 08:04:00 UTC, Manica, Mozambique (M129): This earthquake could not be found in neither the USGS catalogue nor the ISC Bulletin, and it is not mentioned neither in EM-DAT nor in NOAA. As a consequence, it is not part of the

merged catalogue. It was, however, reported in the news that six school children were injured when rushing into their school building due to the fear to the tremors (Earthweek, 2007; IOL, 2007). There does not seem to have been any damage or any other casualties.

These three cases exemplify that the problem of identifying damaging small-to-medium magnitude earthquakes is not only related to the difficulties of finding reports of damage for events that get reported by seismological agencies. For some reason, the last two events are not reported in the main international sources considered herein. In terms of consequences, the Peruvian case seems more relevant, but the information was only available in Spanish, which means that it is not easily accessible to researchers worldwide. While one of the authors of this work speak Spanish, none speak Turkish, and this presented a challenge for finding information regarding the 13<sup>th</sup> March 2007 event. While online translators can help, they render the task extremely difficult. Searches that involve translation from languages in which the authors do not have expertise can be done for particular cases, but not in a systematic way.

The first case enumerated above is different from the other two because it not being included in the merged catalogue is only a matter of having only one magnitude estimation available, in terms of a scale not considered herein.

# 4.1.4. Flagging of (Potentially) Induced Events

As explained in Section 2.7.5, the flagging of induced events within WPG16v3b and the ISC Bulletin was carried out in an automatic fashion, searching for the "geothermal", "reservoir", "mining", and "anthropogenic" keywords. As the compilation of the world database of earthquakes with consequences allowed for a more detailed search of the anthropogenic or tectonic origin of events, the identification of events from the later in the former presented an opportunity to assess the possible misclassification of events.

Out of the 412 events with consequences, three cases were identified in which the algorithm had indicated an anthropogenic origin but this had not been noted in the details of the damaging events. These three cases were verified manually, and it was found that, in all of them, the word "reservoir" appears but to make reference to the earthquake having caused damage to reservoirs, and not to the filling or emptying of the reservoir causing a change in stresses that could have triggered the earthquakes. At the same time, 16 cases that had not been classified as induced by the flagging algorithm are noted as having an anthropogenic origin in the database of earthquakes with consequences.

If we assumed that this proportion of misclassifications applies to the whole database, that is, that 3 in 412 earthquakes (0.73%) are identified as induced when they are not, and that 16 in 412 (3.88%) are not identified as induced even if they are, the numbers in Table 2.7 would change into those in Table 4.1 (considering those non-classified as not induced). It is noted that this is not necessarily true, and represents only an estimation.

Table 4.1. Number of events in the database for the period 01/07/1999-30/06/2014, with  $4.0 \le M \le 5.5$ , depths constrained by Table 2.1, and either maximum population density greater than 300 people/km<sup>2</sup> or cumulative population count larger than 2,500 people in areas with MMI $\ge$ IV, with proportion of induced events adjusted assuming observed discrepancies over 412 events extrapolate to the whole database.

|              | Induced     | All E  | vents  | Only Mainshocks |        |  |
|--------------|-------------|--------|--------|-----------------|--------|--|
| Source       | induced     | Number | %      | Number          | %      |  |
| WDC16v2b     | Induced     | 1,583  | 4.44%  | 484             | 4.04%  |  |
| 0000000      | Not Induced | 30,452 | 85.41% | 10,058          | 84.04% |  |
| ISC Bulletin | Induced     | 154    | 0.43%  | 62              | 0.52%  |  |
| ISC Builetin | Not Induced | 3,465  | 9.72%  | 1,364           | 11.40% |  |
| Total        |             | 35,654 | -      | 11,968          | -      |  |

As has been mentioned earlier, the automatization required to process large volumes of data entails the natural risk of misclassifications. Alternatives to tackle this are discussed in Section 5.8.

## 4.2. Statistical Analysis

## 4.2.1. Kinds of Consequences Observed

Table 4.2 summarises the kinds of consequences observed for the earthquakes identified as having had consequences for the population. Of the whole list, the most relevant numbers are those corresponding to the 282 earthquakes that are part of the final world database of crustal small-to-medium magnitude events near urbanised areas.

Table 4.2. Number of events identified as having had consequences for the population per type ofconsequence and sub-group.

| Sub-group                                    | Total | With Deaths | With Injured | With Damaged Buildings | With Destroyed<br>Buildings |
|----------------------------------------------|-------|-------------|--------------|------------------------|-----------------------------|
| In final database                            | 282   | 79          | 170          | 201                    | 76                          |
| Not complying with exposure criterion        | 5     | 1           | 1            | 3                      | 0                           |
| Not complying with magnitude-depth criterion | 122   | 38          | 80           | 91                     | 42                          |
| Not found                                    | 3     | 1           | 2            | 1                      | 2                           |
| All                                          | 412   | 119         | 253          | 296                    | 120                         |

The interpretation of these numbers needs to be made taking into consideration that deaths may not only include those directly caused by the failing of structures but also those caused by secondary effects (like landslides), heart attacks and panic reactions, such as jumping off windows. Similarly, injuries can range from serious to very light, such as cuts due to broken glasses, hitting walls in the rush to run out of buildings, etc. In this sense, it is relevant to highlight that, based on the data collected, training the population to react appropriately in case of an earthquake would appear to be able to prevent a lot of these casualties.

The range of types of damage included within the category "with damaged buildings" can be as broad as those of casualties. Damage to buildings can be anything from structural damage to fine cracks in walls and damage to chimneys or parapets. For example, it is possible to talk about hundreds of buildings having been damaged by the 2006 M3.2 Basel (Switzerland) earthquake, though the damage only consisted of very thin hairline cracks in plaster and damage to the paint work at building junctions, to the extent that it would have been extremely hard to determine whether it had been caused by the earthquake or not. Even more caution should be taken regarding reports of destroyed buildings, as the interpretation of what destruction means can be very different from one person to another. For example, several reports regarding the 2011 M5.7 Prague (Oklahoma, USA) talk about houses having been destroyed, but photographic documentation of the damage suggests that said "destruction" might have been localised to a particular feature of the building, and not have affected the building as a whole. The number of cases for which sufficient information to distinguish between different levels of damage is available is small.

## 4.2.2. Earthquakes with Consequences within the Complete World Database

Figure 4.6 shows again the 11,968 mainshocks and 23,687 fore- and aftershocks of the world database of crustal small-to-medium magnitude earthquakes near urbanised areas (*i.e.*, those shown in Figures 2.30 and 2.31), highlighting the 282 events with consequences for the population. The same events but classified in terms of main shocks and fore-/aftershocks are shown in Figures 4.7 and 4.8.



Figure 4.6. Confrontation of the two databases: database of crustal small-to-medium magnitude earthquakes near populated areas (main shocks in orange, fore- and aftershocks in green) and database of crustal small-to-medium magnitude earthquakes near populated areas that are known to have caused damage or casualties (black empty circles).



Figure 4.7. Confrontation of the two databases only in terms of main shocks: database of crustal small-to-medium magnitude earthquakes near populated areas (light orange) and database of crustal small-to-medium magnitude earthquakes near populated areas that are known to have caused damage or casualties (dark orange with thick black borders).



Figure 4.8. Confrontation of the two databases only in terms of fore- and aftershocks: database of crustal small-to-medium magnitude earthquakes near populated areas (light green) and database of crustal small-to-medium magnitude earthquakes near populated areas that are known to have caused damage or casualties (dark green with thick black borders).

These 282 events represent 0.79% of the total of 35,654 events of the database. In terms of mainshocks, those causing damage or casualties represent 1.55% (185 earthquakes out of 11,968). Table 4.3 shows how these sets of 282 and 185 events are composed in terms of source and nature, for the classification carried out with the automatic algorithm described in Section 2.7.5. As was noted in Section 4.1.4, a series of events had been identified as induced when compiling the database of earthquakes with consequences. The numbers in Table 4.4 reflect this manual identification of anthropogenic events.

Table 4.3. Number of events in the database causing damage and/or casualties for the period 01/07/1999-30/06/2014, with 4.0≤M≤5.5, depths constrained by Table 2.1, and either maximum population density greater than 300 people/km<sup>2</sup> or cumulative population count larger than 2,500 people in areas with MMI≥IV. Percentages make reference to the total 282 and 185 events.

| Sourco       | Inducad        | All E    | vents  | Only Mainshocks |        |  |
|--------------|----------------|----------|--------|-----------------|--------|--|
| Source       | maacea         | Number % |        | Number          | %      |  |
|              | Induced        | 5        | 1.77%  | 3               | 1.62%  |  |
| WPG16v3b     | Not Induced    | 271      | 96.10% | 176             | 95.14% |  |
|              | Not Classified | 3        | 1.06%  | 3               | 1.62%  |  |
| ISC Bulletin | Induced        | 0        | 0.00%  | 0               | 0.00%  |  |
| ISC Builetin | Not Induced    | 3        | 1.06%  | 3               | 1.62%  |  |
| Total        |                | 282      | -      | 185             | -      |  |

Flagging of induced events carried out automatically.

Table 4.4. The same as Table 4.3, but with the number of induced events adjusted manually based on information collected in Chapter 3.

| Courses      | Induced        | All E  | vents  | Only Mainshocks |        |  |
|--------------|----------------|--------|--------|-----------------|--------|--|
| Source       | induced        | Number | %      | Number          | %      |  |
|              | Induced        | 15     | 5.32%  | 11              | 5.95%  |  |
| WPG16v3b     | Not Induced    | 262    | 92.91% | 169             | 91.35% |  |
|              | Not Classified | 2      | 0.71%  | 2               | 1.08%  |  |
| ISC Bullatia | Induced        | 0      | 0.00%  | 0               | 0.00%  |  |
| ISC Builetin | Not Induced    | 3      | 1.06%  | 3               | 1.62%  |  |
| Total        |                | 282    | -      | 185             | -      |  |

Tables 4.5 through 4.7 summarise the final proportions of earthquakes that have caused damage and/or casualties, considering all events, only non-induced and non-classified events, and only induced events, respectively. The number of induced events takes into consideration the manual modification of a series of cases as per Table 4.4. As can be observed, the percentages are relatively well-preserved when filtering out the induced events of Table 4.5 to generate Table 4.6, but change significantly when only the induced events are considered in Table 4.7. While it is noted that the total number of events considered changes drastically, and this could imply a loss of statistical relevance of the sample, it is possible that this apparent larger number of earthquakes that cause damage

or casualties when only induced events are considered be due, at least partly, to damage from such events being more likely to be reported and feature in the media. Being associated with anthropogenic activities carried out by companies or governments instead of natural processes, damage or casualties caused by these earthquakes are perceived as unnecessary and, thus, are usually the subject of more attention than small tectonic counterparts.

| Table 4.5. Final statistics showing proportion of earthquakes that have caused damage and/or |
|----------------------------------------------------------------------------------------------|
| casualties. All induced, non-induced and non-classified events considered.                   |

| Casa                               | All E  | vents | Only Mainshocks |       |  |
|------------------------------------|--------|-------|-----------------|-------|--|
| Case                               | Number | %     | Number          | %     |  |
| Total                              | 35,654 | 100%  | 11,968          | 100%  |  |
| Damaging and/or causing casualties | 282    | 0.79% | 185             | 1.55% |  |

Table 4.6. Final statistics showing proportion of earthquakes that have caused damage and/or casualties. Only non-induced and non-classified events considered.

| Casa                               | All E  | vents | Only Mainshocks |       |  |
|------------------------------------|--------|-------|-----------------|-------|--|
| Case                               | Number | %     | Number          | %     |  |
| Total                              | 35,275 | 100%  | 11,875          | 100%  |  |
| Damaging and/or causing casualties | 267    | 0.76% | 174             | 1.47% |  |

Table 4.7. Final statistics showing proportion of earthquakes that have caused damage and/or casualties. Only induced events considered.

| Casa                               | All E  | vents | Only Mainshocks |        |  |
|------------------------------------|--------|-------|-----------------|--------|--|
| Case                               | Number | %     | Number          | %      |  |
| Total                              | 379    | 100%  | 93              | 100%   |  |
| Damaging and/or causing casualties | 15     | 3.96% | 11              | 11.83% |  |

Tables 4.5 through 4.7 show as well that the proportion of damaging earthquakes increases significantly when only main shocks are considered. This can be due to a series of factors. Firstly, damage caused by a series of earthquakes that affect once and again the same population is often reported associated only to the main event, and not to each individual one. Even if there is not one main event, because the series is more like a swarm of events of similar magnitude, or even just a series of two or three events happening very close in time, this can be the case, as has been observed when gathering information about earthquakes with consequences. If that is the case, then it is possible that the number of damaging foreshocks, aftershocks or swarm-like events is not being fully registered in the databases and earthquake catalogues. Secondly, it is also likely that aftershocks within the magnitude range of interest whose main shocks are larger than **M**5.5 do not get reported even if they cause damage to different sites than the main shock, as all the attention is focused on the one with the worst consequences. It is possible, then, that the proportion of

damaging earthquakes might be underestimated when all events are considered with respect to when only main shocks are.

An important point needs to be made regarding the proportion of damaging induced main shocks (Table 4.7). Declustering algorithms work under the assumption that there exists a main shock and that there might be other events occurring sufficiently close in time and space that are associated with the main shock, but whose magnitude is smaller. As a consequence, they might not be the best tool to identify swarms or sequences, understood as series of events whose magnitudes are close to one another and for which the concept of main shock loses relevance. Due to their nature, it is common for induced events to occur in sequences of many thousands of events. Imagining a sequence that lasts several years and includes three events that cause damage in three neighbouring towns, each one at a time. A declustering algorithm might identify a main shock, which is likely to be one of the three damaging events. 1 out of 1 main shocks would be damaging, which yields a 100% rate of damaging induced main shocks. However, the whole sequence might include thousands of events, of which 3 were damaging, and this yields a damaging rate much smaller than 100%.

How much would these numbers change if some of the earthquakes discarded according to the magnitude-depth and exposure criteria had been included? This is not a simple question. In previous sections it has been said that there were 5 earthquakes that caused damage and/or casualties but were filtered out due to not complying with the exposure criterion. If these 5 events were to be included, but the total number of events were to stay the same (*i.e.*, 35,654), the final percentage would change from 0.79% to 0.80%, which is not a lot. However, including these 5 events would imply loosening the exposure criterion by an unknown amount, and the corresponding increase in the total number of events would remain unknown (*i.e.*, due to this loosening of the criterion, how many non-damaging events should be added as well?).

Something similar happens with the magnitude-depth criterion. It was said before that, had a depth value from a different author/agency been used, around 30 events of those that got discarded as a consequence of this criterion could have been added. But how many non-damaging earthquakes that got discarded for the same reason would have made it to the final database if a different depth estimate had been considered as well? This question cannot be answered without further analysis, as is discussed in Section 5.2.

A final issue to take into consideration is that of the completeness of the damage reports. In other words, how many damaging earthquakes are reported overall. Besides the already mentioned issue of small earthquakes with small consequences only being reported in local media using the local language, there is the more relevant matter of how many do not get reported at all. This can be due to many reasons. To begin with, the perception of the severity of damage changes drastically from highly seismic areas to lower seismicity ones. In highly seismic areas it is unlikely that a small magnitude event that caused cracks in some tens of houses gets reported, or even noticed, as the population is used to constant shaking. Similarly, the perception of the severity of damage also changes significantly as a function of the general quality of construction and level of maintenance. Less developed areas of the

world in which a large proportion of the buildings might suffer from structural problems derived from poor construction practices are less likely to notice if a series of cracks in the walls are caused by a small magnitude earthquake, as the walls are probably full of cracks due to other issues, like settlements caused by inadequate foundations. The same happens if the overall state of maintenance of the building stock is such that the structures are so deteriorated that small new damage is difficult to identify. Along different lines, more severe natural, political or social events that may be contemporaneous to small-to-medium magnitude earthquakes causing slight damage, such as wars, coup d'etats, hurricanes, or any other threatening hazard or general unrest, may cause the earthquake damage to pass unreported. Making an estimation of how many crustal small-to-medium size events cause damage or casualties that are not reported is extremely difficult. Whatever assumption is made would imply that the proportions of damaging events shown in Table 4.5 increase.

# 5. FUTURE DIRECTIONS

# 5.1. General

Along the extent of this work, it has been possible to identify a series of decisions that may (or may not) have an influence on the final outcome of the analysis. Given the complexity that compiling a consistent global database of earthquakes entails, a conscious decision was made to make choices that would lead to the most transparent and simple outcome, and then work on assessing the influence of the choices made. What follows is a discussion of the points identified as relevant for further study or deemed plausible of improvement.

# 5.2. Maximum Depth Criterion

In Section 4.1.1 it was noted that a series of earthquakes identified as having caused damage or casualties were filtered out of the database due to not complying with the maximum depth criterion. Whether changing the depth criterion would lead to a larger or smaller proportion of events causing damage cannot be known *a priori*. The simplest way to assess the influence of this criterion in the filtering of the database would be to define a number of alternative criteria and evaluate the stability (or lack of) of the results. A more complex strategy would be to consider all available estimates of depth when carrying out the filtering, though it is recognised that the computational demand would increase significantly without an obvious gain. In that respect, an initial sensitivity analysis of the kind described before could be an indicator of whether a more sophisticated strategy is likely to yield any benefits or not.

# 5.3. Declustering

Declustering algorithms imply adopting assumptions regarding what main-, fore- and aftershocks are, and work purely in terms of proximity of events in time and space, without taking into account the structural geology close to the site. As such, a series of parameters can be tuned and defined within each algorithm, the final clusters depending on them. For example, for the algorithm of Gardner & Knopoff (1974) it is necessary to indicate if the time window for foreshocks will be the same than that of aftershocks, smaller, or if foreshocks should not be sought, besides the kind of time and space window to use (*e.g.*, Gardner & Knopoff, 1974; Grünthal (van Stiphout *et al.*, 2012); Uhrhammer, 1986; see Figure 2.17). As it would be impossible to unambiguously classify all events as main-, fore- or aftershocks, a sensitivity analysis using different parameters and/or declustering methods would allow to illustrate the extent to which these declustering decisions affect the results.

# 5.4. Intensity Prediction Models

In Section 4.1.2 it was discussed that five earthquakes identified as having caused damage and/or casualties did not comply with the exposure criterion. While the difficulty of setting an exposed population threshold to define how relevant each earthquake is as a potential threat is evident, the case of the **M**4.5 2010 Kalgoorlie-Boulder (Australia) earthquake suggests
that a simple improvement to the methodology would be to consider a different intensity prediction model for parts of the world with a clear cratonic setting, such as western Australia. It has been observed (*e.g.*, Kaka & Atkinson, 2004) that environments such as this display a slower attenuation and potentially higher stress drop than tectonic margins or other regions of extended crust where the model of Allen *et al.* (2009) might be appropriate. The use of alternative intensity prediction equations could, thus, be explored.

### 5.5. Magnitude Scales

While the extensive discussion on magnitude scales presented in Section 2.5 led to a wellinformed decision regarding which scales to consider when retrieving events from the ISC Bulletin, the possibility of adding events for which only  $m_b$  or  $M_d$  estimates are available, as well as the use of existing models to convert from  $M_s$ ,  $m_b$ , and  $M_d$  into **M** can be explored.

### 5.6. Uncertainty in Depth, Magnitude and Intensity

The extent to which depth and magnitude estimates are uncertain has become very clear all along the extent of this work. Moreover, the IPE of Allen *et al.* (2009) used to estimate the population exposed to the shaking caused by each event has a certain degree of uncertainty associated with it, as any prediction model. The above discussion about the possibility of considering all depth estimates could be a way of incorporating the uncertainty associated with this particular parameter, and a similar strategy could be followed for the magnitude.

Inclusion of the uncertainty of the IPE could be done in terms of defining the probability associated with observing an MMI value equal to or larger than IV in each population cell, and multiplying that probability by the corresponding population count. Cells for which the expected median MMI turns out to be significantly larger than IV would be weighted almost by unity, while cells with very small expected median values would be almost ignored, and all cases in between would be weighted by some value in between 0 and 1. Given that the estimation of population exposure is only used to filter out events that are too far away from populated areas to be a threat, the influence of the uncertainty associated with the IPE is expected to be less significant than that associated with the depth and magnitude.

### 5.7. Improvement of the Identification of Duplicate Events

The procedure developed in Section 2.7.7 to identify potentially duplicate events makes use of all the information that is readily available regarding each event in the ISC Bulletin, and makes assumptions regarding the parameters that may indicate whether two events are different estimates of the same earthquake or not. As noted, even if it was possible to access all the waveforms from which the location and magnitude estimates were carried out, their processing would be a colossal task, not free from the usual challenges associated with the location of earthquake sources. In view of this, this possibility can be nothing but discarded. However, it would be possible to further analyse cases that may have been misclassified by the algorithm of Section 2.7.7 and try to identify possible trends that may help improve the procedure.

#### 5.8. Improvement of Flagging of Induced Events

As it was noted, the automatic flagging of induced events based on the search for keywords related to anthropogenic events is imperfect by nature. This first identification of induced events could be complemented with a more thorough comparison against the Human-Induced Earthquake Database (Foulger *et al.*, 2016; Wilson *et al.*, 2017; Induced Earthquakes, 2017). The challenges are many, as the latter is not a list of individual earthquakes identified as being induced, but a list of projects that have generated series of earthquakes each, but defining spatial and time limits of influence of the projects would allow to define regions of the world and times in history during which earthquakes at a particular place and time are likely to have had an anthropogenic origin.

# 6. CONCLUSIONS

As part of the effort to quantify and understand the risk posed by earthquakes with moment magnitude in the range 4.0-5.5 to the Groningen field, this study has aimed to identify how many upper crustal earthquakes in this magnitude range occur in close proximity to urbanised areas, and what proportion of these earthquakes cause damage and/or casualties. A world database of crustal earthquakes in the range **M**4.0-5.5 that occurred sufficiently close to population or the built environment, as well as a world database of earthquakes in the range **M**4.0-5.5 for which reports of damage and/or casualties exist, were compiled for this purpose. The process and the challenges associated with compiling both databases have been thoroughly discussed in the preceding pages, together with the statistical analysis that has made use of the two.

The world database of crustal earthquakes in the range M4.0-5.5 that occurred sufficiently close to population or the built environment compiled herein is composed of 35,654 events, out of which 11,968 were identified as main shocks by means of the declustering algorithm of Gardner & Knopoff (1974). It was generated taking the world catalogue of Weatherill et al. (2016) as the starting point, and subsequently adding events from the ISC Bulletin that had information on depth and a value for magnitude either in terms of moment magnitude, surface-wave magnitude or local magnitude, under the assumption  $\mathbf{M}=M_{s}=M_{L}$ . Whether each earthquake was sufficiently close to populations or the built environment was determined as a function of the number and density of people expected to have been exposed to Modified Mercalli Intensities of IV or larger, calculated by means of the intensity prediction equation of Allen et al. (2012) and Gridded Population of the World v4.0 (CIESIN, 2016). Some 282 earthquakes out of the total (0.79%) and 185 out of the main shocks (1.55%) have been identified as having caused damage and/or casualties. The proportions of damaging events rise significantly when considering only those that have been marked as being of anthropogenic origin, becoming 3.96% and 11.83% for all events and for main shocks, respectively.

While all numerical results presented herein need to be interpreted within a full understanding of the inherent challenges of this work, the last two require particular caution for two main reasons. Firstly, since the number of earthquakes flagged as induced is relatively small, the relevance of the sample could be questioned. Secondly, it is likely that in areas of the world where a connection between seismicity and anthropogenic activities is strongly suspected, there will be a greater propensity to report earthquake damage, even if minor, than would be the case in areas dominated by frequent tectonic shaking. While damage due to tectonic earthquakes is accepted as natural (at least in terms of the origin of the shaking), that due to human-induced events will be viewed as an imposed—and therefore avoidable—risk. In the case in which only main shocks are considered, an additional factor may come into play, which is that it is common for induced events to occur in sequences or swarms, a fact that may explain, at least in part, the proportion of main shocks to total number of events being smaller for induced than for non-induced earthquakes (24.5% against 33.6%). As the proportion of damaging earthquakes that are classified as main shocks is approximately the same whether all events or only main shocks

are considered (roughly 2/3), the fact that a smaller proportion of the total of induced events are main shocks (in comparison with all shocks) causes the final percentage of damaging induced main shocks to be significantly larger than in all other cases.

The influence of the discrimination of events into main shocks and non-main shocks is not exclusive to induced events. While it is hard to establish whether the increase from 0.79% to 1.55% in the proportion of damaging earthquakes is real or is an artefact of the definition of what a main shock is, it is likely that the effects of many aftershocks are not reported separately from the main shock, or that the effects of a swarm with several events of similar magnitude be associated to just one of the events and not to all. Naturally, it is not common to have knowledge of the precise damage caused by each of the earthquakes in a series, and the natural association of damage to the strongest event could be responsible for this apparent increase.

Another important caveat is that the database of earthquakes in the range M4.0-5.5 for which reports of damage and/or casualties exist may not be complete; in fact, it may be considered a lower bound estimate of the number of damaging events. The inclusion of events in the database depends strongly on the availability of damage reports both in terms of their accessibility and the language in which they are written. In this sense, translating from a report that has been identified is not a major problem (at least for languages using Latin script), but finding the report to begin with can be serious challenge. The propensity of societies to report the damage caused by small-to-medium magnitude earthquakes is directly influenced by the seismicity of the area, the general quality of construction and the level of building maintenance. Damage occurring in low-seismicity areas, where buildings are generally of good guality and well maintained, is much more likely to be reported than that occurring in places where people are used to constant weak shaking, and light cracks in walls are a common sight due to the persistence of seismic motion or other problems, such as subsidence. The response to an episode of induced shaking will also depend on the general levels of safety and well-being in a society-in regions of conflict, poverty or hunger, for example, there may be less tendency to report the comparatively minor disruption of induced ground motions. Other influencing factors will include how remote are the affected settlements and the levels of media and Internet coverage in the country or region. As a final remark on this subject, the simultaneous occurrence of small seismic events that cause slight damage and more severe natural, political or social events can significantly influence how much attention the former receive.

Apart from the challenges associated with identifying damaging small-to-medium magnitude damaging seismic events, those inherent to the compilation of a world catalogue of earthquakes of any kind are of no less importance. Making decisions regarding the lack of homogeneity in the magnitude scales and the selection of a set of hypocentral coordinates and a magnitude estimate to represent each event is not trivial, as different agencies report different estimates, and the accuracy associated to weaker events is generally lower than that of those of larger magnitude earthquakes. As estimates of the origin time can also vary significantly, the identification of different entries of the same event that may have been misclassified as separate events poses an additional challenge.

While a large effort has been invested in addressing all these issues in the best possible way, it should be noted that, for most of them, there is no unambiguously correct answer, only reasonable assumptions, the influence of which can be tested through sensitivity studies. As such, the next stage of this work will consist in continuing to expand and improve the quality of the database of earthquakes with consequences, refine the processes involved in the identification of duplicate events and flagging of induced events, and assessing the impact of some of the decisions made, including (but not limited to) those related to the maximum depth ranges considered and the population exposure criterion applied. While small adjustments of the latter are not expected to have a major influence on the number of events known to have caused damage to at least 60 buildings, is filtered out of the database for not complying with the depth criterion. On the contrary, further consideration of the maximum depth limits or the way in which the different estimates of hypocentral depth are treated, might lead to a change in the volume of events, though it cannot be known a *priori* whether this would reflect in a larger proportion of damaging events or the opposite.

The picture that emerges at this preliminary stage of the research is that on a global scale, 1 in every ~100 earthquakes in the magnitude range 4.0-5.5 that occur close (in plan and in depth) to population centres is reported to cause damage. For anthropogenically-induced earthquakes, the proportion of damaging events in the same magnitude range may be closer to 1-in-10. As has been pointed out above, however, there are several issues still to be investigated before these numbers can be taken as robustly reliable indicators. Even when the most probable proportions of damaging events are established, additional work will be needed-and has indeed been started in the compilation of detailed case histories-to determine the specific factors leading to the damage in each case, whether related to the intensity of the ground shaking or the susceptibility of the exposed building stock. Another point that needs to be addressed is that while 4.0-5.5 may seem a small interval of earthquake magnitudes, there is a ratio of almost 200 between the seismic energy release between the largest and smallest events. Therefore, an obvious refinement is to explore the statistical patterns within smaller intervals of magnitude: induced earthquakes with magnitudes 4.0-4.5 may be expected to occur frequently, but induced events larger than 5.0 would still be somewhat exceptional.

# 7. ACKNOWLEDGEMENTS

This work was funded by Nederlandse Aardolie Maatschappij B.V. (NAM) as part of the Study and Data Acquisition Program for induced seismicity in Groningen.

## 8. REFERENCES

#### 8.1. Bibliography

Afshari, K. & J.P. Stewart (2016). Physically parametrised prediction equations for significant duration in active crustal regions. *Earthquake Spectra* **32**(4), 2057-2081.

Allen, T.I, D.J. Wald, P.S. Earle, K.D. Marano, A.J. Hotovec, K. Lin & M.G. Hearne (2009). An Atlas of ShakeMaps and population exposure catalog for earthquake loss modeling. *Bulletin of Earthquake Engineering* **7**, 701-718. EXPO-CAT and PAGER-CAT available from (last accessed 15<sup>th</sup> November 2017): https://earthquake.usgs.gov/data/pager/references.php.

Allen, T.I., D.J. Wald & C.B. Worden (2012). Intensity attenuation for active crustal regions. *Journal of Seismology* **16**, 409-433.

Amato, A., L. Badiali, M. Cattaneo, A. Delladio, F. Doumaz & F. Mele (2006). The real-time earthquake monitoring system in Italy. *Geosciences (BGRM)* **4**, 70–75.

Bhaduri B., E. Bright, P. Coleman & J. Dobson (2002). LandScan – locating people is what matters. *Geoinformatics* **5**(2),34–37.

Bommer, J.J. & H. Crowley (2017). The purpose and definition of the minimum magnitude limit in PSHA calculations. *Seismological Research Letters*, IN PRESS.

Bommer, J.J., P.J. Stafford & J.E. Alarcón (2009). Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion. *Bulletin of the Seismological Society of America* **99**(6), 3217-3233.

Bourne, S.J., S.J. Oates, J.J. Bommer, B. Dost, J. van Elk & D. Doornhof (2015). A Monte Carlo method for probabilistic seismic hazard assessment of induced seismicity due to conventional gas production. *Bulletin of the Seismological Society of America* **105**(3), 1721-1738.

Center for International Earth Science Information Network - CIESIN - Columbia University (2016). *Gridded Population of the World, Version 4 (GPWv4)*. Palisades, NY: NASA Socioeconomic Data and Applications Center. http://dx.doi.org/10.7927/H4NP22DQ.

Di Giacomo, D., I. Bondár, D. A. Storchak, E. R. Engdahl, P. Bormann & J. Harris (2015). ISC-GEM: Global Instrumental Earthquake Catalogue (1900-2009), III. Re-computed  $M_S$  and  $m_b$ , proxy  $M_W$ , final magnitude composition and completeness assessment. *Physics of the Earth and Planetary Interiors* **239**, 33-47.

Dobson J.E., E.A. Bright, P.R. Coleman, R.C. Durfee & B.A. Worley (2000). LandScan: a global population database for estimating populations at risk. *Photogrammetric Engineering and Remote Sensing* **66**(7),849–857.

Dost, B., B. Edwards & J. J. Bommer (2016). *Local and moment magnitudes in the Groningen field*. Report for Nederlandse Aardolie Maatschappij (NAM), Netherlands.

Edwards, M., M. Griffith, M. Wehner, N. Lam, N. Corby, M. Jakab & N. Habili (2010). The Kalgoorlie earthquake of the 20<sup>th</sup> April 2010: preliminary damage survey outcomes. *Australian Earthquake Engineering Society 2010 Conference*, Perth, Australia.

Ekström, G., M. Nettles & A. Dziewonski (2012). The Global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. *Physics of the Earth and Planetary Interiors* **200**, 1–9.

Engdahl, E.R., R. van der Hilst & R. Buland (1998). Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. *Bulletin of the Seismological Society of America* **88**, 722–743.

Foulger, G.R., M. Wilson, J. Gluyas & R. Davies (2016). *Human-induced earthquakes*. Report for the Nederlandse Aardolie Maatschappij BV (NAM), The Netherlands. Report available online at: <u>https://www.nam.nl/feiten-en-</u>

<u>cijfers/onderzoeksrapporten.html#iframe=L2VtYmVkL2NvbXBvbmVudC8/aWQ9b25kZXJ6b2Vrc3J</u> <u>hcHBvcnRlbg</u>. Last accessed 28<sup>th</sup> November 2017.

Gardner, J. K. & L. Knopoff (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America **64**(5), 1363 – 1367.

Gasperini, P., B. Lolli & G. Vannucci (2013). Empirical calibration of local magnitude data sets versus moment magnitude in Italy. *Bulletin of the Seismological Society of America* **103**(4), 2227–2246.

Gutenberg, B. & C.F. Richter (1956). Magnitude and Energy of Earthquakes. *Annali di Geofisica* **9**, 1–15.

Hanks, T. & H. Kanamori (1979). A moment magnitude scale. *Journal of Geophysical Research* **82**(20), 2981–2987.

Jaiswal, K. & D.J. Wald (2008). *Creating a Global Building Inventory for Earthquake Loss Assessment and Risk Management*. USGS Open File Report 2008-1160. Available electronically at <a href="http://pubs.usgs.gov/of/2008/1160/">http://pubs.usgs.gov/of/2008/1160/</a>. Last accessed: 9<sup>th</sup> February 2017.

Kaka, S.I. & G.M. Atkinson (2004). Relationships between instrumental ground-motion parameters and Modified Mercalli Intensity in Eastern North America. *Bulletin of the Seismological Society of America* **94**(5), 1728-1736.

Nievas, C.I., M. Ntinalexis, D. Kazantzidou-Firtinidou, J. Borozan, M. Sangirardi, H. Crowley & J.J. Bommer (2018). *A database of damaging earthquakes of moment magnitude from 4.0 to 5.5 – Version 2*. Report for the Nederlandse Aardolie Maatschappij BV (NAM), The Netherlands. Under preparation.

Ngo, T.D., M.D. Nguyen & D.B. Nguyen (2008). A review of the current Vietnamese earthquake design code. Special issue of the *Electronic Journal of Structural Engineering (EJSE): Earthquake Engineering in the low and moderate seismic regions of Southeast Asia and Australia*, 32-41.

Pacheco, J. & L.R. Sykes (1992). Seismic moment catalogue of large shallow earthquakes 1900–1989. *Bulletin of the Seismological Society of America* **82**, 1306–1349.

Pagani M., D. Monelli, G. Weatherill, L. Danciu, H. Crowley, V. Silva, P. Henshaw, L. Butler, M. Nastasi, L. Panzeri, M. Simionato, D. Vigano (2014). OpenQuake engine: an open hazard (and risk) software for the Global Earthquake Model. *Seismological Research Letters* **85**, 692–702.

Phuong, N.H. & P.T. Truyen (2014). Probabilistic seismic hazard assessment for the South Central Vietnam. *Vietnam Journal of Earth Sciences* **36**, 451-461.

Richards, P.G., F. Waldhauser, D. Schaff & W.-Y. Kim (2006). The applicability of modern methods of earthquake location. *Pure and Applied Geophysics* **163**, 351-372.

Scordilis, E. M. (2006). Empirical global relations converting  $M_s$  and  $m_b$  to moment magnitude. *Journal of Seismology* **10**, 225–236.

INDECI – Instituto Nacional de Defensa Civil de Perú (2005a). *Compendio estadístico de prevención y atención de desastres 2005. Series Cronológicas*. Lima, Perú. Available online at: <u>https://www.indeci.gob.pe/compend\_estad/2005/pdfs/doc322\_5.pdf</u>. Last accessed: 17<sup>th</sup> November 2017.

INDECI – Instituto Nacional de Defensa Civil de Perú (2005b). *Informes detallados de emergencias 2005.* Lima, Perú. Available online at (last accessed 17<sup>th</sup> November 2017): <u>https://www.indeci.gob.pe/compend\_estad/2005/pdfs/doc322\_4e.pdf</u>.

Stepp, J.C. (1971). An investigation of earthquake risk in the Puget Sound area by the use of the type I distribution of largest extreme. PhD thesis. Pennsylvania State University.

Storchak, D., D. Di Giacomo, E. Engdahl, J. Harris, I. Bondár, W. Lee, P. Bormann & A. Villaseñor (2015). The ISC-GEM Global Instrumental Earthquake Catalogue (1900–2009): Introduction. *Physics of the Earth and Planetary Interiors* **239**, 48–63.

Strasser, F.O. & A. Mangongolo (2012). *TNSP earthquake catalogue*. Council of Geoscience, Report number 2012-0166 Rev. 0. South Africa. Available online at (last accessed on 23<sup>rd</sup> October 2017): <u>http://www.eskom.co.za/Whatweredoing/SSHAC\_ProjectResults/Pages/DataPublications.aspx</u>.

Tavera, H., C. Agüero & E. Fernández (2016). *Catálogo general de isosistas para sismos peruanos*. Instituto Geofísico del Perú, Dirección de Ciencias de la Tierra Sólida, Unidad de Sismología. Lima, Perú. Available online at (last accessed 17<sup>th</sup> November 2017): <u>http://portal.igp.gob.pe/sites/default/files/images/documents/comunicaciones/Notasprensa/2016/cat</u> <u>alogo isosistas peru 2016.pdf</u>.

Uhrhammer, R. (1986). Characteristics of Northern and Central California Seismicity. *Earthquake Notes* **57**(1), 21.

Van Elk, J., S.J. Bourne, S.J. Oates, J.J. Bommer, R. Pinho & H. Crowley (2017). A probabilistic seismic risk model to inform decision-making in response to induced earthquakes in the Groningen gas field. *Submitted to Earthquake Spectra*.

Van Stiphout, T. van, J. Zhuang, & D. Marsan (2012). *Theme V -Models and Techniques for Analysing Seismicity*. Technical report. Community Online Resource for Statistical Seismicity Analysis. Available online at (last accessed 28<sup>th</sup> November 2017): http://www.corssa.org/export/sites/corssa/.galleries/articles-pdf/vanStiphout et al.pdf. Weatherill, G. A. (2014). *OpenQuake Hazard Modeller's Toolkit - User Guide*. Global Earthquake Model (GEM), Technical Report.

Weatherill, G.A., M. Pagani & J. García (2016). Exploring earthquake databases for the creation of magnitude-homogeneous catalogues: tools for application on a regional and global scale. *Geophysical Journal International* **206**, 1652-1676. WPG16v1 World Catalogue (original) version of 2016. WPG16v2 World Catalogue version of 5<sup>th</sup> July 2017. WPG16v3b World Catalogue version of 21<sup>st</sup> July 2017.

Wilson, M.P., G.R. Foulger, J.G. Gluyas, R.J. Davies & B.R. Julian (2017). HiQuake: The humaninduced earthquake database. *Seismological Research Letters*. DOI: 10.1785/0220170112.

Wood, H.O. & F. Neumann (1931). Modified Mercalli Intensity of 1931. *Seismological Society of America Bulletin* **21**(4), 277-283.

#### 8.2. Web References

ANSS Composite Catalogue: <u>http://quake.geo.berkeley.edu/anss/anss-catalog-source-codes.html</u>. Last accessed: 30<sup>th</sup> August 2017.

Earthquake-Report.com: <u>https://earthquake-report.com</u>. Last accessed: 15<sup>th</sup> November 2017.

Earthweek (2007): <u>http://www.earthweek.com/online/ew070316/ew070316k.html</u>. Last accessed: 17<sup>th</sup> November 2017.

EM-DAT – The Emergency Events Database (Université Catholique de Louvain, Brussels, Belgium; Cred. Prof. Dr. D. Guha-Sapir): <u>http://www.emdat.be/</u>. Last accessed: 15<sup>th</sup> November 2017.

Eurostat – Urban-rural typology (last accessed 13<sup>th</sup> September 2017): <u>http://ec.europa.eu/eurostat/statistics-explained/index.php/Urban-rural\_typology</u>.

George Herald (2012): <u>https://www.georgeherald.com/news/News/International/40572/strong-earthquake-strikes-western-china-20170711</u>. Last accessed: 17<sup>th</sup> November 2017.

Hürriyet, (2004): <u>http://www.hurriyet.com.tr/adiyamanda-deprem-6-olu-206514</u>. Last accessed: 17<sup>th</sup> November 2017.

Induced Earthquakes (2017): <u>http://inducedearthquakes.org/</u>. Last accessed: 28<sup>th</sup> November 2017.

International Seismological Centre (ISC), Online Bulletin: <u>http://www.isc.ac.uk/iscbulletin/search/</u>. *Internatl. Seismol. Cent.*, Thatcham, United Kingdom, 2014.

List of agencies contributing with the ISC Bulletin (last accessed 17<sup>th</sup> August 2017): <u>http://www.isc.ac.uk/iscbulletin/agencies/</u>. Review procedure (last accessed 8<sup>th</sup> November 2017): <u>http://www.isc.ac.uk/iscbulletin/review/</u>.

IOL (2007): <u>https://www.iol.co.za/news/africa/schoolchildren-hurt-in-mozambique-quake-319051</u>. Last accessed: 17<sup>th</sup> November 2017.

National Geophysical Data Center / World Data Service (NGDC/WDS): Significant Earthquake Database. National Geophysical Data Center, National Oceanic and Atmospheric Admnistration

(NOAA). DOI:10.7289/V5TD9V7K. <u>https://www.ngdc.noaa.gov/hazard/earthqk.shtml</u>. Last accessed: 15<sup>th</sup> November 2017.

National Research Institute for Earth Science and Disaster Prevention (NIED, Japan): <u>http://www.bosai.go.jp/e/</u>.

Nearby UK – Country bounding boxes: <u>http://www.nearby.org.uk/downloads.html</u>. Last accessed 17<sup>th</sup> August 2017.

Otago Daily Times (2010): <u>https://www.odt.co.nz/news/national/53-earthquake-shakes-hawkes-bay</u>. Last accessed: 17<sup>th</sup> November 2017.

Radio New Zealand (2010): <u>http://www.radionz.co.nz/news/national/56218/porangahau-jolted-by-5-point-2-quake</u>. Last accessed: 17<sup>th</sup> November 2017.

ReliefWeb: <u>https://reliefweb.int</u>. Last accessed: 15<sup>th</sup> November 2017.

UNICEF – The State of the World's Children 2012 – Definitions (last accessed 13<sup>th</sup> September 2017): <u>https://www.unicef.org/sowc2012/pdfs/SOWC-2012-DEFINITIONS.pdf</u>.

Unites States' Census Bureau - 2010 Census Urban and Rural Classification and Urban Area Criteria: <u>https://www.census.gov/geo/reference/ua/urban-rural-2010.html</u>. Last accessed: 13<sup>th</sup> September 2017.

United States Geological Survey (USGS, 2015):

Earthquake catalogue search engine: <u>https://earthquake.usgs.gov/earthquakes/search/</u>. Why do so many earthquakes occur at a depth of 10km?: <u>https://www.usgs.gov/faqs/why-do-so-many-earthquakes-occur-a-depth-10km?qt-news science products=7#qt-news science products</u>. Last accessed: 10<sup>th</sup> November 2017.

#### 8.3. Other Resources

Earthquake catalogues processed with the aid of:

- Tools available in OpenQuake (Pagani *et al.*, 2014).
- The OpenQuake Hazard Modeller's Toolkit (Weatherill, 2014).
- The toolkit published alongside the paper of Weatherill *et al.* (2016).

QGIS free and open source Geographic Information System: http://qgis.org/.

Shapefiles of countries' administrative boundaries from DIVA-GIS: <u>http://www.diva-gis.org/gdata</u>.

World maps data copyrighted by OpenStreetMap contributors. Available from <u>https://www.openstreetmap.org</u>.

# APPENDIX I: WPG16 EVENTS WITHOUT DEPTH INFORMATION

### I.1. Objectives

There are 215 events of the WPG16v3b world catalogue that do not have information on depth, all of them within the time range of interest. The objectives of the work presented in this appendix were:

- to verify if/which of these events end up being considered within the merged catalogue because they are read again from the ISC Bulletin;
- to understand why those events that are not part of the merged catalogue are not considered;
- to assess the impact of the latter not being considered on the final number of events in the merged world catalogue.

### I.2. Methodology

The 215 events were compared against the merged catalogue that contains events from all magnitudes and depths, and has not been filtered yet according to all the criteria used in this work. In other words, this merged catalogue is the result of considering all events from the WPGv3b world catalogue and the events from the ISC Bulletin that satisfy the criteria regarding agencies, magnitude scales and completeness of information.

The comparison was carried out using a distance window of 100 km and a time window of 60 seconds, as well as by doing a direct search of the event ID. All results were visually inspected.

### I.3. Characterisation of the Events Under Analysis

All 215 events occurred within the years 2001 and 2005, which means that they belong to the period of interest covered by the merged catalogue. 207 of the 215 events lie as well within the final moment magnitude range of interest ( $4.0 \le M \le 5.5$ ), while the remaining two and six events have magnitudes smaller and larger than this range, respectively. Figure I.1 shows the location of the 215 events in the world.

Eliminating these 215 events from the WPG16v3b world catalogue before comparing the latter with the events listed in the ISC Bulletin means that, if found in the Bulletin, the events are eligible again for their incorporation in the merged catalogue. Whether they are finally incorporated or not depends on the availability of estimations of origin and magnitude that satisfy the criteria set for events from the ISC Bulletin (see Section 2.6).



Figure I.1. Events from WPG16 without information on depth (215 events).

## I.4. Events that Become Part of the Merged Catalogue

Of the 215 events of the WPG16v3b world catalogue that do not have information on depth, the 177 shown in Figure I.2 end up forming part of the merged catalogue.



Figure I.2. Events from WPG16 without information on depth that are included in the merged catalogue (177 events).

Figure I.3 shows a comparison between the moment magnitude of these 177 events in the WPG16v3b catalogue, which can result from either a direct estimation of moment magnitude or from the conversion of  $M_s$  or  $m_b$ , and the magnitude with which they are represented in the merged catalogue, which can be either **M**,  $M_s$  or  $M_L$ . As can be observed, except for the

events that fall along the 1:1 relationship line, there is a tendency for magnitudes in the merged catalogue to be smaller than in their converted moment magnitudes in the WPG16v3b catalogue. This means that, when filtering events for the range of interest ( $4.0 \le M \le 5.5$ ), 102 of the 177 events are kept when using the magnitude values from the merged catalogue, while 169 would be kept if the moment magnitude values from WPG16v3b were used instead. When applying the depth criterion over the 102 events that fall within the magnitude range according to the merged catalogue, only 40 events are left.



Figure I.3. Moment magnitude from WPG16v3b against magnitude (**M**, M<sub>s</sub> or M<sub>L</sub>) in the merged catalogue for the 177 events that have no depth information in WPG16v3b but belong to the merged catalogue.

### I.5. Events that do not become part of the merged catalogue

The remaining 38 events shown in Figure I.4 do not become part of the merged catalogue. Their entries in the ISC Bulletin were analysed in detail in terms of the following:

- information from main agencies;
- information from local agencies;
- reported minimum, maximum, mean and median depths.

In most cases, magnitude estimates from main agencies were found to be only in terms of body-wave magnitude m<sub>b</sub>, which is not being considered herein. Estimates in terms of other magnitude scales were available for some events, but they were related to origin estimates that lacked information on depth.

Most of these 38 events did not have estimates from local agencies. For those that did, either the local agencies that provided estimates were not relevant to the location of the

epicentre, according to the criteria explained in Section 2.6, or they provided only body-wave magnitudes.

The minimum, maximum, mean and median depths of all those reported for each event were retrieved and compared against the depth limit corresponding to the moment magnitude reported in the WPG16v3b catalogue. When considering minimum values, only 4 out of these 38 events passed the criterion, while none passed when considering maximum values instead. Only one event passed the criterion when considering mean or median depths.



Figure I.4. Events from WPG16 without information on depth that are not included in the merged catalogue (38 events).

## I.6. Conclusions

This analysis reveals that excluding the 215 events of the WPG16v3b world catalogue that do not have information on depth does not have any major consequences for the database, as all these events can be found within the ISC Bulletin and are treated in the same way as all other events that are not part of WPG16v3b. The only issue that can be pointed out is that moment magnitude estimates from WPG16v3b are lost for the events that are finally included in the database, and these would be preferable over values in terms of  $M_s$  or  $M_L$  that might replace them when taken directly from the ISC Bulletin. It could be possible to modify the algorithms so as to consider the values of moment magnitude from WPG16v3b for these events. However, given the very small number of events that would be affected by this procedure, the additional complexity is not warranted.

# **APPENDIX II: HIERARCHY OF AGENCIES CONTRIBUTING TO THE ISC**

The agencies contributing to the ISC with data were ranked per country and region according to the criteria described in Section 2.6. The main list of agencies was retrieved from the website of the ISC, though some unlisted agencies were added as these were identified among the studied events. A similar table that exists for the ANSS Composite Catalogue of the United States was of use for cases in which information was missing.

Table II.1 shows the list of local and regional agencies used for the selection of one origin and magnitude estimate per event retrieved from the ISC Bulletin. The ranking restarts from 1 for each country/region. The list of main agencies can be found in Table 2.2 (Section 2.6).

As has been noted by Weatherill *et al.* (2016), ranking the different sources of data into a hierarchy is necessarily based on assumptions. The complexity of determining which agency to prioritise over which other is as large as the area of the globe covered by the analysis. Involving this work the whole world, it was impossible to study in detail the extent of the networks and quality of the equipment of each and every single agency listed below in order to make a decision. Fortunately, many countries have a very reduced number of agencies, and countries with a significant number of agencies tend to have at least a handful that are clearly more extensive than the rest. In the latter case, it is noted that it cannot be inferred that a position number 50 in the ranking is worse than a position 40, as it is likely that all positions after, let us say, 10, are more of an instrument to apply the algorithm than an actual statement of preference. This decision is not expected to have a great influence in the results, as it is expected that the natural tendency of very local agencies to report only about very local events take care of an event in California not being characterised by an agency in South Carolina, as there will be no estimate from the latter for that event.

| Acronym | Name                                                            | Country     | Case    | Ranking | Comments  |
|---------|-----------------------------------------------------------------|-------------|---------|---------|-----------|
| KBL     | Afghanistan Seismological Observatory                           | Afghanistan | Country | 1       | -         |
| TIR     | The Institute of Seismology, Academy of Sciences of Albania     | Albania     | Country | 1       | -         |
| CRAAG   | Centre de Recherche en Astronomie, Astrophysique et Géophysique | Algeria     | Country | 1       | -         |
| ALG     | Algiers University                                              | Algeria     | Country | 2       | -         |
| ABA     | Alger-bouzareah                                                 | Algeria     | Country | 3       | Alias ALG |
| SET     | Setif Observatory                                               | Algeria     | Country | 4       | -         |
| SJA     | Instituto Nacional de Prevención Sísmica                        | Argentina   | Country | 1       | -         |
| ZON     | Universidad Nacional de San Juan                                | Argentina   | Country | 2       | -         |
| BAA     | Servicio Meteorologico Nacional                                 | Argentina   | Country | 3       | -         |
| LPA     | Universidad Nacional de La Plata                                | Argentina   | Country | 4       | -         |
| NSSP    | National Survey of Seismic Protection                           | Armenia     | Country | 1       | -         |
| SPITAK  | SPITAK                                                          | Armenia     | Country | 2       | -         |
| AUST    | Geoscience Australia                                            | Australia   | Country | 1       | -         |
| CAN     | Australian National University                                  | Australia   | Country | 2       | -         |
| MUN     | Mundaring Observatory                                           | Australia   | Country | 3       | -         |
| QDM     | Queensland Department of Mines                                  | Australia   | Country | 4       | -         |
| CUPWA   | Curtin University                                               | Australia   | Country | 5       | -         |
| BRS     | Brisbane Seismograph Station                                    | Australia   | Country | 6       | -         |
| RIV     | Riverview Observatory                                           | Australia   | Country | 7       | -         |
| RMIT    | Royal Melbourne Institute of Technology                         | Australia   | Country | 8       | -         |

Table II.1. List of local and regional agencies contributing to the ISC Bulletin and the ranking assigned to them herein. Ranking was assigned per country or region.

| Acronym    | Name                                                                            | Country                       | Case    | Ranking | Comments             |
|------------|---------------------------------------------------------------------------------|-------------------------------|---------|---------|----------------------|
| TAU        | University of Tasmania                                                          | Australia                     | Country | 9       | _                    |
| ADE        | Primary Industries and Resources SA                                             | Australia                     | Country | 10      | _                    |
| VIE        | Zentralanstalt für Meteorologie und Geodynamik (ZAMG)                           | Austria                       | Country | 1       | _                    |
|            | Vienna-Zohenzt Austria                                                          | Austria                       | Country | 2       | ANSS / Berkeley      |
| AZER       | Republic Center of Seismic Survey                                               | Azerbaijan                    | Country | 1       | -                    |
| BELD       | Centre of Geophysical Monitoring of the National Academy of Sciences of Belarus | Belarus                       | Country | 1       | _                    |
|            | Poval Observatory of Belaium                                                    | Belgium                       | Country | 1       | -                    |
| 1.07       |                                                                                 | Bolivia                       | Country | 1       | -                    |
| LFZ<br>SCP | Observatorio San Calixo                                                         | Bolivia                       | Country | 1       | -<br>Alice I P7      |
| BANUO      |                                                                                 | Bolivia                       | Country | 2       | Allas Lr Z           |
| SEDA       | Solomic Evploration of the Deep Altinione                                       | Bolivia                       | Country | 3       | United States        |
| BUSSO      | Benublia Ludramateorelagiaal Service, Seismelagiaal Obeen sterry, Bania Ludra   | Dolivia<br>Despis Usrzegovine | Country | 4       | United States        |
| RHSSU      | Republic Hydrometeorological Service, Seismological Observatory, Banja Luka     | Bosnia - Herzegovina          | Country | 1       | -                    |
| SAR        | Sarajevo Seismological Station                                                  | Bosnia - Herzegovina          | Country | 2       | -                    |
| BDF        |                                                                                 | Brazil                        | Country | 1       | -                    |
| VAO        |                                                                                 | Brazil                        | Country | 2       | -                    |
| MASS       | Marcelo Assumpcao                                                               | Brazil                        | Country | 3       | -                    |
| SOF        | Geophysical Institute, Bulgarian Academy of Sciences                            | Bulgaria                      | Country | 1       | -                    |
| KBC        | Institut de Recherches Géologiques et Minières                                  | Cameroon United Republic      | Country | 1       | -                    |
| ΟΠ         | Canadian Hazards Information Service, Natural Resources Canada                  | Canada                        | Country | 1       | -                    |
| PGC        | Pacific Geoscience Centre                                                       | Canada                        | Country | 2       | -                    |
| LDN        | University of Western Ontario                                                   | Canada                        | Country | 3       | -                    |
| BNG        | Observatoire ORSTOM de Bangui                                                   | Central African Republic      | Country | 1       | -                    |
| GUC        | Centro Sismológico Nacional, Universidad de Chile                               | Chile                         | Country | 1       | -                    |
| ANT        | Antofagasta                                                                     | Chile                         | Country | 2       | Alias GUC            |
| SAN        | Santiago                                                                        | Chile                         | Country | 3       | Alias GUC            |
| STL        | Santa Lucia Seismological Station                                               | Chile                         | Country | 4       | Alias GUC            |
| PUNA       | Puna Plateau, Argentina and Northern Chile Experiment                           | Chile                         | Country | 5       | Germany              |
| ANCORP     | Andean Continental Research Project                                             | Chile                         | Country | 6       | Germany              |
| FUBES      | Earth Science Dept., Geophysics Section                                         | Chile                         | Country | 7       | Germany              |
| GEOMR      | GEOMAR                                                                          | Chile                         | Country | 8       | Germany              |
| CNH        | Changchun                                                                       | China                         | Country | 1       | Alias BJI            |
| NAN        | Nanking Station                                                                 | China                         | Country | 2       | Alias BJI            |
| PEK        | Peking                                                                          | China                         | Country | 3       | Alias BJI            |
| ZSC        | Zose Seismological Station                                                      | China                         | Country | 4       | Alias BJI            |
| BJT        | Baijiatuan                                                                      | China                         | Country | 5       | -                    |
| TIENSHAN   | Tien Shan Continental Dynamics                                                  | China                         | Country | 6       | United States        |
| INDEPTH3   | International Deep Profiling of Tibet and the Himalayas                         | China                         | Country | 7       | United States        |
| RSNC       | Red Sismológica Nacional de Colombia                                            | Colombia                      | Country | 1       | -                    |
| UVC        | Universidad del Valle                                                           | Colombia                      | Country | 2       | -                    |
| BOG        | Universidad Javeriana                                                           | Colombia                      | Country | 3       | -                    |
| GOM        | Observatoire Volcanologique de Goma                                             | Congo Democratic Republic     | Country | 1       | -                    |
| LWI        | Centre de Geophysique du Zaire                                                  | Congo Democratic Republic     | Country | 2       | -                    |
| CASC       | Central American Seismic Center                                                 | Costa Rica                    | Country | 1       | -                    |
| CADCG      | Central America Data Centre                                                     | Costa Rica                    | Country | 2       | Alias CASC           |
| HDC        | Observatorio Vulcanológico y Sismológico de Costa Rica                          | Costa Rica                    | Country | 3       | -                    |
| UCR        | Sección de Sismología. Vulcanología v Exploración Geofísica                     | Costa Rica                    | Country | 4       | -                    |
| ICE        | Instituto Costarricense de Electricidad                                         | Costa Rica                    | Country | 5       | -                    |
| SJS        | Instituto Costarricense de Electricidad (alias)                                 | Costa Rica                    | Country | 6       | Alias ICE            |
| OSA        | Osa Peninsula Project Costa Rica                                                | Costa Rica                    | Country | 7       | United States        |
| SIR        | Seccion de Sismologia Univ. de Costa Rica. San Jose                             | Costa Rica                    | Country | 8       | ANSS / Berkeley      |
| 74G        | Seismological Survey of the Republic of Croatia                                 | Croatia                       | Country | 1       | -                    |
| SSNC       |                                                                                 | Cuba                          | Country | 1       |                      |
| NIC        |                                                                                 | Cuprus                        | Country | 1       | -                    |
|            | Centering Contract Contract                                                     | Cuprus                        | Country | 1<br>2  | -<br>ANGS / Derkelau |
| 660        | Coophysical Institute Academy of Sciences of the Creek Persit"                  | Czoch Donublic                | Country | 4       | TINGO / DEFREIEY     |
|            | Seophysical Institute, Academy of Sciences of the Uzech Republic                |                               | Country | 1       | -                    |
|            |                                                                                 |                               | Country | 2       | -                    |
| IPEC       | Ine Institute of Physics of the Earth (IPEC)                                    | Czech Republic                | Country | 3       | -                    |
| PRA        | Academy of Sciences of the Czech Republic                                       | Czech Republic                | Country | 4       | -                    |
| KHC        | Geotysikalni Ustav, Ceske Akademie Ved                                          | Czech Republic                | Country | 5       | -                    |
| UGN        | Institute of Geonics AS CR                                                      | Czech Republic                | Country | 6       | -                    |
| VRAC       | Vranov Seismological Station                                                    | Czech Republic                | Country | 7       | -                    |

| Acronym      | Name                                                               | Country                    | Case    | Ranking | Comments             |
|--------------|--------------------------------------------------------------------|----------------------------|---------|---------|----------------------|
| WBNET        | West Bohemia Seismic Network                                       | Czech Republic             | Country | 8       | -                    |
|              | Geological Survey of Denmark and Greenland                         | Denmark                    | Country | 1       | _                    |
|              |                                                                    | Diibouti                   | Country | 1       | _                    |
|              | Inst. Nacional de Recursos Hidraulicos                             | Dominican Republic         | Country | 1       | _                    |
|              | Observatorio Sismologico Politecnico Lovola                        | Dominican Republic         | Country | 2       |                      |
| SDD          | Linivercidad Autonoma de Santo Domingo                             | Dominican Republic         | Country | 2       | _                    |
| 100          | Servicio Nacional de Sismología y Vulcanología                     | Ecuador                    | Country | 1       | -                    |
|              | Eccuela Politácnica Nacional                                       | Ecuador                    | Country | 2       | -                    |
|              | National Research Institute of Astronomy and Geophysics            | Equat                      | Country | 1       | -                    |
| CIG          | Servicio Geologico Nacional de El Salador                          | El Salvador                | Country | 1       |                      |
| SNET         | Servicio Nacional de Estudios Territoriales                        | El Salvador                | Country | 2       | -                    |
|              | Centro de Estudios y Investigaciones Geotecnicas del San Salvador  | El Salvador                | Country | 3       | -                    |
| 000<br>ASM   | Liniversity of Asmara                                              | Eritrea                    | Country | 1       | _                    |
| FST          | Geological Survey of Estopia                                       | Estonia                    | Country | 1       |                      |
|              | Liniversity of Addis Ababa                                         | Esionia                    | Country | 1       |                      |
|              | Ethiopia-Afar Geoscientific Lithospheric Evperiment                | Ethiopia                   | Country | 2       | -                    |
| ERSE         | Ethiopian Broadband Seismic Experiment                             | Ethiopia                   | Country | 2       |                      |
| SV/A         |                                                                    | Eiliopia                   | Country | 1       | -                    |
|              |                                                                    | Finland                    | Country | 1       | -                    |
|              | Kangagniemi Station                                                | Finland                    | Country | 2       | -                    |
| SOD          |                                                                    | Finland                    | Country | 2       | -<br>Alias HEI       |
| NUD          | Nurmioni Station                                                   | Finland                    | Country | 3       |                      |
|              |                                                                    | Finland                    | Country | 4       |                      |
|              | Fillessa Altay                                                     | Finianu                    | Country | 1       | -                    |
|              | Laboratorie de Detection et de Geophysique/CEA                     | France                     | Country | 1       | -                    |
| PCIE         | Ruroeu Control International de Siemalaria                         | France                     | Country | 2       | -                    |
|              | Institut de Diveigue du Clabe                                      | France                     | Country | 3       | -                    |
|              |                                                                    | France                     | Country | 4       | -                    |
|              |                                                                    | France<br>France Delynasia | Country | 1       | -                    |
|              | Laboratorie de Geophysique/CEA                                     | Coorgio                    | Country | 1       | -                    |
|              | Bundesenetelt für Cognissensehaften und Behsteffe                  | Georgia                    | Country | 1       | -                    |
|              | Alfred Wegener Institute for Beler and Marine Besearch             | Germany                    | Country | 1       | -                    |
|              |                                                                    | Germany                    | Country | 2       | -                    |
|              | Landeser debendierist Bader-Wurtenberg                             | Germany                    | Country | 3       | -                    |
|              |                                                                    | Cormony                    | Country | 4       |                      |
|              |                                                                    | Germany                    | Country | 5       | Allas LED/310        |
| CU           | Coophysikalisches Observatorium Collm                              | Germany                    | Country | 7       | -                    |
|              |                                                                    | Germany                    | Country | 1       | -                    |
|              | Coologiesher Dionet Nordrhein Wootfelen                            | Germany                    | Country | 0       | -                    |
| BLIC         |                                                                    | Germany                    | Country | 9       | -                    |
| DUG          | Freihabenetetien, Coolegiaabee Institut der Universität Käl        | Germany                    | Country | 10      | -                    |
|              | Coophysikaliashaa Ohaaristarium dar Universität Münchan            | Germany                    | Country | 10      | -                    |
| FUR<br>SZODE |                                                                    | Germany                    | Country | 12      | -                    |
|              |                                                                    | Cormony                    | Country | 13      | -<br>ANSS / Parkalay |
|              |                                                                    | Germany                    | Country | 14      | Alice SZCRE          |
|              |                                                                    | Germany                    | Country | 10      | Alias SZGRF          |
|              | Besucherbergwerk Binweide Station                                  | Germany                    | Country | 10      | -                    |
|              | Coophysikelisches Observaterium der Ludwig Meximilians Universität | Germany                    | Country | 17      | -                    |
|              | Crofonborg Arroy                                                   | Cormony                    | Country | 10      | -                    |
|              | Coophysikalisches Observaterium, Hohe Phys Eledungen               | Germany                    | Country | 19      | -                    |
|              |                                                                    | Cormony                    | Country | 20      | -                    |
|              | Capphysikalioshas Obsariatorium Zastarbara                         | Cormony                    | Country | 21      | -                    |
|              | Ceophysikalisches Observatorium Nordinger Dise                     | Germany                    | Country | 22      | -                    |
|              | Coophysikalisches Observatorium Observatorium                      | Cormonia                   | Country | 23      | -                    |
| OBER         | Geophysikalisches Observatorium - Überstdorf                       | Germany                    | Country | 24      | -                    |
| DUGA         |                                                                    | Germany                    | Country | 25      | -                    |
|              | Geophysikalisches Observatorium - Jochberg                         | Germany                    | Country | 20      | -                    |
|              | Geophysikalisches Observatorium - Staufen-Nonn                     | Germany                    | Country | 27      | -                    |
| RUIZ         |                                                                    | Germany                    | Country | 28      | -                    |
| SCE          | Geophysikalisches Observatorium - Schlegels/Austria                | Germany                    | Country | 29      | -                    |
| WET          | Geophysikalisches Observatorium - Wettzell                         | Germany                    | Country | 30      | -                    |
| GEC2         | Geress Array                                                       | Germany                    | Country | 31      | -                    |

| Acronym  | Name                                                                        | Country     | Case    | Ranking | Comments        |
|----------|-----------------------------------------------------------------------------|-------------|---------|---------|-----------------|
| MOX      | Moxa, Thuringen, Germany                                                    | Germany     | Country | 32      | ANSS / Berkeley |
| GDSN     | Ghana Geological Survey Department                                          | Ghana       | Country | 1       | -               |
| KUK      | Geological Survey Department of Ghana                                       | Ghana       | Country | 2       | -               |
| ATH      | National Observatory of Athens                                              | Greece      | Country | 1       | -               |
| THE      | Department of Geophysics, Aristotle University of Thessaloniki              | Greece      | Country | 2       | -               |
| UPSL     | University of Patras, Department of Geology                                 | Greece      | Country | 3       | -               |
| VSI      | University of Athens                                                        | Greece      | Country | 4       | -               |
| PAG      | Le Parnasse, Guadeloupe                                                     | Guadeloupe  | Country | 1       | ANSS / Berkeley |
| GCG      | INSIVUMEH                                                                   | Guatemala   | Country | 1       | -               |
| UNAH     | Universidad Nacional Autonoma de Honduras                                   | Honduras    | Country | 1       | -               |
| HKC      | Hong Kong Observatory                                                       | Hong Kong   | Country | 1       | -               |
| KRSZO    | Geodetic and Geophysical Reasearch Institute, Hungarian Academy of Sciences | Hungary     | Country | 1       | -               |
| BUD      | Geodetic and Geophysical Research Institute                                 | Hungary     | Country | 2       | -               |
| REY      | Icelandic Meteorological Office                                             | Iceland     | Country | 1       | -               |
| NDI      | National Centre for Seismology of the Ministry of Earth Sciences of India   | India       | Country | 1       | -               |
| HYD      | National Geophysical Research Institute                                     | India       | Country | 2       | Alias NDI       |
| POO      | Poona Observatory                                                           | India       | Country | 3       | Alias NDI       |
| HYB      | National Geophysical Research Institute                                     | India       | Country | 4       | -               |
| SHL      | Central Seismological Observatory                                           | India       | Country | 5       | -               |
| MERI     | Maharashta Engineering Research Institute                                   | India       | Country | 6       | -               |
| MUM      | Manipur University                                                          | India       | Country | 7       | -               |
| RRLJ     | Regional Research Laboratory Jorhat                                         | India       | Country | 8       | -               |
| GBA      | Bhaba Atomic Research Centre                                                | India       | Country | 9       | -               |
| BHUJ2    | Study of Aftershocks of the Bhuj Earthquake by Japanese Research Team       | India       | Country | 10      | Japan           |
| BHUJ     | Bhuj Aftershock Study                                                       | India       | Country | 11      | United States   |
| DJA      | Badan Meteorologi, Klimatologi dan Geofisika                                | Indonesia   | Country | 1       | -               |
| LEM      | Lembang Station                                                             | Indonesia   | Country | 2       | -               |
| DJA      | Lembang Station (alias)                                                     | Indonesia   | Country | 3       | Alias LEM       |
| BIAK     | Biak earthquake aftershocks (17-Feb-1996)                                   | Indonesia   | Country | 4       | United States   |
| TEH      | Tehran University                                                           | Iran        | Country | 1       | -               |
| TAB      | Tabriz Seismological Observatory                                            | Iran        | Country | 2       | -               |
| SHI      | Shiraz Observatory                                                          | Iran        | Country | 3       | -               |
| THR      | International Institute of Earthquake Engineering and Seismology (IIEES)    | Iran        | Country | 4       | -               |
| IASBS    | Institute for Advanced Studies in Basic Sciences                            | Iran        | Country | 5       | -               |
| UPIES    | Institute of Earth- and Environmental Science                               | Iran        | Country | 6       | -               |
| ISN      | Iraqi Meteorological and Seismology Organisation                            | Iraq        | Country | 1       | -               |
| DIAS     | Dublin Institute for Advanced Studies                                       | Ireland     | Country | 1       | -               |
| GII      | The Geophysical Institute of Israel                                         | Israel      | Country | 1       | -               |
| IPRG     | Institute for Petroleum Research and Geophysics                             | Israel      | Country | 2       | -               |
| JER      | Seismological Laboratory, Geological Survey of Israel                       | Israel      | Country | 3       | -               |
| AFAR     | The Afar Depression: Interpretation of the 1960-2000 Earthquakes            | Israel      | Country | 4       | -               |
| ROM      | Istituto Nazionale di Geofisica e Vulcanologia                              | Italy       | Country | 1       | -               |
| PAV      | Pavia                                                                       | Italy       | Country | 2       | Alias ROM       |
| MED_RCMT | MedNet Regional Centroid - Moment Tensors                                   | Italy       | Country | 3       | -               |
| TRI      | Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS)        | Italy       | Country | 4       | -               |
| MES      | Messina Seismological Observatory                                           | Italy       | Country | 5       | -               |
| MSI      | Messina Seismological Observatory (alias)                                   | Italy       | Country | 6       | -               |
| AQU      | L,Aquila                                                                    | Italy       | Country | 7       | -               |
| GEN      | Dipartimento per lo Studio del Territorio e delle sue Risorse (RSNI)        | Italy       | Country | 8       | -               |
| RISSC    | Laboratory of Research on Experimental and Computational Seimology          | Italy       | Country | 9       | -               |
| ACI      | Universita di Calabria                                                      | Italy       | Country | 10      | -               |
| OSUB     | Osservatorio Sismologico Universita di Bari                                 | Italy       | Country | 11      | -               |
| PRT      | Observatorio San Domenico                                                   | Italy       | Country | 12      |                 |
| LIC      | Station Géophysique de Lamto                                                | Ivory Coast | Country | 1       |                 |
| JSN      | Jamaica Seismic Network                                                     | Jamaica     | Country | 1       | -               |
| HOJ      | University of the West Indies, Mona, Jamaica                                | Jamaica     | Country | 2       | ANSS / Berkeley |
| JMA      | Japan Meteorological Agency                                                 | Japan       | Country | 1       | -               |
| TOK      | Tokyo Observatory                                                           | Japan       | Country | 2       | Alias JMA       |
| NIED     | National Research Institute for Earth Science and Disaster Prevention       | Japan       | Country | 3       | -               |
| ERI      | Earthquake Research Institute, University of Tokyo                          | Japan       | Country | 4       | -               |
| SYO      | National Institute of Polar Research                                        | Japan       | Country | 5       | -               |

| Acronym    | Name                                                                   | Country       | Case    | Ranking | Comments        |
|------------|------------------------------------------------------------------------|---------------|---------|---------|-----------------|
| MAT        | The Matsushiro Seismological Observatory                               | Japan         | Country | 6       | -               |
| HOKK_DSZ   | Hokkaido Double Seismic Zone                                           | Japan         | Country | 7       | -               |
| IFREE      | Institute For Research on Earth Evolution                              | Japan         | Country | 8       | -               |
| JSO        | Jordan Seismological Observatory                                       | Jordan        | Country | 1       | -               |
| NNC        | National Nuclear Center                                                | Kazakhstan    | Country | 1       | -               |
| SOME       | Seismological Experimental Methodological Expedition                   | Kazakhstan    | Country | 2       | -               |
| AAA        | Alma-ata                                                               | Kazakhstan    | Country | 3       | -               |
| AAB        | Alma-ata 2                                                             | Kazakhstan    | Country | 4       | -               |
| NAI        | University of Nairobi                                                  | Kenya         | Country | 1       | -               |
| KRISP      | Kenva Rift International Seismic Project                               | Kenva         | Country | 2       | -               |
| SIK        | Seismic Institute of Kosovo                                            | Kosovo        | Country | 1       | _               |
| KISR       | Kuwait Institute for Scientific Research                               | Kuwait        | Country | 1       | -               |
| KRNET      | Institute of Seismology, Academy of Sciences of Kyrgyz Republic        | Kyrayzetan    | Country | 1       | _               |
| KNET       | Kurruz Seismic Network                                                 | Kyrgyzstan    | Country | 2       |                 |
|            | Lettion Science Network                                                | l atria       | Country |         | -               |
|            | National Coursell for Scientific Dessarch                              | Laivia        | Country | 1       | -               |
| GRAL       |                                                                        | Lebanon       | Country | 1       | -               |
| KSA        | Observatoire de Ksara                                                  | Lebanon       | Country | 2       | -               |
| BHL        | Bhannes, Lebanon                                                       | Lebanon       | Country | 3       | ANSS / Berkeley |
| LIB        | Tripoli                                                                | Libya         | Country | 1       | -               |
| LDSN       | Libyan Center for Remote Sensing and Space Science, Tripoli            | Libya         | Country | 2       | -               |
| LIT        | Geological Survey of Lithuania                                         | Lithuania     | Country | 1       | -               |
| MCO        | Macao Meteorological and Geophysical Bureau                            | Macau         | Country | 1       | -               |
| SKO        | Seismological Observatory Skopje                                       | Macedonia     | Country | 1       | -               |
| TAN        | Antananarivo                                                           | Madagascar    | Country | 1       | -               |
| GSDM       | Geological Survey Department Malawi                                    | Malawi        | Country | 1       | -               |
| KLM        | Malaysian Meteorological Service                                       | Malaysia      | Country | 1       | -               |
| FDF        | Fort de France                                                         | Martinique    | Country | 1       | -               |
| MEX        | Instituto de Geofísica de la UNAM                                      | Mexico        | Country | 1       | -               |
| UNM        | Instituto de Geofisica, UNAM, Mexico City                              | Mexico        | Country | 2       | ANSS / Berkeley |
| TAC        | Estación Central de Tacubaya                                           | Mexico        | Country | 3       | -               |
| OAX        | Oaxaca                                                                 | Mexico        | Country | 4       | Alias TAC       |
| MER        | Merida                                                                 | Mexico        | Country | 5       | Alias TAC       |
| COM        | Comitan                                                                | Mexico        | Country | 6       | Alias TAC       |
| RSMAC      | Red Sísmica Mexicana de Apertura Continental                           | Mexico        | Country | 7       | -               |
| FCX        | Centro de Investigación Científica y de Educación Superior de Ensenada | Mexico        | Country | 8       | _               |
|            | Institute of Geophysics and Geology                                    | Moldova       | Country | 1       | -               |
| OBM        | Research Centre of Astronomy and Geophysics                            | Mongolia      | Country | 1       |                 |
|            |                                                                        | Mongolia      | Country | 2       | _               |
|            |                                                                        | Montopogra    | Country | 2       | -               |
| FDG        |                                                                        | Montenegro    | Country | 1       |                 |
| TIG NA(O)( | Manteerent Valaana Ohaamutami                                          | Montenegro    | Country | 2       | Allas FDG       |
| NIVOV      |                                                                        | Montserrat    | Country | 1       | -               |
|            |                                                                        | IVIOFOCCO     | Country | 1       | -               |
| RBA        |                                                                        | Morocco       | Country | 2       | -               |
| SPGM       | Service de Physique du Giobe                                           | Morocco       | Country | 3       | Alias RBA       |
| AVE        | Averroes                                                               | Morocco       | Country | 4       | -               |
| MOZ        | Direccao Nacional de Geologia                                          | Mozambique    | Country | 1       | -               |
| CNG        | Seismographic Station Changalane                                       | Mozambique    | Country | 2       | -               |
| NAM        | The Geological Survey of Namibia                                       | Namibia       | Country | 1       | -               |
| DMN        | National Seismological Centre, Nepal                                   | Nepal         | Country | 1       | -               |
| HIMNT      | Himalayan Nepal Tibet Experiment                                       | Nepal         | Country | 2       | United States   |
| DBN        | Koninklijk Nederlands Meteorologisch Instituut                         | Netherlands   | Country | 1       | -               |
| ORF        | Orfeus Data Center                                                     | Netherlands   | Country | 2       | -               |
| NOU        | IRD Centre de Nouméa                                                   | New Caledonia | Country | 1       | -               |
| WEL        | Institute of Geological and Nuclear Sciences                           | New Zealand   | Country | 1       | -               |
| VUW        | Victoria University of Wellington                                      | New Zealand   | Country | 2       | -               |
| SAPSE      | Southern Alps Passive Seismic Experiment                               | New Zealand   | Country | 3       | -               |
| INET       | Instituto Nicaragüense de Estudios Territoriales                       | Nicaragua     | Country | 1       | -               |
| KEA        | Korea Earthquake Administration                                        | North Korea   | Country | 1       | -               |
| NAO        | Stiftelsen NORSAR                                                      | Norway        | Country | 1       | -               |
| BER        | University of Bergen                                                   | Norway        | Country | 2       | -               |
| ARA0       | Arcess Array                                                           | Norway        | Country | 3       | -               |

| Acronym  | Name                                                                           | Country          | Case    | Ranking | Comments        |
|----------|--------------------------------------------------------------------------------|------------------|---------|---------|-----------------|
| NRA0     | Noress Array                                                                   | Norway           | Country | 4       | -               |
| OMAN     | Sultan Qaboos University                                                       | Oman             | Country | 1       | -               |
| QUE      | Pakistan Meteorological Department                                             | Pakistan         | Country | 1       | -               |
| MSSP     | Micro Seismic Studies Programme, PINSTECH                                      | Pakistan         | Country | 2       | -               |
| UPA      | Universidad de Panama                                                          | Panama           | Country | 1       | -               |
| PANAMA97 | Panama Canal Seismicity Study                                                  | Panama           | Country | 2       | United States   |
| PMG      | Port Moresby Geophysical Observatory                                           | Papua New Guinea | Country | 1       | -               |
| RAB      | Rabaul Volcanological Observatory                                              | Papua New Guinea | Country | 2       | -               |
| WOODLARK | Woodlark-D,Entrecasteaux Rift, Papua New Guinea                                | Papua New Guinea | Country | 3       | United States   |
| ARE      | Instituto Geofisico del Peru                                                   | Peru             | Country | 1       | -               |
| LIM      | Lima                                                                           | Peru             | Country | 2       | Alias ARE       |
| PISCO    | Proyecto de Investigacion Sismologica de la Cordillera Occidental              | Peru             | Country | 3       | Germany         |
| CINCA    | Crustal Investigations Off- and On-shore Nazca - Central Andes                 | Peru             | Country | 4       | Germany         |
| MAN      | Philippine Institute of Volcanology and Seismology                             | Philippines      | Country | 1       | -               |
| QCP      | Manila Observatory                                                             | Philippines      | Country | 2       | -               |
| WAR      | Institute of Geophysics. Polish Academy of Sciences                            | Poland           | Country | 1       | -               |
| LIS      | Instituto de Meteorologia                                                      | Portugal         | Country | 1       | _               |
| PTO      | Instituto Geofísico da Universidade do Porto                                   | Portugal         | Country | 2       | _               |
| A70      | Centro de Informação e Vigilância Sismovulcânica dos Azores                    | Portugal         | Country | 3       | _               |
| SVSA     | Sistema de Vigilância Sismológica dos Acores                                   | Portugal         | Country | 4       |                 |
|          | Centro de Investigação da Terra e do Espaço da Universidade de Coimbra         | Portugal         | Country | 5       | -               |
| ICII     | Centro de Investigação da Terra e do Espaço da Oniversidade de Combra          | Portugal         | Country | 5       | -               |
|          | Instituto Geonsico do Infante Doni Luiz                                        | Portugal         | Country | 0       | -               |
|          |                                                                                | Portugal         | Country | 1       | -               |
| ADH      | Observatorio Aronso Chaves                                                     | Portugal         | Country | 8       | -               |
| PDA      | Universidade dos Açores                                                        | Portugal         | Country | 9       | -               |
| RSPR     |                                                                                | Puerto Rico      | Country | 1       | -               |
| MPR      | University of Puerto Rico, Mayaguez, Puerto Rico                               | Puerto Rico      | Country | 2       | ANSS / Berkeley |
| BUC      | National Institute for Earth Physics                                           | Romania          | Country | 1       | -               |
| MLR      | Muntele Rosu Station                                                           | Romania          | Country | 2       | -               |
| VLA      | Vladivostok Seismological Station                                              | Russian Fed.     | Country | 1       | Alias MOS       |
| IDG      | Institute of Dynamics of Geosphere, Russian Academy of Sciences                | Russian Fed.     | Country | 2       | -               |
| BYKL     | Baykal Regional Seismological Centre, GS SB RAS                                | Russian Fed.     | Country | 3       | -               |
| KRSC     | Kamchatkan Experimental and Methodical Seismological Department, GS RAS        | Russian Fed.     | Country | 4       | -               |
| CFUSG    | Inst. of Seismology and Geodynamics, V.I. Vernadsky Crimean Federal University | Russian Fed.     | Country | 5       | -               |
| YARS     | Yakutiya Regional Seismological Center, GS SB RAS                              | Russian Fed.     | Country | 6       | -               |
| ASRS     | Altai-Sayan Seismological Centre, GS SB RAS                                    | Russian Fed.     | Country | 7       | -               |
| DRS      | Dagestan Branch, Geophysical Survey, Russian Academy of Sciences               | Russian Fed.     | Country | 8       | -               |
| IEPN     | Institute of Environmental Problems of the North, Russian Academy of Sciences  | Russian Fed.     | Country | 9       | -               |
| MIRAS    | Mining Institute of the Ural Branch of the Russian Academy of Sciences         | Russian Fed.     | Country | 10      | -               |
| NERS     | North Eastern Regional Seismological Centre, GS RAS                            | Russian Fed.     | Country | 11      | -               |
| NORS     | North Ossetia (Alania) Branch, Geophysical Survey, Russian Academy of Sciences | Russian Fed.     | Country | 12      | -               |
| SKHL     | Sakhalin Experimental and Methodological Seismological Expedition, GS RAS      | Russian Fed.     | Country | 13      | -               |
| CMWS     | Laboratory of Seismic Monitoring of Caucasus Mineral Water Region, GSRAS       | Russian Fed.     | Country | 14      | -               |
| KOLA     | Kola Regional Seismic Centre, GS RAS                                           | Russian Fed.     | Country | 15      | -               |
| KRAR     | Krasnoyarsk Scientific Research Inst. of Geology and Mineral Resources, Russia | Russian Fed.     | Country | 16      | -               |
| VKMS     | Lab. of Seismic Monitoring, Voronezh region, GSRAS & Voronezh State University | Russian Fed.     | Country | 17      | -               |
| IEC      | Institute of the Earth Crust, SB RAS                                           | Russian Fed.     | Country | 18      | -               |
| RIPT     | Research Inst. of Pulse Technique                                              | Russian Fed.     | Country | 19      | -               |
| OBN      | Geophysical Survey of the Russian Academy of Sciences, Obninsk, Russia         | Russian Fed.     | Country | 20      | EMSC            |
| AFI      | Apia Observatory                                                               | Samoa            | Country | 1       | -               |
| API      | Apia Observatory (alias)                                                       | Samoa            | Country | 2       | Alias API       |
| RYD      | King Saud University                                                           | Saudi Arabia     | Country | 1       | -               |
| SGS      | Saudi Geological Survey                                                        | Saudi Arabia     | Country | 2       | -               |
| SNSN     | Saudi National Seismic Network                                                 | Saudi Arabia     | Country | 3       | -               |
| BEO      | Seismological Survey of Serbia                                                 | Serbia           | Country | 1       | -               |
| BRA      | Geophysical Institute, Slovak Academy of Sciences                              | Slovakia         | Country | 1       | -               |
| SPC      | Skalnate-Pleso Seismological Station                                           | Slovakia         | Country | 2       | Alias BRA       |
| LJU      | Slovenian Environment Agency                                                   | Slovenia         | Country | 3       | -               |
| HNR      | Ministry of Mines, Energy and Rural Electrification                            | Solomon Islands  | Country | 1       | -               |
| PRE      | Council for Geoscience                                                         | South Africa     | Country | 1       | -               |
| JOH      | Bernard Price Institute of Geophysics                                          | South Africa     | Country | 2       | -               |

| Acronym  | Name                                                                       | Country                | Case    | Ranking | Comments      |
|----------|----------------------------------------------------------------------------|------------------------|---------|---------|---------------|
| KMA      | Korea Meteorological Administration                                        | South Korea            | Country | 1       | -             |
| MDD      | Instituto Geográfico Nacional                                              | Spain                  | Country | 1       | -             |
| MAL      | Malaga                                                                     | Spain                  | Country | 2       | Alias MDD     |
| TOL      | Toledo Observatory                                                         | Spain                  | Country | 3       | Alias MDD     |
| CRT      | Cartuja Seismological Station                                              | Spain                  | Country | 4       | Alias MDD     |
| SFS      | Real Instituto y Observatorio de la Armada                                 | Spain                  | Country | 5       | -             |
| MRB      | Institut Cartogràfic i Geològic de Catalunya                               | Spain                  | Country | 6       | -             |
| IAG      | Instituto Andaluz de Geofisica                                             | Spain                  | Country | 7       | -             |
| EBR      | Observatori de l'Ebre                                                      | Spain                  | Country | 8       | -             |
| FBR      | Fabra Observatory                                                          | Spain                  | Country | 9       | -             |
| ESLA     | Centro Sismologico de Sonseca                                              | Spain                  | Country | 10      | -             |
| IBER     | Institute of Earth Sciences Jaume Almera - CSIC                            | Spain                  | Country | 11      | -             |
| SSN      | Sudan Seismic Network                                                      | Sudan                  | Country | 1       | -             |
| UPP      | University of Uppsala                                                      | Sweden                 | Country | 1       | -             |
| KIR      | Kiruna                                                                     | Sweden                 | Country | 2       | Alias UPP     |
| HFS      | Hagfors Observatory                                                        | Sweden                 | Country | 3       | -             |
| HFS1     | Hagfors Observatory                                                        | Sweden                 | Country | 4       | -             |
| HFS2     | Hagfors Observatory (alias)                                                | Sweden                 | Country | 5       | -             |
| CANSK    | Canadian and Scandinavian Networks                                         | Sweden                 | Country | 6       | Alias HFS     |
| STK      | Stockholm Seismological Station                                            | Sweden                 | Country | 7       | Alias HFS     |
| ZUR      | Swiss Seismological Service (SED)                                          | Switzerland            | Country | 1       | -             |
| ZUR_RMT  | Zurich Moment Tensors                                                      | Switzerland            | Country | 2       | -             |
| NEU      | Neuchatel Station                                                          | Switzerland            | Country | 3       | Alias ZUR     |
| OSS      | Ova Spin                                                                   | Switzerland            | Country | 4       | -             |
| NSSC     | National Syrian Seismological Center                                       | Syria                  | Country | 1       | -             |
| DUSS     | Damascus University, Syria                                                 | Syria                  | Country | 2       | -             |
| TAP      | CWB                                                                        | Taiwan                 | Country | 1       | -             |
| ASIES    | Institute of Earth Sciences, Academia Sinica                               | Taiwan                 | Country | 2       | -             |
| GSAST    | Geophysial Survey of the Academy of Sciences of the Republic of Tajikistan | Tajikistan             | Country | 1       | -             |
| KHO      | Khorog                                                                     | Tajikistan             | Country | 2       | -             |
| TZN      | University of Dar Es Salaam                                                | Tanzania               | Country | 1       | -             |
| TANZANIA | Tanzania Broadband Seismic Experiment                                      | Tanzania               | Country | 2       | United States |
| ВКК      | Thai Meteorological Department                                             | Thailand               | Country | 1       | -             |
| TRN      | The Seismic Research Centre                                                | Trinidad and Tobago    | Country | 1       | -             |
| TUN      | Institut National de la Météorologie                                       | Tunisia                | Country | 1       | -             |
| ISK      | Kandilli Observatory and Research Institute                                | Turkey                 | Country | 1       | -             |
| DDA      | Disaster and Emergency Management Presidency                               | Turkey                 | Country | 2       | -             |
| ATA      | The Earthquake Research Center Ataturk University                          | Turkey                 | Country | 3       | -             |
| IST      | Institute of Physics of the Earth, Technical University of Istanbul        | Turkey                 | Country | 4       | -             |
| ITU      | Faculty of Mines, Department of Geophysical Engineering                    | Turkey                 | Country | 5       | -             |
| GBZT     | Marmara Research Center                                                    | Turkey                 | Country | 6       | -             |
| ENT      | Geological Survey and Mines Department                                     | Uganda                 | Country | 1       | -             |
| SIGU     | Subbotin Institute of Geophysics, National Academy of Sciences             | Ukraine                | Country | 1       | -             |
| LVV      | Department of Seismic Activity of Carpathian area (Lviv)                   | Ukraine                | Country | 2       | -             |
| DSN      | Dubai Seismic Network                                                      | United Arab Emirates   | Country | 1       | -             |
| BGS      | British Geological Survey                                                  | United Kingdom         | Country | 1       | -             |
| ISS      | International Seismological Summary                                        | United Kingdom         | Country | 2       | -             |
| EKA      | Eskdalemuir Array Station                                                  | United Kingdom         | Country | 3       | -             |
| EPSI     | Reference events computed by the ISC for EPSI project                      | United Kingdom         | Country | 4       | -             |
| KEW      | Kew Observatory                                                            | United Kingdom         | Country | 5       | -             |
| ULE      | University of Leeds                                                        | United Kingdom         | Country | 6       | -             |
| USOES    | University of Southampton Ocean and Earth Science                          | United Kingdom         | Country | 7       | -             |
| UCDES    | Department of Earth Sciences                                               | United Kingdom         | Country | 8       | -             |
| AEIC     | Alaska Earthquake Information Center                                       | United States Alaska   | Country | 1       | -             |
| PMR      | Alaska Tsunami Warning Center,                                             | United States Alaska   | Country | 2       | -             |
| AGS      | Alaska Seismic Project                                                     | United States Alaska   | Country | 3       | -             |
| UAF      | Department of Geosciences                                                  | United States Alaska   | Country | 4       | -             |
| HVO      | Hawaiian Volcano Observatory                                               | United States Hawaii   | Country | 1       | -             |
| PTWC     | Pacific Tsunami Warning Center                                             | United States Mainland | Country | 1       | -             |
| HON      | Pacific Tsunami Warning Center - NOAA                                      | United States Mainland | Country | 2       | -             |
| SCEDC    | Southern California Earthquake Data Center                                 | United States Mainland | Country | 3       | -             |

| Acronym  | Name                                                                  | Country                | Case    | Ranking         | Comments   |
|----------|-----------------------------------------------------------------------|------------------------|---------|-----------------|------------|
| NCEDC    | Northern California Earthquake Data Center                            | United States Mainland | Country | 4               | -          |
| PNNL     | Pacific Northwest National Laboratory                                 | United States Mainland | Country | 5               | -          |
| BRK      | Berkeley Seismological Laboratory                                     | United States Mainland | Country | 6               | -          |
| PAS      | California Institute of Technology                                    | United States Mainland | Country | 7               | -          |
| BOU      | University of Colorado at Boulder                                     | United States Mainland | Country | 8               | -          |
| LDO      | Lamont-Doherty Earth Observatory                                      | United States Mainland | Country | 9               | -          |
| CENT     | Centennial Earthquake Catalog                                         | United States Mainland | Country | 10              | -          |
| LAO      | Large Aperture Seismic Array                                          | United States Mainland | Country | 11              | -          |
| COSMOS   | Consortium of Organizations for Strong Motion Observations            | United States Mainland | Country | 12              | -          |
| ASL      | Albuquerque Seismological Laboratory                                  | United States Mainland | Country | 13              | -          |
| CERI     | Center for Earthquake Research and Information                        | United States Mainland | Country | 14              | -          |
| ANF      | USArray Array Network Facility                                        | United States Mainland | Country | 15              | -          |
| WMO      | Wichita Mountains Observatory                                         | United States Mainland | Country | 16              | Alias NEIS |
| JSA      | Jesuit Society of America                                             | United States Mainland | Country | 17              | -          |
| TU       | Oklaboma Geological Survey                                            | United States Mainland | Country | 18              | -          |
| BIT      | Montana Bureau of Mines and Geology                                   | United States Mainland | Country | 10              | _          |
| 0000     |                                                                       | United States Mainland | Country | 20              | _          |
| 0030     |                                                                       | United States Mainland | Country | 20              | -          |
| VVES     |                                                                       | United States Mainland | Country | 21              | -          |
| PINSIN   |                                                                       | United States Mainland | Country | 22              | -          |
| SNM      | New Mexico Institute of Mining and Technology                         | United States Mainland | Country | 23              | -          |
| SLC      | Salt Lake City                                                        | United States Mainland | Country | 24              | -          |
| PAL      | Palisades                                                             | United States Mainland | Country | 25              | -          |
| SIO      | Scripps Institution of Oceanography                                   | United States Mainland | Country | 26              | -          |
| TVA      | Tennessee Valley Authority                                            | United States Mainland | Country | 27              | -          |
| PMEL     | Pacific seismicity from hydrophones                                   | United States Mainland | Country | 28              | -          |
| GLD      | Golden                                                                | United States Mainland | Country | 29              | -          |
| PFO      | Pinyon Flat Observatory                                               | United States Mainland | Country | 30              | -          |
| PIN      | Pinedale Seismic Array                                                | United States Mainland | Country | 31              | -          |
| CDWR     | California Department of Water Resources                              | United States Mainland | Country | 32              | -          |
| COR      | COAS Physical Oceanography                                            | United States Mainland | Country | 33              | -          |
| DOE      | Department of Energy                                                  | United States Mainland | Country | 34              | -          |
| DASA     | Defense Atomic Support Agency                                         | United States Mainland | Country | 35              | -          |
| ERDA     | Energy Research and Development Administration                        | United States Mainland | Country | 36              | -          |
| USAEC    | United States Atomic Energy Commission                                | United States Mainland | Country | 37              | -          |
| LTX      | Lajitas Seismic Array                                                 | United States Mainland | Country | 38              | -          |
| USAF     | US Air Force Technical Applications Center                            | United States Mainland | Country | 39              | -          |
| USBR     | US Bureau of Reclamation                                              | United States Mainland | Country | 40              | -          |
| BLA      | Virginia Tech                                                         | United States Mainland | Country | 41              | -          |
| SLM      | Saint Louis University                                                | United States Mainland | Country | 42              | -          |
| REN      | MacKay School of Mines                                                | United States Mainland | Country | 43              | -          |
| SEA      | Geophysics Program AK-50                                              | United States Mainland | Country | 44              | -          |
| UUSS     | The University of Utah Seismograph Stations                           | United States Mainland | Country | 45              | -          |
| AFUA     | University of Alabama                                                 | United States Mainland | Country | 46              | -          |
| BUEE     | Earth & Environment                                                   | United States Mainland | Country | 47              | -          |
| CSC      | University of South Carolina                                          | United States Mainland | Country | 48              | -          |
| UTEP     | Department of Geological Sciences                                     | United States Mainland | Country | 49              | -          |
| AAM      | University of Michigan                                                | United States Mainland | Country | 50              | -          |
| INY      | Cornell university (INSTOC)                                           | United States Mainland | Country | 51              | -          |
| MSUGS    | Michigan State University Department of Geological Sciences           | United States Mainland | Country | 52              | _          |
| LICSC    | Farth & Planetary Sciences                                            | United States Mainland | Country | 53              | -          |
| UREES    |                                                                       | United States Mainland | Country | 54              | _          |
|          |                                                                       | United States Mainland | Country | 55              | _          |
| REE      | Bojee State Liniversity                                               | United States Mainland | Country | 55              | -          |
| EIIO     | Department of Coological Sciences Linitersity of Oregon               | United States Mainland | Country | 50              | -          |
|          | Koopural Craten Sciences, University of Uregon                        | United States Mainland | Country | 5/              | -          |
| RAAPVAAL | Institute of Seiemology, Academy of Seiemone, Deputition of Liberties |                        | Country | <u>ک</u> ر<br>۲ | -          |
| 150      | Europeite Verendent de la citation 20 de 11                           | Uzbekistan             | Country | 1               | -          |
| FUNV     | Fundacion venezolana de Investigaciones Sismológicas                  | Venezuela              | Country | 1               | -          |
| CAR      | Instituto Sismologico de Caracas                                      | Venezuela              | Country | 2               | -          |
| UAV      | Red Sismológica de Los Andes Venezolanos                              | Venezuela              | Country | 3               | -          |
| GUV      | CVG Electrificacion del Caroni                                        | Venezuela              | Country | 4               | -          |
| INTV     | Instituto de Tecnología Venezolana para el Petróleo                   | Venezuela              | Country | 5               | -          |

| Acronym | Name                                           | Country           | Case    | Ranking | Comments      |
|---------|------------------------------------------------|-------------------|---------|---------|---------------|
| PLV     | National Center for Scientific Research        | Viet Nam          | Country | 1       | -             |
| DHMR    | Yemen National Seismological Center            | Yemen             | Country | 1       | -             |
| LSZ     | Geological Survey Department of Zambia         | Zambia            | Country | 1       | -             |
| BUL     | Goetz Observatory                              | Zimbabwe          | Country | 1       | -             |
| BASV    | British Antarctic Survey                       | Antarctica        | Region  | 1       | -             |
| SPA     | USGS - South Pole                              | Antarctica        | Region  | 2       | -             |
| SEPA    | Seismic Experiment in Patagonia and Antarctica | Antarctica        | Region  | 3       | United States |
| ANUBIS  | Antarctic Network of Broadband Seismometers    | Antarctica        | Region  | 4       | United States |
| EAF     | East African Network                           | East Africa       | Region  | 1       | -             |
| ECGS    | European Center for Geodynamics and Seismology | KivuSNet Africa   | Region  | 1       | Luxembourg    |
| NPO     | North Pole Environmental Observatory           | North Pole        | Region  | 1       | United States |
| SPASE   | Southwest Pacific Seismic Experiment           | Southwest Pacific | Region  | 1       | United States |

NOTE: Agencies labelled by the ISC as "unidentified historical agencies", those for which there was no sufficient information to be identified unequivocally, and those whose time span was too old to be of relevance for the present study have not been included in Table II.1.

# APPENDIX III: LIST OF EVENTS IDENTIFIED AS DUPLICATES

Table III.1 lists the events identified as duplicates when subjecting the database to the procedure described in Section 2.7.7. The differences in time and in hypocentral coordinates are labelled  $\Delta t$  and **d**, respectively. The "Outcome" column indicates which of the two events was kept in the catalogue: "Keep 1" implies that the first of the two events listed was kept, while "Keep 2" indicates the opposite.

| Case | ∆t (s) | d (km) | Event ID    | Source | Year | Month | Day | Hour | Minute | Second | Longitude | Latitude | Depth | М    | Outcome |
|------|--------|--------|-------------|--------|------|-------|-----|------|--------|--------|-----------|----------|-------|------|---------|
|      |        |        | 1436828     | WPG16  | 1999 | 1     | 5   | 18   | 27     | 40     | 37.560    | 6.051    | 10.0  | 4.63 |         |
| 692  | 2      | 36.6   | 1915935     | Added  | 1999 | 1     | 5   | 18   | 27     | 42     | 37.861    | 5.918    | 6.0   | 4.90 | Keep1   |
|      | _      |        | 1538041     | WPG16  | 1999 | 3     | 4   | 8    | 52     | 1      | 121.835   | 5.281    | 15.0  | 7.07 |         |
| 744  | 0      | 35.5   | 1916101     | Added  | 1999 | 3     | 4   | 8    | 52     | 1      | 122.078   | 5.413    | 33.0  | 7.10 | Keep1   |
|      |        |        | 1916120     | Added  | 1999 | 3     | 5   | 13   | 1      | 9      | 121.968   | 5.107    | 2.0   | 6.20 |         |
| 748  | 1      | 19.8   | 1538536     | WPG16  | 1999 | 3     | 5   | 13   | 1      | 10     | 122.055   | 5.209    | 15.0  | 5.90 | Keep2   |
| 700  | _      |        | 1916237     | Added  | 1999 | 3     | 13  | 16   | 27     | 31     | 96.043    | 3.116    | 88.1  | 4.70 | 14 0    |
| 766  | 3      | 29.4   | 1541916     | WPG16  | 1999 | 3     | 13  | 16   | 27     | 34     | 95.905    | 2.892    | 85.0  | 4.69 | Keep2   |
| 004  |        | 07.4   | 2159425     | Added  | 1999 | 4     | 13  | 23   | 5      | 40     | 71.145    | 36.322   | 123.5 | 4.70 | 14 0    |
| 801  | 2      | 37.4   | 1623423     | WPG16  | 1999 | 4     | 13  | 23   | 5      | 42     | 71.360    | 36.147   | 98.0  | 4.75 | Keep2   |
|      | _      |        | 2159437     | Added  | 1999 | 4     | 14  | 17   | 24     | 29     | 79.377    | 30.339   | 9.4   | 5.10 | 14 0    |
| 802  | 5      | 28     | 1623710     | WPG16  | 1999 | 4     | 14  | 17   | 24     | 34     | 79.350    | 30.304   | 37.0  | 4.76 | Keep2   |
| 007  |        | 45.0   | 2159501     | Added  | 1999 | 4     | 18  | 17   | 16     | 38     | 79.475    | 30.390   | 15.0  | 4.50 | 14 0    |
| 807  | 2      | 15.2   | 1625314     | WPG16  | 1999 | 4     | 18  | 17   | 16     | 40     | 79.317    | 30.381   | 15.0  | 4.57 | Keep2   |
| 044  | 0      | 07.0   | 2159519     | Added  | 1999 | 4     | 20  | 11   | 43     | 22     | 70.659    | 36.576   | 185.7 | 4.50 | 16 0    |
| 811  | 3      | 27.0   | 1625947     | WPG16  | 1999 | 4     | 20  | 11   | 43     | 25     | 70.863    | 36.405   | 194.0 | 4.57 | Keep∠   |
|      | _      |        | 2160425     | Added  | 1999 | 5     | 20  | 15   | 15     | 1      | 70.230    | 36.646   | 179.8 | 4.90 | 14 0    |
| 849  | 5      | 44.1   | 1680795     | WPG16  | 1999 | 5     | 20  | 15   | 15     | 6      | 70.581    | 36.374   | 173.0 | 4.57 | Keep2   |
| 011  | 0      | 00.4   | 2160970     | Added  | 1999 | 7     | 17  | 23   | 7      | 34     | 69.587    | 29.688   | 0.0   | 4.40 | 16 0    |
| 911  | 2      | 39.4   | 1654610     | WPG16  | 1999 | 7     | 17  | 23   | 7      | 36     | 69.575    | 29.851   | 35.0  | 4.44 | Keep2   |
| 000  | 0      | 45.0   | 2161398     | Added  | 1999 | 8     | 1   | 8    | 24     | 51     | 86.789    | 28.369   | 40.0  | 5.00 | 16 0    |
| 926  | 2      | 45.3   | 1702942     | WPG16  | 1999 | 8     | 1   | 8    | 24     | 53     | 86.734    | 28.453   | 84.0  | 5.30 | Keep2   |
| 055  | 0      | 00.7   | 2161634     | Added  | 1999 | 8     | 26  | 9    | 7      | 22     | 71.119    | 36.396   | 93.3  | 4.60 | 16 0    |
| 955  | 3      | 32.7   | 1846094     | WPG16  | 1999 | 8     | 26  | 9    | 7      | 25     | 71.284    | 36.160   | 106.0 | 4.85 | Keep2   |
| 064  | 5      | 47.5   | 1655684     | WPG16  | 1999 | 9     | 5   | 2    | 28     | 18     | 87.537    | 28.462   | 15.0  | 4.80 | Koon1   |
| 904  | 5      | 47.5   | 2162120     | Added  | 1999 | 9     | 5   | 2    | 28     | 23     | 87.527    | 28.067   | 33.0  | 4.50 | Reepi   |
| 071  | 0      | 25.0   | 2162216     | Added  | 1999 | 9     | 12  | 9    | 0      | 11     | 77.578    | 30.974   | 33.0  | 4.00 | Koon?   |
| 971  | U      | 25.0   | 1655912     | WPG16  | 1999 | 9     | 12  | 9    | 0      | 11     | 77.759    | 31.146   | 35.0  | 4.12 | Reepz   |
| 2120 | 4      | 26.2   | 2164590     | Added  | 1999 | 10    | 6   | 4    | 55     | 46     | 93.973    | 14.148   | 20.0  | 4.60 | Kaan2   |
| 2120 | 4      | 30.3   | 1642936     | WPG16  | 1999 | 10    | 6   | 4    | 55     | 50     | 93.876    | 14.356   | 46.0  | 4.70 | Reepz   |
| 2260 | c      | 22.2   | 1643672     | WPG16  | 1999 | 10    | 15  | 8    | 29     | 48     | 71.178    | 36.246   | 132.0 | 4.75 | Koopi   |
| 2209 | 2      | 22.2   | 2164676     | Added  | 1999 | 10    | 15  | 8    | 29     | 50     | 71.201    | 36.445   | 132.0 | 4.60 | Reepi   |
| 2360 | 1      | 10.1   | 1645276     | WPG16  | 1999 | 10    | 25  | 7    | 29     | 55     | 142.297   | 32.014   | 15.0  | 5.74 | Keen1   |
| 2300 | I      | 19.1   | 2164796     | Added  | 1999 | 10    | 25  | 7    | 29     | 56     | 142.251   | 31.971   | 33.0  | 5.60 | Reepi   |
| 2510 | 77     | 7.9    | 4806594     | Added  | 1999 | 11    | 16  | 22   | 53     | 0      | 142.400   | 42.100   | 62.0  | 4.80 | Koon?   |
| 2019 |        | 7.0    | 1650744     | WPG16  | 1999 | 11    | 16  | 22   | 54     | 17     | 142.382   | 42.152   | 67.0  | 5.13 | Reepz   |
| 2514 | 1      | 0.2    | 2336523     | Added  | 2000 | 10    | 11  | 10   | 7      | 54     | 7.805     | 43.576   | 2.0   | 2.50 | Koon1   |
| 3314 | 1      | 9.5    | 2336525     | Added  | 2000 | 10    | 11  | 10   | 7      | 55     | 7.860     | 43.640   | 6.0   | 2.50 | Reepi   |
| 1201 | 4      | 14.6   | 3337590     | WPG16  | 2001 | 11    | 26  | 13   | 7      | 14     | -99.979   | 2.122    | 15.0  | 4.91 | Keen1   |
| 4234 | -      | 14.0   | 2936285     | WPG16  | 2001 | 11    | 26  | 13   | 7      | 18     | -100.101  | 2.102    | 10.0  | 5.14 | Кеерт   |
| 7007 | Д      | 37.5   | 7223266     | WPG16  | 2004 | 1     | 1   | 5    | 58     | 57     | 154.183   | 46.778   | 33.0  | 5.20 | Keen1   |
| 1031 | -      | 01.0   | GCMT_020859 | WPG16  | 2004 | 1     | 1   | 5    | 59     | 1      | 154.440   | 47.010   | 14.0  | 5.22 | 1.0cbi  |
| 7341 | 4      | 18.6   | 7343727     | WPG16  | 2004 | 5     | 16  | 7    | 21     | 0      | 141.487   | 34.180   | 31.0  | 5.00 | Keen1   |
| 1041 | -      | 10.0   | GCMT_021423 | WPG16  | 2004 | 5     | 16  | 7    | 21     | 4      | 141.530   | 34.160   | 13.0  | 5.06 | Keehi   |

Table III.1. Events identified as duplicates as per the procedure described in Section 2.7.7.

| Case  | ∆t (s) | d (km) | Event ID      | Source | Year | Month | Day | Hour | Minute | Second | Longitude | Latitude | Depth | М    | Outcome   |
|-------|--------|--------|---------------|--------|------|-------|-----|------|--------|--------|-----------|----------|-------|------|-----------|
| 7590  | 2      | 10.5   | 8280453       | WPG16  | 2004 | 10    | 25  | 11   | 45     | 10     | 178.241   | -35.539  | 33.0  | 5.01 | Koon1     |
| 7580  | 3      | 10.5   | 8065234       | Added  | 2004 | 10    | 25  | 11   | 45     | 13     | 178.176   | -35.617  | 33.0  | 4.30 | Keepi     |
| 7500  |        | 40.0   | 7432797       | WPG16  | 2004 | 11    | 8   | 15   | 55     | 1      | 122.524   | 24.023   | 40.0  | 6.30 |           |
| 7598  | 0      | 13.3   | 7432797       | WPG16  | 2004 | 11    | 8   | 15   | 55     | 1      | 122.585   | 24.060   | 29.0  | 6.28 | Keep1     |
|       |        |        | 7448988       | WPG16  | 2004 | 12    | 16  | 0    | 10     | 3      | 122.357   | 24.013   | 45.0  | 5.10 |           |
| 7691  | 1      | 24.1   | GCMT 022312   | WPG16  | 2004 | 12    | 16  | 0    | 10     | 4      | 122.210   | 23.870   | 34.8  | 5.10 | Keep1     |
|       |        |        |               | WPG16  | 2004 | 12    | 26  | 5    | 1      | 9      | 92.212    | 9.288    | 30.0  | 6.22 |           |
| 7708  | 9      | 22     | 7453588       | WPG16  | 2004 | 12    | 26  | 5    | 1      | 18     | 92.225    | 9.469    | 21.0  | 5.50 | Keep1     |
|       |        |        | 7381099       | WPG16  | 2005 | 5     | 16  | 11   | 50     | 1      | 152,270   | 46.113   | 47.0  | 4.90 |           |
| 8626  | 1      | 21.4   | GCMT 023449   | WPG16  | 2005 | 5     | 16  | 11   | 50     | 2      | 152 490   | 46 100   | 34.0  | 4 97 | Keep1     |
|       |        |        | 0800741       |        | 2005 | 6     | 22  | 7    | 43     | 14     | -21 992   | 63 927   | 4 9   | 3.60 |           |
| 8707  | 1      | 0.6    | 0800741       | Added  | 2005 | 6     | 22  | 7    | 40     | 15     | -21.002   | 63 02/   | 4.5   | 3 70 | Keep2     |
|       |        |        | 7365515       | WPG16  | 2005 | 7     | 22  | 3    | 25     | 0      | 1/2 3/2   | 33 2/3   | 18.0  | 4.80 |           |
| 8752  | 3      | 25.7   | CCMT 023806   | WPC16  | 2005 | 7     | 20  | 3    | 20     | 3      | 142.042   | 33 220   | 12.0  | 4.00 | Keep1     |
|       |        |        | GCIVII_023600 | WPG10  | 2005 | 7     | 29  | 3    | 20     | 3      | 142.010   | 22.244   | 12.0  | 4.00 |           |
| 8754  | 1      | 39.7   | 7300099       | WPG16  | 2005 | 7     | 29  | 20   | 20     | 3      | 142.297   | 33.311   | 38.0  | 5.40 | Keep1     |
|       |        |        | GCM1_023811   | WPG16  | 2005 | /     | 29  | 20   | 25     | 4      | 142.610   | 33.380   | 12.0  | 5.42 |           |
| 8786  | 3      | 22.5   | 7748205       | WPG16  | 2005 | 8     | 25  | 22   | 29     | 1      | 143.023   | 37.777   | 28.0  | 5.10 | Keep1     |
|       |        |        | GCMT_023943   | WPG16  | 2005 | 8     | 25  | 22   | 29     | 4      | 143.230   | 37.800   | 15.0  | 5.17 |           |
| 8807  | 2      | 33.9   | 7519651       | WPG16  | 2005 | 9     | 3   | 7    | 6      | 0      | 151.735   | 45.543   | 49.0  | 5.20 | Keep1     |
|       |        |        | GCMT_023991   | WPG16  | 2005 | 9     | 3   | 7    | 7      | 2      | 151.950   | 45.590   | 20.0  | 5.28 |           |
| 10213 | 8      | 26.4   | 12799858      | WPG16  | 2007 | 8     | 8   | 17   | 4      | 59     | 107.634   | -6.038   | 299.9 | 7.54 | Keep1     |
|       | _      | _      | 13665141      | WPG16  | 2007 | 8     | 8   | 17   | 5      | 7      | 107.451   | -5.891   | 295.0 | 7.40 |           |
| 10318 | 6      | 20.2   | 12975151      | WPG16  | 2007 | 9     | 30  | 9    | 47     | 45     | 164.018   | -49.453  | 9.0   | 5.02 | Keen2     |
| 10010 | Ŭ      | 20.2   | 13204359      | WPG16  | 2007 | 9     | 30  | 9    | 47     | 51     | 164.108   | -49.282  | 10.0  | 6.61 | псорг     |
| 10007 | 2      | 20     | 14519225      | Added  | 2008 | 5     | 29  | 15   | 55     | 2      | -21.159   | 63.905   | 5.0   | 3.70 | Koop1     |
| 10997 | 3      | 2.9    | 14529025      | Added  | 2008 | 5     | 29  | 15   | 55     | 5      | -21.177   | 63.928   | 4.0   | 4.80 | Keepi     |
| 40000 | 40     | 100.0  | 13876558      | Added  | 2009 | 10    | 12  | 17   | 38     | 48     | -104.885  | 14.616   | 0.0   | 4.20 | 16        |
| 12990 | 12     | 109.9  | 13876558      | WPG16  | 2009 | 10    | 12  | 17   | 39     | 0      | -105.190  | 15.550   | 14.4  | 4.92 | кеерг     |
|       |        |        | 1265859       | Added  | 2010 | 7     | 19  | 13   | 35     | 28     | -169.462  | 52.704   | 1.5   | 3.30 |           |
| 14257 | 12     | 34.3   | 15639213      | Added  | 2010 | 7     | 19  | 13   | 35     | 40     | -169.381  | 52.400   | 0.0   | 3.40 | Keep1     |
|       |        |        | 604057217     | Added  | 2011 | 2     | 16  | 10   | 13     | 31     | 99.926    | 52.023   | 2.0   | 3.90 |           |
| 15736 | 1      | 7.4    | 16166854      | Added  | 2011 | 2     | 16  | 10   | 13     | 32     | 99.979    | 51.966   | 2.0   | 4.00 | Keep2     |
|       |        |        | 16476247      | WPG16  | 2011 | 3     | 11  | 8    | 19     | 17     | 141.678   | 36.118   | 22.0  | 5.50 |           |
| 16287 | 10     | 12.8   | 602707274     | WPG16  | 2011 | 3     | 11  | 8    | 19     | 27     | 141 590   | 36 205   | 25.0  | 7 10 | Keep2     |
|       |        |        | 601475129     | WPG16  | 2012 | 6     | 14  | 16   | 10     | 12     | 121 490   | 23 724   | 1.0   | 4 70 |           |
| 19687 | 3      | 3.1    | 602023826     | Added  | 2012 | 6     | 14  | 16   | 10     | 15     | 121.400   | 23 717   | 3.5   | 4.70 | Keep1     |
|       |        |        | 605000580     | WPC16  | 2012 | 7     | 27  | 10   | 29     | 29     | 121.000   | 23.717   | 11.0  | 6.10 |           |
| 23023 | 3      | 15.1   | 000099009     | WPC16  | 2014 | 7     | 27  | 1    | 20     | 30     | -40.000   | 23.723   | 12.0  | 0.10 | Keep1     |
|       |        |        | 605000802     | WPG10  | 2014 | 7     | 21  | 0    | 20     | 41     | -45.590   | 17 225   | 13.0  | 5.10 |           |
| 23024 | 3      | 39.1   | 61079305      | WPG10  | 2014 | 7     | 20  | 0    | 3      | 11     | 00.790    | -17.323  | 10.0  | 5.49 | Keep1     |
|       |        |        | 010703325     | WPG16  | 2014 | 7     | 28  | 0    | 3      | 14     | 00.000    | -17.030  | 10.0  | 5.50 |           |
| 23027 | 9      | 36.5   | 605136217     | WPG16  | 2014 | /     | 30  | 16   | 0      | 5/     | 154.825   | -7.136   | 11.0  | 5.94 | Keep1     |
|       |        |        | 610783333     | WPG16  | 2014 | -     | 30  | 16   | 1      | 6      | 154.990   | -7.420   | 12.0  | 5.90 |           |
| 23029 | 8      | 42.7   | 605136218     | WPG16  | 2014 | 7     | 31  | 0    | 17     | 51     | -176.352  | -23.538  | 51.0  | 5.39 | Keep1     |
|       |        |        | 610783335     | WPG16  | 2014 | 7     | 31  | 0    | 17     | 59     | -176.090  | -23.790  | 69.0  | 5.40 | -         |
| 23041 | 3      | 19.6   | 605130566     | WPG16  | 2014 | 8     | 2   | 10   | 33     | 27     | 67.243    | -9.195   | 12.0  | 5.59 | Keep1     |
|       |        |        | 610783339     | WPG16  | 2014 | 8     | 2   | 10   | 33     | 30     | 67.100    | -9.100   | 17.0  | 5.60 |           |
| 23045 | 5      | 32.3   | 610783341     | WPG16  | 2014 | 8     | 2   | 14   | 2      | 19     | -28.358   | -55.363  | 4.0   | 5.47 | Keep1     |
|       |        |        | 605246043     | WPG16  | 2014 | 8     | 2   | 14   | 2      | 24     | -28.080   | -55.390  | 31.0  | 5.40 |           |
| 23051 | 6      | 25.2   | 610639906     | WPG16  | 2014 | 8     | 6   | 11   | 45     | 23     | 128.062   | -7.297   | 12.0  | 6.22 | Keen1     |
| 20001 | 5      | 20.2   | 610642412     | WPG16  | 2014 | 8     | 6   | 11   | 45     | 29     | 127.920   | -7.130   | 19.0  | 6.20 | i ceh i   |
| 22060 | 1      | AF     | 605143484     | WPG16  | 2014 | 8     | 11  | 10   | 7      | 37     | -175.840  | -29.810  | 12.5  | 5.51 | Koong     |
| 23000 |        | 4.0    | 610571800     | WPG16  | 2014 | 8     | 11  | 10   | 7      | 38     | -175.840  | -29.770  | 12.0  | 5.50 | кеерг     |
| 00000 | ~      | 00 7   | 605145543     | WPG16  | 2014 | 8     | 13  | 0    | 30     | 48     | 144.965   | 13.904   | 95.0  | 5.65 | <b>V1</b> |
| 23068 | 3      | 22.7   | 610571819     | WPG16  | 2014 | 8     | 13  | 0    | 30     | 51     | 145.160   | 13.850   | 101.0 | 5.60 | Кеер1     |
|       |        |        | 610571823     | WPG16  | 2014 | 8     | 13  | 5    | 54     | 38     | 145.500   | -3.340   | 12.0  | 5.60 |           |
| 23069 | 0      | 22.7   | 605145548     | WPG16  | 2014 | 8     | 13  | 5    | 54     | 38     | 145.434   | -3.446   | 30.0  | 5.40 | Keep2     |

| Case  | ∆t (s) | d (km) | Event ID  | Source | Year | Month | Day | Hour | Minute   | Second | Longitude | Latitude | Depth | м    | Outcome |
|-------|--------|--------|-----------|--------|------|-------|-----|------|----------|--------|-----------|----------|-------|------|---------|
| 00074 |        |        | 605146557 | WPG16  | 2014 | 8     | 14  | 17   | 9        | 50     | 128.070   | 28.050   | 12.0  | 5.43 | 14 0    |
| 23074 | 0      | 1.1    | 610571867 | WPG16  | 2014 | 8     | 14  | 17   | 9        | 50     | 128.070   | 28.040   | 12.0  | 5.40 | Keep2   |
|       | -      |        | 605153268 | WPG16  | 2014 | 8     | 20  | 23   | 18       | 20     | -17.103   | -59.100  | 6.0   | 5.64 |         |
| 23123 | 6      | 23     | 610571998 | WPG16  | 2014 | 8     | 20  | 23   | 18       | 26     | -16.970   | -59.250  | 20.0  | 5.60 | Keep1   |
|       |        |        | 605170353 | WPG16  | 2014 | 8     | 26  | 1    | 26       | 8      | -17.518   | 64.638   | 10.0  | 5.41 |         |
| 23143 | 4      | 19.1   | 610572111 | WPG16  | 2014 | 8     | 26  | 1    | 26       | 12     | -17.120   | 64.630   | 12.0  | 5.40 | Keep1   |
|       |        |        | 605173206 | WPG16  | 2014 | 8     | 27  | 0    | 16       | 29     | -17.728   | 64.534   | 3.0   | 5.22 |         |
| 23145 | 3      | 29.8   | 610572124 | WPG16  | 2014 | 8     | 27  | 0    | 16       | 32     | -17.160   | 64.610   | 12.0  | 5.20 | Keep1   |
|       |        |        | 605173218 | WPG16  | 2014 | 8     | 27  | 6    | 10       | 18     | -145.563  | 59.307   | 4.0   | 5.15 |         |
| 23146 | 6      | 19.6   | 610572132 | WPG16  | 2014 | 8     | 27  | 6    | 10       | 24     | -145.360  | 59.430   | 12.0  | 5.10 | Keep1   |
|       |        |        | 605173305 | WPG16  | 2014 | 8     | 27  | 16   | 31       | 14     | -177.834  | -15.582  | 8.0   | 5.74 |         |
| 23147 | 6      | 15.4   | 610572141 | WPG16  | 2014 | 8     | 27  | 16   | 31       | 20     | -177 840  | -15 550  | 23.0  | 5 70 | Keep1   |
|       |        |        | 605173937 | WPG16  | 2014 | 8     | 28  | 8    | 13       | 42     | -17 388   | 64 693   | 4.0   | 5.48 |         |
| 23149 | 6      | 17.8   | 610572150 | WPG16  | 2014 | 8     | 28  | 8    | 13       | 48     | -17 100   | 64 620   | 12.0  | 5.40 | Keep1   |
|       |        |        | 605184068 | WPG16  | 2014 | 8     | 20  | 21   | 16       | 40     | 84 867    | _/11 83/ | 10.0  | 5.53 |         |
| 23153 | 5      | 19     | 610572170 | WPC16  | 2014 | 0     | 20  | 21   | 16       | 50     | 94.900    | 41.670   | 15.0  | 5.50 | Keep1   |
|       |        |        | 60512179  | WPC16  | 2014 | 0     | 29  | 7    | 10       | 30     | 17 552    | -41.070  | 6.0   | 5.50 |         |
| 23154 | 4      | 19.8   | 000183400 | WPGIO  | 2014 | 8     | 30  | 7    | 3        | 4      | -17.000   | 04.597   | 0.0   | 5.46 | Keep1   |
|       |        |        | 610572190 | WPG16  | 2014 | 8     | 30  | /    | 3        | 8      | -17.160   | 64.620   | 12.0  | 5.40 |         |
| 23156 | 3      | 13.1   | 610572205 | WPG16  | 2014 | 8     | 31  | 3    | 6        | 57     | -148.983  | 65.155   | 15.0  | 5.24 | Keep1   |
|       |        |        | 605184101 | WPG16  | 2014 | 8     | 31  | 3    | 7        | 0      | -148.980  | 65.270   | 18.0  | 5.20 |         |
| 23159 | 4      | 20.4   | 605185591 | WPG16  | 2014 | 9     | 1   | 11   | 41       | 10     | -17.495   | 64.681   | 0.0   | 5.54 | Keep1   |
|       |        |        | 610572247 | WPG16  | 2014 | 9     | 1   | 11   | 41       | 14     | -17.190   | 64.610   | 12.0  | 5.50 |         |
| 23160 | 5      | 18     | 610182937 | WPG16  | 2014 | 9     | 3   | 3    | 9        | 56     | -17.465   | 64.706   | 5.0   | 5.47 | Keep1   |
|       | -      | -      | 610572280 | WPG16  | 2014 | 9     | 3   | 3    | 10       | 1      | -17.180   | 64.620   | 12.0  | 5.40 |         |
| 23161 | 7      | 44 4   | 610182922 | WPG16  | 2014 | 9     | 3   | 8    | 13       | 28     | -173.521  | -15.025  | 10.0  | 5.55 | Keep1   |
|       | •      |        | 610572284 | WPG16  | 2014 | 9     | 3   | 8    | 13       | 35     | -173.150  | -14.850  | 12.0  | 5.50 |         |
| 23162 | 7      | 03     | 605190964 | WPG16  | 2014 | 9     | 3   | 11   | 34       | 41     | -173.028  | -14.890  | 10.0  | 5.69 | Keen1   |
| 20102 | '      | 0.0    | 610572288 | WPG16  | 2014 | 9     | 3   | 11   | 34       | 48     | -173.110  | -14.890  | 13.0  | 5.70 | Поорт   |
| 22162 | 4      | 22.0   | 605192663 | WPG16  | 2014 | 9     | 3   | 20   | 34       | 0      | -114.684  | -26.528  | 9.0   | 6.00 | Koon1   |
| 23103 | 4      | 33.0   | 605615856 | WPG16  | 2014 | 9     | 3   | 20   | 34       | 4      | -114.670  | -26.830  | 12.0  | 6.00 | Keepi   |
| 00407 |        | 10.1   | 605596678 | WPG16  | 2014 | 9     | 4   | 17   | 23       | 15     | -114.486  | -26.633  | 10.0  | 5.37 | Keend   |
| 23107 | 4      | 10.1   | 610572309 | WPG16  | 2014 | 9     | 4   | 17   | 23       | 19     | -114.410  | -26.780  | 12.0  | 5.30 | Keepi   |
| 00400 |        |        | 605246940 | WPG16  | 2014 | 9     | 6   | 6    | 53       | 12     | -114.500  | -26.648  | 7.0   | 6.14 |         |
| 23169 | 6      | 28     | 610572344 | WPG16  | 2014 | 9     | 6   | 6    | 53       | 18     | -114.560  | -26.890  | 12.0  | 6.10 | Keep1   |
|       |        |        | 605273887 | WPG16  | 2014 | 9     | 6   | 19   | 22       | 59     | -107.049  | 18.753   | 17.0  | 6.16 |         |
| 23170 | 8      | 40.6   | 610572351 | WPG16  | 2014 | 9     | 6   | 19   | 23       | 7      | -107.380  | 18.930   | 24.0  | 6.10 | Keep1   |
|       |        |        | 610572412 | WPG16  | 2014 | 9     | 10  | 16   | 36       | 43     | -130.280  | 50.450   | 9.0   | 5.00 |         |
| 23181 | 1      | 11.1   | 605282792 | WPG16  | 2014 | 9     | 10  | 16   | 36       | 44     | -130.270  | 50.450   | 20.1  | 5.03 | Keep1   |
|       |        |        | 605286933 | WPG16  | 2014 | 9     | 12  | 7    | 47       | 25     | 143.774   | 22.149   | 117.0 | 5.25 |         |
| 23184 | 3      | 25.8   | 610572442 | WPG16  | 2014 | 9     | 12  | 7    | 47       | 28     | 143 930   | 22 280   | 131.0 | 5 20 | Keep1   |
|       |        |        | 605290123 | WPG16  | 2014 | 9     | 15  | 8    | 5        | 2      | -17 397   | 64 573   | 80    | 5.48 |         |
| 23189 | 3      | 13.7   | 610572486 | WPG16  | 2014 | 9     | 15  | 8    | 5        | 5      | -17 130   | 64 600   | 12.0  | 5.40 | Keep1   |
|       |        |        | 605353638 | WPG16  | 2014 | q     | 22  | 16   | 1        | 43     | -27 820   | -56 009  | 106.0 | 5 79 |         |
| 23203 | 3      | 29.2   | 610572620 | WPG16  | 2014 | 9     | 22  | 16   | 1        | 46     | -27.400   | -56.020  | 110.0 | 5.80 | Keep1   |
|       |        |        | 605354047 | WPC16  | 2014 | 0     | 22  | 15   | 24       | 40     | 151 737   | 5 305    | 57.0  | 5.60 |         |
| 23205 | 1      | 40.9   | 610572633 | WPC16  | 2014 | 0     | 20  | 15   | 24       | 2      | 151.960   | 5 690    | 35.0  | 5.50 | Keep1   |
|       |        |        | 610572655 | WPC16  | 2014 | 9     | 23  | 10   | 24<br>45 | 46     | 141 456   | -3.000   | 53.0  | 5.30 |         |
| 23206 | 4      | 4.1    | 610572655 | WPGIO  | 2014 | 9     | 24  | 12   | 40       | 40     | 141.400   | 37.552   | 52.0  | 5.30 | Keep1   |
|       |        |        | 605366000 | WPG16  | 2014 | 9     | 24  | 12   | 45       | 50     | 141.480   | 37.570   | 54.9  | 5.32 |         |
| 23208 | 1      | 18.8   | 605380384 | WPG16  | 2014 | 9     | 25  | 5    | 0        | /      | -17.507   | 64.506   | 8.0   | 5.20 | Keep1   |
|       |        |        | 610572668 | WPG16  | 2014 | 9     | 25  | 5    | 0        | 8      | -17.190   | 64.600   | 12.0  | 5.20 |         |
| 23214 | 0      | 10.3   | 605412692 | WPG16  | 2014 | 9     | 27  | 3    | 53       | 11     | -149.740  | 62.050   | 63.0  | 4.90 | Keep2   |
|       |        |        | 610572727 | WPG16  | 2014 | 9     | 27  | 3    | 53       | 11     | -149.847  | 62.004   | 56.0  | 4.94 |         |
| 23216 | 3      | 22.2   | 605416959 | WPG16  | 2014 | 9     | 28  | 6    | 23       | 36     | -176.343  | -19.132  | 10.0  | 5.71 | Keep1   |
|       |        |        | 610572745 | WPG16  | 2014 | 9     | 28  | 6    | 23       | 39     | -176.260  | -19.310  | 15.0  | 5.70 |         |
| 23223 | 5      | 16.3   | 605468274 | WPG16  | 2014 | 9     | 30  | 16   | 45       | 56     | 67.712    | 1.614    | 4.0   | 5.56 | Keen1   |
| 20220 | 5      | 10.5   | 610572784 | WPG16  | 2014 | 9     | 30  | 16   | 46       | 1      | 67.660    | 1.510    | 14.0  | 5.50 | Neehi   |

| 2222         4         12         0004442         WPOID         2014         10         3         6         37         12         42207         4.00         1.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300 <th1.300< th=""></th1.300<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Case  | ∆t (s) | d (km) | Event ID  | Source | Year | Month | Day | Hour | Minute | Second       | Longitude | Latitude | Depth | м            | Outcome  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|-----------|--------|------|-------|-----|------|--------|--------------|-----------|----------|-------|--------------|----------|
| 21.203         9         10         90         100         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900 <td>00000</td> <td></td> <td>10</td> <td>605481442</td> <td>WPG16</td> <td>2014</td> <td>10</td> <td>3</td> <td>5</td> <td>37</td> <td>18</td> <td>-82.610</td> <td>4.743</td> <td>10.0</td> <td>5.33</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00000 |        | 10     | 605481442 | WPG16  | 2014 | 10    | 3   | 5    | 37     | 18           | -82.610   | 4.743    | 10.0  | 5.33         |          |
| 2228         3         100         99957200         WPG16         2014         100         5         14         62         23         12220         1.12         3.0         102300         1100         4.00         102300         12230         12230         12230         12230         12230         12230         12230         12230         12230         12230         12230         12230         12230         12230         12230         12230         12230         12230         12230         12230         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330         12330 <th< td=""><td>23230</td><td>4</td><td>12</td><td>610572847</td><td>WPG16</td><td>2014</td><td>10</td><td>3</td><td>5</td><td>37</td><td>22</td><td>-82.670</td><td>4.690</td><td>18.0</td><td>5.30</td><td>Keep1</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23230 | 4      | 12     | 610572847 | WPG16  | 2014 | 10    | 3   | 5    | 37     | 22           | -82.670   | 4.690    | 18.0  | 5.30         | Keep1    |
| 2100         3         10.0         60072000         WFO16         2014         100         6         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         100         100         100         100         100         100         10         100         100         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |        |        | 605501162 | WPG16  | 2014 | 10    | 5   | 14   | 52     | 32           | 132.402   | -1.312   | 3.0   | 5.30         |          |
| 2228         4         212         60052945         WFG16         2014         10         6         12         5         42         60052345         WFG16         2014         10         6         12         5         42         60052345         WFG16         2014         10         6         14         4         4         6         447.24         15.24         60         5.63         Keep1           22342         3         13.2         60055456         WFG16         2014         10         7         10         22         34         -17.200         46.00         12.0         10.0         7         10         22         34         -17.200         46.00         12.0         10.0         7         10         22         34         -17.200         46.00         10.0         7         10         20.0         45.00         10.0         10.0         10.0         7         10         20.0         45.00         10.00         10.0         10.0         7         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23235 | 3      | 10.9   | 610572900 | WPG16  | 2014 | 10    | 5   | 14   | 52     | 35           | 132.350   | -1.330   | 12.0  | 5.30         | Keep1    |
| 2223         4         21         1007216         WP616         2014         10         6         12         3         46         69.470         -3132         120         4.90         Keep2           2232         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |        |        | 605502345 | WPG16  | 2014 | 10    | 6   | 12   | 3      | 42           | -68.431   | -31.240  | 111.0 | 4.90         |          |
| 2222         5         44         6         94/27a         15 4/2 a         60         53         60         563           2232         3         13         2         505/232         WPG16         2014         10         7         10         22         31         17.190         64.530         6.0         560         WPG16         2014         10         7         10         22         31         17.190         64.530         6.0         560         WPG16         2014         10         7         10         22         31         17.190         64.630         6.0         5.0         690         200         6.0         200         6.0         200         6.0         200         4.0         6.0         7.120         -10.90         20.0         4.00         4.00         4.0         8.0         4.0         8.0         4.11.80         20.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23238 | 4      | 21.2   | 610572918 | WPG16  | 2014 | 10    | 6   | 12   | 3      | 46           | -68.470   | -31.320  | 129.9 | 4.90         | Keep2    |
| 2233         5         44         (mor)         (mor) </td <td></td> <td></td> <td></td> <td>605502348</td> <td>WPG16</td> <td>2014</td> <td>10</td> <td>6</td> <td>14</td> <td>4</td> <td>6</td> <td>147.264</td> <td>15.462</td> <td>6.0</td> <td>5.63</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |        |        | 605502348 | WPG16  | 2014 | 10    | 6   | 14   | 4      | 6            | 147.264   | 15.462   | 6.0   | 5.63         |          |
| 2242         3         13.2         605504654         WPG16         2014         10         7         10         22         31         47.300         64.530         4.0         5.50         Keep1           2243         6         21.7         60572370         WPG16         2014         10         7         10         22         33         2         71.004         40.00         5.50         Keep1           22244         6         3c.1         60572407         WPG16         2014         10         7         13         5         56         71.20         -19.800         20.0         4.90         Keep1           23247         4         202         6050320         WPG16         2014         10         8         3         4         8         -11.80         50.0         6.90         Keep1           2325         9         37.7         60505720         WPG16         2014         10         9         2         32         6         -111.80         -32.06         10.0         5.90         Keep1           2235         4         9.7         605577         Keep1         605574         Keep1         60577         Keep1         6057740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23239 | 5      | 44     | 610572922 | WPG16  | 2014 | 10    | 6   | 14   | 4      | 11           | 147.660   | 15.380   | 13.0  | 5.60         | Keep1    |
| 2324         3         1.2         6057236         WPG16         204         10         7         40         22         34         47.260         64.62         12.0         6.67           2324         0         21.7         6057247         WPC16         2014         10         7         12         33         2.2         71.004         4.2002         10.0         5.28           2324         0         20055057         WPC16         2014         10         7         13         5         5.2         70.303         2.006         10.0         4.99           2107         20055057         WPC16         2014         10         8         3         4         6         41.80         2.006         10.0         5.69           2205         0         7         20555774         WPC16         2014         10         9         2         32         14         111.107         3.208         10.0         5.69         4.69           2205         10         7         1057260         WPC16         2014         10         9         2         32         4         -111.107         3.208         10.0         5.69         4.69         4.11.11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |        | 605504654 | WPG16  | 2014 | 10    | 7   | 10   | 22     | 31           | -17.199   | 64.530   | 4.0   | 5.56         |          |
| 2333         6         21.7         6057297         WPG16         2014         10         7         12         33         23         71.00         40.0         5.20         Keep1           23244         6         36.1         60557842         WPG16         2014         10         7         13         5         52         7.730         43.00         5.50         Keep1           23247         4         20.2         60557824         WPG16         2014         10         6         3         4         12         41.990         30.470         120.0         5.50         Keep1           23257         9         37.7         60552471         WPG16         2014         10         9         2         32         14         111.00         32.80         17.0         6.60         Keep1           2255         4         9.7         6055271         WPG16         2014         10         9         8         14         24         111.101         32.80         17.0         6.60         Keep1           2255         7         10.5         6055277         WPG16         2014         10         9         2         10         4         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23242 | 3      | 13.2   | 610572936 | WPG16  | 2014 | 10    | 7   | 10   | 22     | 34           | -17.260   | 64.620   | 12.0  | 5.50         | Keep1    |
| 2324         6         217         610572940         WPG16         2014         10         7         12         33         29         71.200         19.80         20.0         5.20         Kep1           23244         6         31         60552467         WPG16         2014         10         7         13         5         52         77.200         19.870         20.0         5.20         Kep1           23247         4         20.2         60553287         WPG16         2014         10         8         3         4         8         4.1886         30.410         10.0         5.58         77.100         4.9304         10.0         5.58         77.100         4.9304         30.470         10.0         5.58         77.100         4.9304         30.410         10.0         9.2         2.2         1.4         11.1005         3.2056         10.0         5.69         Kep1         10.0         5.70         Kep1         10.0         5.70         Kep1         10.0         5.70         11.058         3.206         10.0         5.59         Kep1         10.0         5.59         Kep1         10.0         5.51         Kep1         10.0         5.59         Kep1         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |        | 605725277 | WPG16  | 2014 | 10    | 7   | 12   | 33     | 23           | -71.004   | -20.032  | 16.0  | 5.28         |          |
| 2324         0         3h         6055467         WPG16         214         10         7         13         5         52         -70.38         20.08         15.0         4.80           23247         4         20         60557362         WPG16         2014         10         8         3         4         12         -71.21         -16.57         20.0         4.00           2324         6         60575958         WPG16         2014         10         9         2         32         14         11.08         32.08         10.0         5.50         6.66           2325         6         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23243 | 6      | 21.7   | 610572940 | WPG16  | 2014 | 10    | 7   | 12   | 33     | 29           | -71 200   | -19 980  | 20.0  | 5 20         | Keep1    |
| 22244         6         8         7         20         7         13         5         88         7         20         20         4         600         7         13         5         88         7         13         16         7         13         5         88         7         14         800         30         4         8         41         88         30         4         18         41         18         30         400         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |        |        | 605504657 | WPG16  | 2014 | 10    | 7   | 13   | 5      | 52           | -70,938   | -20.066  | 15.0  | 4.98         |          |
| 23247         4         202         605605.30         WPG16         2014         10         8         3         4         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23244 | 6      | 36.1   | 610572942 | WPG16  | 2014 | 10    | 7   | 13   | 5      | 58           | -71 210   | -19 870  | 20.0  | 4 90         | Keep1    |
| 23247         4         0.0         0.00000000         WPG16         2014         10         8         3         4         12         4.100         30.07         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.00000000         10.00000000000         10.000000000000000000000         10.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |        |        | 605505326 | WPG16  | 2014 | 10    | 8   | 3    | 4      | 8            | -41 886   | 30 314   | 10.0  | 5.58         |          |
| 23251         9         37.7         60532471         WPG16         2014         10         9         2         32         5         -11.085         -32.055         1.00         6.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23247 | 4      | 20.2   | 610572959 | WPG16  | 2014 | 10    | 8   | 3    | 4      | 12           | -41.000   | 30.470   | 12.0  | 5.50         | Keep1    |
| 2325         9         37.         Concort 100         Contor 100         2         3.0         111000         3.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80         10.0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |        |        | 605524711 | WPC16  | 2014 | 10    | 0   | 2    |        | 5            | 110 965   | 32.005   | 10.0  | 6.50         |          |
| 1         1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23251 | 9      | 37.7   | 610572090 | WPC16  | 2014 | 10    | 9   | 2    | 32     | 14           | 111.000   | -32.095  | 17.0  | 0.39         | Keep1    |
| 2325         6         1         3         00000000         20000000         3         1         20000000         111100         2000000         2000000         2000000         20000000         20000000         20000000         200000000         200000000         2000000000000         2000000000000000000         2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |        |        | 0100/2900 | WPG10  | 2014 | 10    | 9   | 2    | 32     | 14           | -111.070  | -32.360  | 17.0  | 0.00<br>5.70 |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23252 | 6      | 13     | 000024718 | WPGIO  | 2014 | 10    | 9   | 8    | 14     | 24           | -111.000  | -32.014  | 10.0  | 5.70         | Keep1    |
| 2328         4         9.7         edds.5.172         WPG is         201         9         20         9         0         -111.29         -3.208         0         -111.190         -3.208         10         5.6         resp1           23286         7         19.5         60542916         WPG is         2014         10         10         4         7         51         -110.836         -32.165         10.0         5.60         resp1           23286         7         7.8         60553020         WPG is         2014         10         12         5         17         38         -33.160         57.340         12.0         5.00           23276         7         4         27.6         60553007         WPG is         2014         10         13         5         13         45         165.92         -46.141         14.0         5.78           23276         4         12.4         60553017         WPG is         2014         10         15         11         16         42         -17.250         64.610         12.0         5.50           23276         4         12.4         6055112         WPG is         2014         10         15         13 </td <td></td> <td></td> <td></td> <td>610572984</td> <td>WPG16</td> <td>2014</td> <td>10</td> <td>9</td> <td>8</td> <td>14</td> <td>30</td> <td>-111.580</td> <td>-32.680</td> <td>18.0</td> <td>5.70</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |        |        | 610572984 | WPG16  | 2014 | 10    | 9   | 8    | 14     | 30           | -111.580  | -32.680  | 18.0  | 5.70         |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23253 | 4      | 9.7    | 605525172 | WPG16  | 2014 | 10    | 9   | 20   | 59     | 0            | -111.212  | -32.015  | 19.0  | 5.67         | Keep1    |
| 2326         7         19.5         605642916         WPC16         2014         10         10         4         7         51         110385         -32.165         10.0         5.60         Keep1           2328         1         7.2         605532107         WPC16         2014         10         12         5         17         38         -33.267         57.299         10.0         5.60           2328         5         21.9         605532107         WPC16         2014         10         12         5         17         38         -33.160         57.299         10.0         5.60           2328         7         4         27.6         605546633         WPC16         2014         10         13         5         13         45         165.92         46.101         14.0         5.50           2327         4         27.6         605564633         WPC16         2014         10         15         13         35         54         47.800         32.455         9.0         5.30           23281         2         2.6         60556171         WPC16         2014         10         19         9         40         16         17.350 <t< td=""><td></td><td></td><td></td><td>610572996</td><td>WPG16</td><td>2014</td><td>10</td><td>9</td><td>21</td><td>0</td><td>4</td><td>-111.190</td><td>-32.080</td><td>13.0</td><td>5.60</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |        |        | 610572996 | WPG16  | 2014 | 10    | 9   | 21   | 0      | 4            | -111.190  | -32.080  | 13.0  | 5.60         |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23256 | 7      | 19.5   | 605642916 | WPG16  | 2014 | 10    | 10  | 4    | 7      | 51           | -110.836  | -32.165  | 10.0  | 5.59         | Keep1    |
| 1         7.2         60553207         WPG16         2014         10         12         5         17         33         33.267         57.340         10.0         5.36         Keep1           23268         5         21.9         60553070         WPG16         2014         10         13         5         13         50         165.740         46.141         14.0         5.80           23274         4         27.6         60554070         WPG16         2014         10         15         11         16         38         -73.80         46.101         23.0         5.80         Keep1           23275         4         27.6         60563070         WPG16         2014         10         15         13         35         54         47.808         32.545         9.0         5.83           23275         4         12.4         60553112         WPG16         2014         10         15         13         35         58         47.870         32.545         9.0         5.30           23287         4         24.9         610573172         WPG16         2014         10         19         9         40         14         17.350         64.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |        |        | 610572999 | WPG16  | 2014 | 10    | 10  | 4    | 7      | 58           | -110.720  | -32.300  | 16.0  | 5.60         |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23259 | 1      | 7.2    | 605532107 | WPG16  | 2014 | 10    | 12  | 5    | 17     | 37           | -33.267   | 57.299   | 10.0  | 5.36         | Keep1    |
| 2326         5         21.9         60554076         WPG16         2014         10         13         5         13         45         165.92         46.11         14.0         5.8         Keep1           23274         4         27.6         60556633         WPG16         2014         10         15         11         16         38         17.710         64.500         12.0         5.80         Keep1           23275         4         12.4         610573050         WPG16         2014         10         15         13         35         5.4         47.800         32.545         9.0         5.83         Keep1           23287         4         12.4         605566217         Added         2014         10         15         13         35         5.4         47.800         32.545         9.0         5.30         Keep1           23287         4         24.9         605568247         Added         2014         10         19         19         51         10         -39.406         8.701         10.0         5.31         Keep1           23287         4         22.6         610573170         WPG16         2014         10         19         20<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |        |        | 610573029 | WPG16  | 2014 | 10    | 12  | 5    | 17     | 38           | -33.180   | 57.340   | 12.0  | 5.30         |          |
| 1         610573050         WPG16         2014         10         13         5         13         50         157.40         46.100         23.0         5.80           23274         4         27.6         600573064         WPG16         2014         10         15         11         16         38         17.810         64.500         11.0         5.50           23275         4         12.4         610573060         WPG16         2014         10         15         13         35         58         47.870         32.450         12.0         5.50           23281         2         23.6         600566217         Added         2014         10         18         9         40         14         -17.550         64.610         12.0         5.30           23287         4         24.9         610573172         WPG16         2014         10         19         19         51         14         -39.406         8.701         10.0         5.31           23287         4         22.6         610573170         WPG16         2014         10         19         20         6         13         -39.334         8.800         10.0         5.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23266 | 5      | 21.9   | 605534076 | WPG16  | 2014 | 10    | 13  | 5    | 13     | 45           | 165.992   | -46.141  | 14.0  | 5.78         | Keep1    |
| 23274         4         27.6         60554633         WPG16         2014         10         15         11         16         38         -17.80         64.50         11.0         5.58         Keep1           23275         4         12.4         610573090         WPG16         2014         10         15         13         35         54         47.808         32.55         9.0         5.88         Keep1           23275         4         12.4         60556112         WPG16         2014         10         15         13         35         54         47.800         32.450         12.0         5.80         Keep1           23281         2         23.6         60556112         WPG16         2014         10         18         9         40         16         -17.550         64.610         12.0         5.30         Keep2           23287         4         24.9         60556343         WPG16         2014         10         19         20         6         17         -39.370         8.80         12.0         5.30         Keep1           23281         5         2         16.139         -62.002         4.0         5.75         Keep1         Keep1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | -      | -      | 610573050 | WPG16  | 2014 | 10    | 13  | 5    | 13     | 50           | 165.740   | -46.100  | 23.0  | 5.80         |          |
| Image: Constraint of the second sec | 23274 | 4      | 27.6   | 605546633 | WPG16  | 2014 | 10    | 15  | 11   | 16     | 38           | -17.810   | 64.550   | 11.0  | 5.58         | Keep1    |
| 23275         4         12.4         61057300         WPG16         2014         10         15         13         35         54         47.808         32.545         9.0         5.83         Keep1           23281         2         23.6         605561112         WPG16         2014         10         18         9         40         14         -17.350         64.70         12.0         5.80         Keep2           23287         2         2.6         60556633         WPG16         2014         10         18         9         40         16         -17.550         64.610         12.0         5.30         Keep2           23287         4         24.9         610573172         WPG16         2014         10         19         19         51         14         -39.450         8.920         12.0         5.30         Keep1           23288         4         2.6         610573170         WPG16         2014         10         19         20         6         13         -39.34         8.60         10.0         5.39         Keep1           23291         5         2         18.9         605566407         WPG16         2014         10         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |        |        | 610573094 | WPG16  | 2014 | 10    | 15  | 11   | 16     | 42           | -17.250   | 64.610   | 12.0  | 5.50         |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23275 | 4      | 12.4   | 610573090 | WPG16  | 2014 | 10    | 15  | 13   | 35     | 54           | 47.808    | 32.545   | 9.0   | 5.83         | Keep1    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 202.0 |        |        | 605551112 | WPG16  | 2014 | 10    | 15  | 13   | 35     | 58           | 47.870    | 32.450   | 12.0  | 5.80         | i toop i |
| 2000         2         2.03         610573158         WPG16         2014         10         18         9         40         16         -17.550         64.610         12.0         5.30         Recept           23287         4         24.9         610573152         WPG16         2014         10         19         19         51         10         -39.406         8.701         10.0         5.30         Reep1           23288         4         26.6         610573170         WPG16         2014         10         19         20         6         13         -39.334         8.680         10.0         5.30         Reep1           23281         5         2         605566384         WPG16         2014         10         20         7         58         52         161.130         62.002         4.0         5.75         Reep1           23291         5         2         18.9         610573194         WPG16         2014         10         20         7         58         57         161.280         61.810         12.0         5.00           23303         1         3.0         610573194         WPG16         2014         10         21         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23281 | 2      | 23.6   | 605566217 | Added  | 2014 | 10    | 18  | 9    | 40     | 14           | -17.350   | 64.790   | 4.0   | 5.30         | Keen2    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20201 | 2      | 20.0   | 610573158 | WPG16  | 2014 | 10    | 18  | 9    | 40     | 16           | -17.550   | 64.610   | 12.0  | 5.30         | Reepz    |
| 23:00         4         24.3         605566333         WPG16         2014         10         19         19         51         14         -39.450         8.920         12.0         5.30         Reep1           23288         4         22.6         610573170         WPG16         2014         10         19         20         6         13         -39.334         8.680         10.0         5.39         Reep1           23291         5         24         605566384         WPG16         2014         10         20         7         58         52         161.139         -62.002         4.0         5.75         Keep1           23295         2         18.9         610573194         WPG16         2014         10         20         19         33         21         -77.846         0.588         4.0         5.64         Keep1           23303         1         30.4         605506807         WPG16         2014         10         21         23         1         18         169.665         -63.468         8.0         5.64         Keep1           23303         1         30.4         605500822         WPG16         2014         10         23         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23287 | 4      | 24.0   | 610573172 | WPG16  | 2014 | 10    | 19  | 19   | 51     | 10           | -39.406   | 8.701    | 10.0  | 5.31         | Keen1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23201 | Ŧ      | 24.3   | 605566383 | WPG16  | 2014 | 10    | 19  | 19   | 51     | 14           | -39.450   | 8.920    | 12.0  | 5.30         | Кеерт    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12100 | 4      | 22.6   | 610573170 | WPG16  | 2014 | 10    | 19  | 20   | 6      | 13           | -39.334   | 8.680    | 10.0  | 5.39         | Koopi    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23200 | 4      | 22.0   | 605566384 | WPG16  | 2014 | 10    | 19  | 20   | 6      | 17           | -39.370   | 8.880    | 12.0  | 5.30         | Keepi    |
| 23:91         5         24         610573204         WPG16         2014         10         20         7         58         57         161.280         -61.810         12.0         5.70         Reep1           23295         2         18.9         610573194         WPG16         2014         10         20         19         33         21         -77.846         0.588         4.0         5.64         Reep1           23303         1         30.4         605570894         WPG16         2014         10         21         23         1         18         169.665         -63.468         8.0         5.64           23303         1         30.4         605570894         WPG16         2014         10         21         23         1         19         170.040         -63.260         14.0         5.60         Reep1           23310         3         12.2         605600622         WPG16         2014         10         23         16         30         27         -149.110         65.200         23.0         5.00         Reep1           23312         2         21.1         605604339         WPG16         2014         10         24         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00004 | F      | 24     | 605566407 | WPG16  | 2014 | 10    | 20  | 7    | 58     | 52           | 161.139   | -62.002  | 4.0   | 5.75         | Keent    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23291 | э      | 24     | 610573204 | WPG16  | 2014 | 10    | 20  | 7    | 58     | 57           | 161.280   | -61.810  | 12.0  | 5.70         | Keepi    |
| 23295         2         18.9         605568087         WPG16         2014         10         20         19         33         23         -77.940         0.710         12.0         5.60         Reep1           23303         1         30.4         605570894         WPG16         2014         10         21         23         1         18         169.665         -63.468         8.0         5.64         Keep1           23303         1         12.2         605500822         WPG16         2014         10         21         23         1         19         170.040         -63.260         14.0         5.60         Keep1           23310         3         12.2         605600622         WPG16         2014         10         23         16         30         24         -148.979         65.151         14.0         5.00         Keep1           23312         2         21.1         605604339         WPG16         2014         10         24         7         16         41         -72.500         -34.140         23.0         4.90           23317         1         14.8         605617621         WPG16         2014         10         26         5         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00005 | 0      | 10.0   | 610573194 | WPG16  | 2014 | 10    | 20  | 19   | 33     | 21           | -77.846   | 0.588    | 4.0   | 5.64         | Kanad    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23295 | 2      | 18.9   | 605568087 | WPG16  | 2014 | 10    | 20  | 19   | 33     | 23           | -77.940   | 0.710    | 12.0  | 5.60         | Keepi    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |        |        | 605570894 | WPG16  | 2014 | 10    | 21  | 23   | 1      | 18           | 169.665   | -63.468  | 8.0   | 5.64         |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23303 | 1      | 30.4   | 610573214 | WPG16  | 2014 | 10    | 21  | 23   | 1      | 19           | 170.040   | -63.260  | 14.0  | 5.60         | Keep1    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | _      |        | 605600622 | WPG16  | 2014 | 10    | 23  | 16   | 30     | 24           | -148.979  | 65.151   | 14.0  | 5.02         |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23310 | 3      | 12.2   | 610573294 | WPG16  | 2014 | 10    | 23  | 16   | 30     | 27           | -149.110  | 65.200   | 23.0  | 5.00         | Keep1    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |        |        | 605604339 | WPG16  | 2014 | 10    | 24  | 7    | 16     | 41           | -72.352   | -33.996  | 22.0  | 4.94         |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23312 | 2      | 21.1   | 610573306 | WPG16  | 2014 | 10    | 24  | 7    | 16     | 43           | -72,500   | -34,140  | 23.0  | 4.90         | Keep1    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |        |        | 605617621 | WPG16  | 2014 | 10    | 26  | 5    | 54     | 48           | -17,324   | 64,531   | 8.0   | 5,39         |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23317 | 1      | 14.8   | 610573349 | WPG16  | 2014 | 10    | 26  | 5    | 54     | 49           | -17 110   | 64 620   | 12.0  | 5 40         | Keep1    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |        |        | 605617628 | WPG16  | 2014 | 10    | 26  | 10   | 45     | 32           | -74 084   | -10 557  | 125.0 | 5 77         |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23320 | 2      | 13.9   | 610573354 | WPG16  | 2014 | 10    | 26  | 10   | 45     | 34           | -74 080   | -10 470  | 135.0 | 5 70         | Keep1    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |        |        | 610573387 | WPG16  | 2014 | 10    | 28  | 12   | 12     | <del>م</del> | 53 460    | -36 030  | 7 0   | 5.40         |          |
| 23333         2         20.9         605635781         WPG16         2014         10         31         6         33         33         142.405         40.165         43.0         4.92           Keep1         610573439         WPG16         2014         10         31         6         33         33         142.405         40.165         43.0         4.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23326 | 4      | 9      | 605626082 | WPC16  | 2014 | 10    | 20  | 13   | 13     | 12           | 53 /30    | -36 030  | 15.5  | 5.40         | Keep2    |
| 23333 2 20.9 000005761 WFG10 2014 10 31 6 33 35 142.400 40.105 43.0 4.92 Keep1 Keep1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |        |        | 605625791 | W/PC16 | 2014 | 10    | 20  | 6    | 22     | 22           | 1/2 /05   | 40 165   | 12.0  | 1 02         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23333 | 2      | 20.9   | 610573430 | W/PC16 | 2014 | 10    | 21  | 6    | 22     | 25           | 1/2 500   | 40.240   | 5/ 0  | 4.00         | Keep1    |

| Bar         Bar <th>Case</th> <th>∆t (s)</th> <th>d (km)</th> <th>Event ID</th> <th>Source</th> <th>Year</th> <th>Month</th> <th>Day</th> <th>Hour</th> <th>Minute</th> <th>Second</th> <th>Longitude</th> <th>Latitude</th> <th>Depth</th> <th>м</th> <th>Outcome</th> | Case    | ∆t (s) | d (km) | Event ID  | Source | Year | Month | Day | Hour | Minute | Second   | Longitude | Latitude | Depth | м    | Outcome |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--------|-----------|--------|------|-------|-----|------|--------|----------|-----------|----------|-------|------|---------|
| 23.38         9         10.5         9007345         WFGE         2014         11         1         00         5         46         -111160         31.20         500         600           23.39         0         9007345         WFGE         2014         11         21.30         20.3         41.10         21.30         40.30         41.10         21.30         40.30         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10         41.10                                                                                                                                                                                                     | 00000   |        | 45.0   | 605640144 | WPG16  | 2014 | 11    | 1   | 10   | 5      | 44       | -111.107  | -31.920  | 10.0  | 5.72 |         |
| 233         5         15         4         997348         WFG16         2014         11         1         10         69         55         111.80         311.82         5.0         Kepp           2334         8         363         60004197         WFG16         2014         11         2         17         17         4         154278         410.20         18.0         6.00         Kepp1           2334         2         303         60004703         WFG16         2014         11         4         12         175.71         41.14         30.0         4.00         Kepp1           2336         6         60073520         WFG16         2014         11         5         7         23         8         -119.80         41.00         8.0         Kep1           2336         0         14.6         6073473         WFG16         2014         11         8         23         15         44         2030         31.00         16.0         Kep1           2336         0         10         0         11         8         203         16.0         44         2030         31.00         16.0         Kep1           2337         4 <td>23336</td> <td>4</td> <td>15.8</td> <td>610573456</td> <td>WPG16</td> <td>2014</td> <td>11</td> <td>1</td> <td>10</td> <td>5</td> <td>48</td> <td>-111.200</td> <td>-32.030</td> <td>15.0</td> <td>5.70</td> <td>Keep1</td>                                                                | 23336   | 4      | 15.8   | 610573456 | WPG16  | 2014 | 11    | 1   | 10   | 5      | 48       | -111.200  | -32.030  | 15.0  | 5.70 | Keep1   |
| 2133         9         15.4         90033202         9004613         2014         11         1         10         0         0         11         12         10         0         0.1         112.00         1154.278         0.1         0.0         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000                                                                                                                                                                                                                           |         | _      |        | 610573459 | WPG16  | 2014 | 11    | 1   | 10   | 59     | 55       | -111.180  | -31.822  | 5.0   | 6.06 |         |
| 2334         8         86         86         9694097         97666         2014         11         2         17         17         12         153.770         41.020         19.0         6.04         Mappen etable           23345         2         38.3         61554770         WFG16         2014         11         4         11         44         64         -7.5171         41.14         30.0         4.00         Keep1           23346         4         8.9         601073557         WFG16         2014         11         5         7         23         8         -119.050         41.050         8.0         4.00         Keep1           23386         6         109         60107357         WFG16         2014         11         8         23         15         44         2330         30.10         16.0         51.0         Keep1           23389         6         109         6005730         WFG16         2014         11         10         11         30         6         40.00         11.00         11         30         6         40.00         10.00         40.00         10.00         10.00         10.00         10.00         10.00         10.00                                                                                                                                                                                                                                                               | 23337   | 5      | 15.4   | 606335020 | WPG16  | 2014 | 11    | 1   | 10   | 59     | 0        | -111.220  | -31.940  | 12.0  | 6.00 | Keep2   |
| 23.30         8         33.3         9077463         WP616         2014         11         2         17         17         12         65.377         -0100         80.0         6000           23.34         2         36.3         60077463         WP616         2014         11         44         11         44         54         7.371         41.14         30.0         43.0           23.36         4         8.0         6007363         WP616         2014         11         5         7         23         4         7.198.1         41.00         10.0         47.5           23.36         6         8.1         6007373         WP616         2014         11         8         23         15         44         20.30         80.00         21.0         50.0         40.00         20.0         50.0         40.0           23.37         4         7         30.9         61057323         WP616         2014         11         10         21.1         10         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0 <th< td=""><td></td><td>_</td><td></td><td>605640197</td><td>WPG16</td><td>2014</td><td>11</td><td>2</td><td>17</td><td>17</td><td>4</td><td>154.278</td><td>-61.220</td><td>10.0</td><td>6.04</td><td></td></th<>                                                        |         | _      |        | 605640197 | WPG16  | 2014 | 11    | 2   | 17   | 17     | 4        | 154.278   | -61.220  | 10.0  | 6.04 |         |
| 233         2         38-3         (Preprint)         2014         11         4         11         44         52         73.77         41.14         30.1         40.0         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         40.00         <                                                                                                                                                                                  | 23341   | 8      | 36.3   | 610573483 | WPG16  | 2014 | 11    | 2   | 17   | 17     | 12       | 153.770   | -61.020  | 19.0  | 6.00 | Keep1   |
| 2334         2         333         0Profile         2014         11         4         11         4         54         7410         4.710         6.04         8.00         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410         7410                                                                                                                                                                                                                       |         |        |        | 605644780 | WPG16  | 2014 | 11    | 4   | 11   | 44     | 52       | -73.671   | -41.144  | 33.0  | 4.90 |         |
| 2336         4         8.9         61057367         WPG16         2014         11         5         7         23         4         119.616         41.90         0.0         4.75           2336         0         14.8         600744113         23         15         44         20.300         38.102         21.0         5.16           2338         6         10.9         60057324         WPC16         20.14         11         9         21         19         41         7.450         5.50         7.0         5.53           23374         7         30.9         60057324         WPC16         20.14         11         10         11         38         60         48.00         7.60         5.58         Keep1           23374         4         12.2         60056315         WPC16         20.14         11         11         6         6.85.00         7.60         7.0         5.40           2338         0         4.5         60056732         WPC16         20.14         11         13         6         36         11.30         10.2.0         5.50           2338         6         13.3         6         13.3         10         24                                                                                                                                                                                                                                                                                        | 23343   | 2      | 39.3   | 610573529 | WPG16  | 2014 | 11    | 4   | 11   | 44     | 54       | -74.110   | -41.250  | 40.4  | 4.96 | Keep1   |
| 2338         4         8         63364333         WPG16         2014         11         5         7         23         8         118,650         41,950         6.0         4.70           2338         0         14         20024113         WPC16         2014         11         6         23         15         44         2030         8.122         21.0         5         64.00         20.0         5.00         Keg1           2338         0         10075660         WPC16         2014         11         9         21         19         41         7.74.00         64.500         7.05         5.05         Keg1           23378         4         132         60055734         WPC16         2014         11         10         11         60         64         64.800         7.50         11.0         10.0         6.0         64.93.00         7.50         10.0         10.0         7.50         12         9.43.0         7.50         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0                                                                                                                                                                                                                                                             |         |        |        | 610573557 | WPG16  | 2014 | 11    | 5   | 7    | 23     | 4        | -119.618  | 41.906   | 9.0   | 4.75 |         |
| 2336         0         14.6         60724413         WPG16         2014         11         8         23         15         44         20.30         88.128         21.0         5.16         Keep1           2336         6         10.9         60555299         WPG16         2014         11         9         21         19         47         -17.410         64.65         7.0         5.35         Keep1           2337         4         13.2         60557599         WPG16         2014         11         10         11         38         59         -68.506         21.631         113.0         5.50           2337         4         13.2         60555739         WPG16         2014         11         10         11         7.6         8.6         94.304         7.641         7.0         5.40           2338         6         14.3         60555789         WPG16         2014         11         13         6         36         8         11.00         18.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0 <td>23346</td> <td>4</td> <td>8.9</td> <td>605645330</td> <td>WPG16</td> <td>2014</td> <td>11</td> <td>5</td> <td>7</td> <td>23</td> <td>8</td> <td>-119.650</td> <td>41.950</td> <td>16.0</td> <td>4.70</td> <td>Keep1</td>                                          | 23346   | 4      | 8.9    | 605645330 | WPG16  | 2014 | 11    | 5   | 7    | 23     | 8        | -119.650  | 41.950   | 16.0  | 4.70 | Keep1   |
| 2336         0         14.8         61037364         WPG16         2014         11         68         23         15         44         2030         8.00         10.0         5.00         Rep1           2336         6         100         66652319         WPG16         2014         11         9         21         19         41         -77.45         64.56         21.63         11.30         5.50         Kep1           2337         7         30         60537324         WPG16         2014         11         10         11         38         59         -85.50         21.63         11.81         5.50         Kep1           2337         4         73         39         60557359         WPG16         2014         11         12         11         16         51         -85.30         11.30         17.0         5.40           2338         6         14.3         60565736         WPG16         2014         11         13         60         36         8         11.30         16.0         4.0         17.0         5.40           2338         6         14.3         60565736         WPG16         2014         11         13         60                                                                                                                                                                                                                                                                                  |         |        |        | 607244113 | WPG16  | 2014 | 11    | 8   | 23   | 15     | 44       | 20.369    | 38,126   | 21.0  | 5.16 |         |
| 339         6         1.0         68562313         WPG16         214         11         9         21         19         47         17.45         64.56         7.0         5.35           23374         7         30         60557366         WPG16         2014         11         9         21         19         47         17.41         64.56         7.0         5.35         Amp1           23374         7         30         60555736         WPG16         2014         11         10         11         38         6         -88.80         7.450         17.5         5.50         Amp1           2338         0         45         6056573         WPG16         2014         11         11         16         51         -85.30         11.30         20         4.5           2338         0         45         60565730         WPG16         2014         11         13         10         24         11.30         10.3         24         11.30         10.3         24         11.30         10.3         24         11.30         10.3         24         11.30         10.3         24         11.30         10.3         25.5         10.50         11.30                                                                                                                                                                                                                                                                            | 23366   | 0      | 14.8   | 610573684 | WPG16  | 2014 | 11    | 8   | 23   | 15     | 44       | 20.310    | 38 010   | 16.0  | 5 10 | Keep1   |
| 2338         6         10.9         endorse         2014         11         9         21         19         47         17.4         64.84         12.0         5.3.9           2337         7         30.9         endorse         endorse         2014         11         10         11         38         69         -68.500         -21.630         11.8         58.8           23378         A         1.2         endorse         were         2014         11         11         7         50         42         93.30         7.481         8.0         5.48           23388         A         1.2         endorse         were         2014         11         11         17         7         50         12         93.30         7.481         8.0         5.48           23388         A         13.5         endorse         were         2014         11         13         60         36         12         119.66         41.00         16.0         47.0         47.0         47.0         47.0         47.0         47.0         47.0         47.0         47.0         47.0         47.0         47.0         47.0         47.0         47.0         47.0         4                                                                                                                                                                                                                                                                       |         |        |        | 605652319 | WPG16  | 2014 | 11    | 9   | 21   | 19     | 41       | -17 465   | 64 556   | 7.0   | 5.35 |         |
| 23374         7         30.9         600050732         WPG16         2014         11         00         11         38         69         -6.98         20.1613         11.30         5.50         Keep2           23378         4         13.2         6000564183         WPG16         2014         11         11         70         50.8         643.00         7.500         11.30         5.50         Keep2           2338         4         13.2         600565780         WPG16         2014         11         11         16         51         -65.300         11.30         7.50         5.60         Keep1           2338         0         4.5         600573720         WPG16         2014         11         13         6         36         6         11.30         7.50         1.70         5.60         Keep1           2338         0         4.3         600565782         WPG16         2014         11         13         10         24         173.106         1.51.84         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0                                                                                                                                                                                                                                                               | 23369   | 6      | 10.9   | 610573699 | WPG16  | 2014 | 11    | 9   | 21   | 19     | 47       | -17 410   | 64 640   | 12.0  | 5.30 | Keep1   |
| 2374         7         9.0         0.000014         WPG16         2014         11         10         11         20         0.000000         110.10         15.0         0.000000         110.10         15.0         0.000000         110.10         15.0         0.000000         110.10         15.0         0.000000         110.10         15.0         0.000000         0.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.0000000         10.00000000         10.00000000         10.00000000         10.000000000         10.000000000         10.0000000000000000         10.00000000000000000000000000000000000                                                                                                            |         |        |        | 610573724 | WPG16  | 2014 | 11    | 10  | 11   | 38     | 59       | -68 506   | -21 613  | 113.0 | 5 50 |         |
| 2378         4         13.2         608.306.76.2         WPG16         2014         11         17         60.         80.000         80.000         7.45         8.6         5.48           2387         4         13.2         608.305.733         WPG16         2014         11         11         17         60.0         12         9.330         7.46         8.6         5.48         7.49         8.6         5.48         7.49         8.6         5.48         7.49         8.6         5.48         7.49         8.6         5.48         7.49         8.6         5.48         7.49         8.6         5.48         7.49         8.6         5.40         7.49         8.6         5.40         7.49         8.6         5.40         7.49         8.6         7.49         8.6         7.49         8.6         7.40         7.60         7.40         7.60         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70                                                                                                                                                                                                                                  | 23374   | 7      | 30.9   | 605654185 | WPG16  | 2014 | 11    | 10  | 11   | 30     | 6        | -68,800   | -21.010  | 118.1 | 5.58 | Keep2   |
| 2378         4         12         40033903         1000         2000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         900000         900000         900000         900000         900000         900000         900000         900000         900000         9000000         9000000         9000000         90000000         900000000         900000000         9000000000000         9000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |        | 608306528 | WPC16  | 2014 | 11    | 10  | 7    | 50     | 0        | -00.000   | 7 461    | 8.0   | 5.00 |         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23378   | 4      | 13.2   | 610572742 | WPC16  | 2014 | 11    | 11  | 7    | 50     | 10       | 94.304    | 7.401    | 17.0  | 5.40 | Keep1   |
| 2383         0         4.5         600000376         WPG16         2014         11         12         11         10         0         40.33         40.33         20.33         60000000         WPG16         2014         11         13         60         36.33         40.333         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         11.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10                                                                                                                                                                                      |         | -      |        | 605656270 | WPG10  | 2014 | 11    | 10  | 11   | 50     | 1Z<br>51 | 94.340    | 1 120    | 17.0  | 5.40 |         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23383   | 0      | 4.5    | 605656379 | WPGIO  | 2014 | 11    | 12  | 11   | 10     | 51       | -85.300   | 1.130    | 17.5  | 5.50 | Keep1   |
| 2338         4         15.6         6005/3/90         WPG16         2014         11         13         6         36         8         110.86         41.90         6.0         4.7.9         Meap1           23386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |        |        | 610573759 | WPG16  | 2014 | 11    | 12  | 11   | 16     | 51       | -85.360   | 1.130    | 22.0  | 5.50 |         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23384   | 4      | 15.6   | 610573780 | WPG16  | 2014 | 11    | 13  | 6    | 36     | 8        | -119.681  | 41.909   | 6.0   | 4.75 | Keep1   |
| 2338         6         14.3         60056906         WPC16         2014         11         13         10         24         18         173.06         -15.184         6.0         6.0         Mecp1           23392         1         30.8         600559521         WPC16         2014         11         15         0         18         40         -76.735         -12.690         44.0         5.41           23392         1         30.8         60057327         WPC16         2014         11         15         3         8         5         12.399         -0.230         85.0         5.90           23411         3         31.8         60560418         WPC16         2014         11         15         9         44         1         12.399         -0.230         85.0         5.90           23424         2         4.1         60560417         WPC16         2014         11         17         4         34         12         94.41         20.780         60.0         5.34           40505804         WPC16         2014         11         17         11         27         7         -102.197         36.01         19.0         5.47                                                                                                                                                                                                                                                                                          |         |        |        | 605657582 | WPG16  | 2014 | 11    | 13  | 6    | 36     | 12       | -119.560  | 41.910   | 18.0  | 4.70 |         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23386   | 6      | 14.3   | 605658096 | WPG16  | 2014 | 11    | 13  | 10   | 24     | 18       | 173.061   | -15.184  | 6.0   | 6.01 | Keep1   |
| 23392         1         30.8         605659521<br>61057332         WPG16         2014         11         15         0         18         40         767.75         -12.680         44.0         5.41         Keep1           23396         1         15.5         605660412         WPG16         2014         11         15         3         8         6         123.890         -0.145         90.0         5.60         Keep1           23411         3         31.8         605660412         WPG16         2014         11         15         9         44         125.830         -0.145         90.0         5.50         Keep1           23424         2         24.1         60566017         WPG16         2014         11         17         4         34         12         94.421         20.780         66.0         5.34         Keep1           23425         1         5.1         605662413         WPG16         2014         11         17         14         34         14         94.421         20.780         90.0         5.30           23426         1         5.1         60563824         WPG16         2014         11         17         13         27 <t< td=""><td></td><td></td><td></td><td>610573784</td><td>WPG16</td><td>2014</td><td>11</td><td>13</td><td>10</td><td>24</td><td>24</td><td>173.130</td><td>-15.280</td><td>12.0</td><td>6.00</td><td></td></t<>                                                    |         |        |        | 610573784 | WPG16  | 2014 | 11    | 13  | 10   | 24     | 24       | 173.130   | -15.280  | 12.0  | 6.00 |         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23392   | 1      | 30.8   | 605659521 | WPG16  | 2014 | 11    | 15  | 0    | 18     | 40       | -76.735   | -12.690  | 44.0  | 5.41 | Keep1   |
| 23396         1         15.<br>40573835         60560412<br>(10573835         WPG16<br>(2014         2014<br>(11)         15         3         8         5         123.889<br>(123.980         -0.145         90.0         5.96<br>(10573835         Reep1<br>(10573835           23411         3         31.8         605600418         WPG16         2014         11         15         9         48         1         126.533         1.754         47.0         5.49           23424         2         24.1         605600417         WPG16         2014         11         17         4         34         12         94.21         20.780         60.0         5.34           23425         1         5.1         605606413         WPG16         2014         11         17         14         34         14         94.40         20.780         60.0         5.34           23426         1         10.2         60566243         WPG16         2014         11         17         13         27         17         155.142         9.770         12.0         5.36           23439         2         16.3         605662945         WPG16         2014         11         17         23         5         58         23                                                                                                                                                                                                                           |         |        |        | 610573827 | WPG16  | 2014 | 11    | 15  | 0    | 18     | 41       | -76.750   | -12.630  | 74.0  | 5.40 |         |
| 1         61057385         WPG16         2014         11         15         3         8         6         123990         -0.230         85.0         5.99           2341         3         38         605660418         WPG16         2014         11         15         9         47         58         126.533         1.754         47.0         5.49         Rep1           2342         2         24.1         605660617         WPG16         2014         11         17         4         34         12         94.421         20.780         60.0         5.34           2342         1         5.1         605662413         WPG16         2014         11         17         11         27         7         -102.197         -86.01         19.0         5.37           2342         1         10.2         60566245         WPG16         2014         11         17         13         27         18         155.102         9.770         12.0         5.35           2343         0         169         61057392         WPG16         2014         11         17         23         5         58         23.460         38.540         18.2         5.35                                                                                                                                                                                                                                                                                    | 23396   | 1      | 15.5   | 605660412 | WPG16  | 2014 | 11    | 15  | 3    | 8      | 5        | 123.889   | -0.145   | 90.0  | 5.96 | Keep1   |
| 23411         3         31.8         605660418         WPG16         2014         11         15         9         47         58         126.53         1.754         47.0         5.49           23424         2         24.1         60566017         WPG16         2014         11         17         4         34         12         94.421         20.780         60.0         5.30         Heep1           23425         1         5.1         605662413         WPG16         2014         11         17         4         34         14         94.421         20.780         60.0         5.30         Heep1           23425         1         5.1         605662443         WPG16         2014         11         17         11         27         7         -102.197         -36.010         15.0         5.40           23436         1         10.2         60566245         WPG16         2014         11         17         23         5         58         23.378         38.617         23.0         5.36           23438         2         21.6         60567236         WPG16         2014         11         18         7         59         14         -40.70                                                                                                                                                                                                                                                                           |         |        |        | 610573835 | WPG16  | 2014 | 11    | 15  | 3    | 8      | 6        | 123.990   | -0.230   | 85.0  | 5.90 |         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23411   | 3      | 31.8   | 605660418 | WPG16  | 2014 | 11    | 15  | 9    | 47     | 58       | 126.533   | 1.754    | 47.0  | 5.49 | Keep1   |
| 23424         2         24.1         605660617         WPG16         2014         11         17         4         34         12         94.421         20.780         60.0         5.34         Keep1           23425         1         5.1         605662413         WPG16         2014         11         17         11         27         7         -102.197         -36.001         19.0         5.30         Keep1           23426         1         10.2         605662413         WPG16         2014         11         17         11         27         7         -102.197         -36.010         15.0         5.00         Keep1           23426         1         10.2         60566245         WPG16         2014         11         17         13         27         18         152.20         -9.77         12.0         5.36         Keep1           23434         0         16.9         605662945         WPG16         2014         11         17         23         5         58         23.400         38.671         20.0         5.36         Keep1           23439         2         21.6         60567203         WPG16         2014         11         18 <td< td=""><td>20111</td><td>Ŭ</td><td>00</td><td>610573842</td><td>WPG16</td><td>2014</td><td>11</td><td>15</td><td>9</td><td>48</td><td>1</td><td>126.380</td><td>1.960</td><td>33.0</td><td>5.50</td><td>iteop i</td></td<>                                           | 20111   | Ŭ      | 00     | 610573842 | WPG16  | 2014 | 11    | 15  | 9    | 48     | 1        | 126.380   | 1.960    | 33.0  | 5.50 | iteop i |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23424   | 2      | 24.1   | 605660617 | WPG16  | 2014 | 11    | 17  | 4    | 34     | 12       | 94.421    | 20.780   | 66.0  | 5.34 | Keen1   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20121   | -      | 21.1   | 610573891 | WPG16  | 2014 | 11    | 17  | 4    | 34     | 14       | 94.440    | 20.780   | 90.0  | 5.30 | Roop I  |
| 2.342         1         0.1         610573896         WPG16         2014         11         17         11         27         8         -102.230         -36.010         15.0         5.40         Reep1           23426         1         10.2         60566245         WPG16         2014         11         17         13         27         17         155.142         -9.775         20.0         5.35         Heep1           23434         0         16.9         610573912         WPG16         2014         11         17         23         5         58         23.460         38.540         18.2         5.30         Heep2           23439         2         16.9         605662926         WPG16         2014         11         18         7         59         14         40.70         31.676         10.0         5.39         Heep2           23459         6         23.4         610574036         WPG16         2014         11         22         6         50         54         -71.109         20.079         16.0         5.01           23459         1         10.1         60574058         WPG16         2014         11         22         19         14<                                                                                                                                                                                                                                                                  | 23425   | 1      | 51     | 605662413 | WPG16  | 2014 | 11    | 17  | 11   | 27     | 7        | -102.197  | -36.001  | 19.0  | 5.47 | Keen1   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20420   | -      | 5.1    | 610573896 | WPG16  | 2014 | 11    | 17  | 11   | 27     | 8        | -102.230  | -36.010  | 15.0  | 5.40 | Кеерт   |
| 23420         1         10.2         610573898         WPG16         2014         11         17         13         27         18         155.200         -9.770         12.0         5.30         Reep1           23434         0         16.9         605673912         WPG16         2014         11         17         23         5         58         23.460         38.540         18.2         5.30         Reep1           23439         2         21.6         605662926         WPG16         2014         11         18         7         59         14         -40.709         31.676         10.0         5.30         Reep1           23454         6         23.4         610574036         WPG16         2014         11         22         6         50         54         -71.109         -20.079         16.0         5.10         Keep2           23459         1         0.1         610574036         WPG16         2014         11         22         19         14         17         27.158         45.865         32.0         5.71           23459         1         10.1         60574566         WPG16         2014         11         22         19         1                                                                                                                                                                                                                                                                  | 22426   | 1      | 10.2   | 605662645 | WPG16  | 2014 | 11    | 17  | 13   | 27     | 17       | 155.142   | -9.775   | 20.0  | 5.35 | Koon1   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23420   | -      | 10.2   | 610573898 | WPG16  | 2014 | 11    | 17  | 13   | 27     | 18       | 155.200   | -9.770   | 12.0  | 5.30 | Keepi   |
| 233.4         0         16.9         605662926         WPG16         2014         11         17         23         5         58         23.378         38.671         23.0         5.30         Reep2           23439         2         21.6         605662945         WPG16         2014         11         18         7         59         14         -40.709         31.676         10.0         5.39         Reep2           23439         2         21.6         605662945         WPG16         2014         11         18         7         59         16         -40.710         31.870         12.0         5.40           23459         6         23.4         610574036         WPG16         2014         11         22         6         50         0         -71.109         -20.079         16.0         5.10         Keep1           23459         1         10.1         610574052         WPG16         2014         11         22         19         14         18         27.170         45.800         25.0         5.71         Keep1           23467         3         11.9         60574087         WPG16         2014         11         24         21         2<                                                                                                                                                                                                                                                                  | 22424   | 0      | 10.0   | 610573912 | WPG16  | 2014 | 11    | 17  | 23   | 5      | 58       | 23.460    | 38.540   | 18.2  | 5.36 | Kaano   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23434   | 0      | 10.9   | 605662926 | WPG16  | 2014 | 11    | 17  | 23   | 5      | 58       | 23.378    | 38.671   | 23.0  | 5.30 | Reepz   |
| 23439         2         21.6         610573926         WPG16         2014         11         18         7         59         16         -40.710         31.870         12.0         5.40         Reep1           23454         6         23.4         610574036         WPG16         2014         11         22         6         50         54         -71.109         -20.079         16.0         5.10         Keep1           23459         1         10.1         610574036         WPG16         2014         11         22         19         14         17         27.158         45.865         32.0         5.70         Keep1           23459         1         10.1         610574052         WPG16         2014         11         22         19         14         18         27.170         45.800         25.0         5.71         Keep1           23467         3         11.9         605716569         WPG16         2014         11         24         21         2         19         154.960         -6.040         178.0         5.70         Keep1           23483         5         33.4         60574110         WPG16         2014         11         28                                                                                                                                                                                                                                                                       | 00.400  | 0      | 04.0   | 605662945 | WPG16  | 2014 | 11    | 18  | 7    | 59     | 14       | -40.709   | 31.676   | 10.0  | 5.39 | Kanad   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23439   | 2      | 21.0   | 610573926 | WPG16  | 2014 | 11    | 18  | 7    | 59     | 16       | -40.710   | 31.870   | 12.0  | 5.40 | Keepi   |
| 23454         6         23.4         605672703         WPG16         2014         11         22         6         50         0         -71.300         -19.980         21.1         5.11         Keep2           23459         1         10.1         605672703         WPG16         2014         11         22         19         14         17         27.158         45.865         32.0         5.70         Keep1           23467         3         11.9         605716569         WPG16         2014         11         22         19         14         18         27.170         45.800         25.0         5.71         Keep1           23467         3         11.9         605716569         WPG16         2014         11         24         21         2         19         154.962         -5.963         170.0         5.71         Keep1           23483         5         33.4         60574110         WPG16         2014         11         26         22         26         1         -104.113         8.239         10.0         5.53           23484         2         14.8         605742589         Added         2014         11         28         23                                                                                                                                                                                                                                                                           | 00.45.4 |        | 00.4   | 610574036 | WPG16  | 2014 | 11    | 22  | 6    | 50     | 54       | -71.109   | -20.079  | 16.0  | 5.10 |         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23454   | 6      | 23.4   | 605672703 | WPG16  | 2014 | 11    | 22  | 6    | 50     | 0        | -71.300   | -19.980  | 21.1  | 5.11 | Keep2   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        | 610574052 | WPG16  | 2014 | 11    | 22  | 19   | 14     | 17       | 27.158    | 45.865   | 32.0  | 5.70 |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23459   | 1      | 10.1   | 605673666 | WPG16  | 2014 | 11    | 22  | 19   | 14     | 18       | 27.170    | 45.800   | 25.0  | 5.71 | Keep1   |
| 23467         3         11.9         610574087         WPG16         2014         11         24         21         2         22         154.980         -6.040         178.0         5.70         Keep1           23483         5         33.4         605741110         WPG16         2014         11         26         22         26         1         -104.113         8.239         10.0         5.53         Keep1           23483         5         33.4         60574110         WPG16         2014         11         26         22         26         1         -104.113         8.239         10.0         5.53         Keep1           23484         2         14.8         605742589         Added         2014         11         28         2         30         7         29.006         39.332         10.8         4.30           23488         1         9.1         605743502         WPG16         2014         11         28         13         23         16         61.326         5.753         10.0         5.47           23490         3         31         605743502         WPG16         2014         11         29         4         14         16                                                                                                                                                                                                                                                                          |         | _      |        | 605716569 | WPG16  | 2014 | 11    | 24  | 21   | 2      | 19       | 154.962   | -5.963   | 170.0 | 5.71 |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23467   | 3      | 11.9   | 610574087 | WPG16  | 2014 | 11    | 24  | 21   | 2      | 22       | 154.980   | -6.040   | 178.0 | 5.70 | Keep1   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        | 605741110 | WPG16  | 2014 | 11    | 26  | 22   | 26     | 1        | -104.113  | 8.239    | 10.0  | 5.53 |         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23483   | 5      | 33.4   | 610574140 | WPG16  | 2014 | 11    | 26  | 22   | 26     | 6        | -104.040  | 8.530    | 12.0  | 5.50 | Keep1   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |        |        | 605742589 | Added  | 2014 | 11    | 28  | 2    | 30     | 7        | 29.006    | 39 332   | 10.8  | 4 30 |         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23484   | 2      | 14.8   | 610574169 | Added  | 2014 | 11    | 28  | 2    | 30     | 9        | 28 895    | 39 240   | 5.9   | 4 30 | Keep1   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |        |        | 605743502 | WPG16  | 2014 | 11    | 28  | 13   | 23     | 16       | 61.326    | 5 753    | 10.0  | 5.47 |         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23488   | 1      | 9.1    | 610574178 | WPG16  | 2014 | 11    | 28  | 13   | 23     | 17       | 61 250    | 5 730    | 12.0  | 5.40 | Keep2   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |        |        | 605745251 | WPG16  | 2014 | 11    | 20  | 4    | 14     | 16       | -150 490  | 62 7/10  | 104.0 | 5 10 |         |
| 23491         3         11.9         606005198         WPG16         2014         11         29         13         5         9         61.356         5.715         4.0         5.58           610574191         WPG16         2014         11         29         13         5         9         61.356         5.715         4.0         5.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23490   | 3      | 31     | 61057/18/ | WPC16  | 2014 | 11    | 20  | -    | 1/     | 10       | -15050    | 62 080   | 115.2 | 5 13 | Keep1   |
| 23491 3 11.9 00000190 WFG10 2014 11 29 13 5 9 01.300 5.713 4.0 5.38 Keep1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        |        | 606005109 | W/PC16 | 2014 | 11    | 20  | 12   | 5      | 0        | 61 256    | 5 715    | 4.0   | 5.59 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23491   | 3      | 11.9   | 610574101 | W/PC16 | 2014 | 11    | 20  | 12   | 5      | 10       | 61 290    | 5 600    | 12.0  | 5.50 | Keep1   |

| Case     | ∆t (s)   | d (km) | Event ID  | Source | Year | Month | Day    | Hour | Minute | Second | Longitude | Latitude | Depth | М    | Outcome |
|----------|----------|--------|-----------|--------|------|-------|--------|------|--------|--------|-----------|----------|-------|------|---------|
| 00.40.4  | 1        |        | 606005203 | WPG16  | 2014 | 11    | 29     | 14   | 18     | 8      | -71.069   | -19.997  | 6.0   | 5.42 |         |
| 23494    | 1        | 24.3   | 610574193 | WPG16  | 2014 | 11    | 29     | 14   | 18     | 15     | -71.260   | -19.890  | 13.0  | 5.40 | Keep1   |
|          |          |        | 607685029 | Added  | 2014 | 11    | 30     | 8    | 6      | 48     | 13.370    | 43.580   | 33.0  | 2.90 |         |
| 23497    | 1        | 3.2    | 610049501 | Added  | 2014 | 11    | 30     | 8    | 6      | 49     | 13.370    | 43.568   | 30.1  | 2.80 | Keep1   |
|          |          |        | 610574280 | WPG16  | 2014 | 12    | 3      | 2    | 29     | 0      | -71.082   | -19.987  | 16.0  | 4.90 |         |
| 23510    | 4        | 33.6   | 606176797 | WPG16  | 2014 | 12    | 3      | 2    | 29     | 4      | -71.360   | -19.850  | 23.1  | 4.93 | Keep1   |
|          | -        |        | 610574319 | WPG16  | 2014 | 12    | 4      | 10   | 43     | 44     | 178.000   | -38.230  | 90.0  | 4.88 |         |
| 23514    | 3        | 26.1   | 606179914 | WPG16  | 2014 | 12    | 4      | 10   | 43     | 47     | 177.800   | -38.100  | 77.0  | 4.80 | Keep1   |
|          |          |        | 606179915 | WPG16  | 2014 | 12    | 4      | 10   | 53     | 31     | 65.564    | -12.076  | 4.0   | 5.43 |         |
| 23515    | 1        | 13.6   | 610574322 | WPG16  | 2014 | 12    | 4      | 10   | 53     | 32     | 65.540    | -11.980  | 12.0  | 5.40 | Keep1   |
|          |          |        | 606335284 | WPG16  | 2014 | 12    | 5      | 21   | 4      | 58     | -17.311   | 64.555   | 0.0   | 5.43 |         |
| 23517    | 2        | 18.1   | 610574363 | WPG16  | 2014 | 12    | 5      | 21   | 5      | 0      | -17.110   | 64.640   | 12.0  | 5.40 | Keep1   |
|          |          |        | 606335392 | WPG16  | 2014 | 12    | 6      | 17   | 21     | 49     | -82.697   | 8.014    | 17.0  | 6.02 |         |
| 23524    | 6        | 2.9    | 610574386 | WPG16  | 2014 | 12    | 6      | 17   | 21     | 55     | -82,710   | 8.000    | 19.0  | 6.00 | Keep1   |
|          |          |        | 606928928 | WPG16  | 2014 | 12    | 7      | 3    | 30     | 2      | 154 259   | -6 461   | 10.0  | 5 59 |         |
| 23530    | 4        | 14.4   | 610574398 | WPG16  | 2014 | 12    | 7      | 3    | 30     | 6      | 154 310   | -6 510   | 22.0  | 5.60 | Keep1   |
|          |          |        | 606335621 | WPG16  | 2014 | 12    | 7      | 12   | 11     | 31     | -91.382   | 13 747   | 28.0  | 5.87 |         |
| 23537    | 3        | 47.3   | 610574404 | WPG16  | 2014 | 12    | 7      | 12   | 11     | 34     | -91.810   | 13 690   | 20.0  | 5.80 | Keep1   |
|          |          |        | 610574408 | WPG16  | 2014 | 12    | 7      | 17   | 55     | 33     | 154 270   | -6 720   | 12.0  | 5.00 |         |
| 23539    | 1        | 4.6    | 606335631 | WPG16  | 2014 | 12    | 7      | 17   | 55     | 34     | 154.220   | -6.720   | 13.0  | 5.40 | Keep1   |
|          |          |        | 606338213 | WPC16  | 2014 | 12    | ,<br>o | 17   | 51     | 27     | 129 729   | 1 920    | 10.2  | 5.40 |         |
| 23541    | 2        | 29     | 610574424 | WPC16  | 2014 | 12    | 0      | 12   | 51     | 20     | 120.000   | -1.020   | 40.0  | 5.40 | Keep1   |
|          |          |        | 606247826 | WPGIO  | 2014 | 12    | 0      | 12   | 50     | 29     | 130.000   | -1.570   | 35.0  | 5.40 |         |
| 23546    | 6        | 28.3   | 606347836 | WPGIO  | 2014 | 12    | 11     | 13   | 53     | 29     | -20.420   | -00.701  | 10.0  | 5.60 | Keep1   |
|          |          |        | 610574498 | WPG16  | 2014 | 12    | 11     | 13   | 53     | 35     | -25.100   | -56.910  | 20.0  | 5.60 |         |
| 23548    | 2        | 11.2   | 606348793 | WPG16  | 2014 | 12    | 12     | 20   | 22     | 36     | -1/6.450  | -18.830  | 317.0 | 5.80 | Keep1   |
| $\vdash$ |          |        | 610574528 | WPG16  | 2014 | 12    | 12     | 20   | 22     | 38     | -1/6.430  | -18.830  | 328.0 | 5.80 |         |
| 23551    | 5        | 30.6   | 606349393 | WPG16  | 2014 | 12    | 13     | 12   | 46     | 45     | -112.196  | -28.956  | 8.0   | 5.48 | Keep1   |
| $\vdash$ |          |        | 6105/4544 | WPG16  | 2014 | 12    | 13     | 12   | 46     | 50     | -112.480  | -29.070  | 12.0  | 5.40 |         |
| 23558    | 8        | 33.9   | 606366189 | WPG16  | 2014 | 12    | 16     | 10   | 45     | 24     | -150.499  | -56.744  | 0.0   | 5.36 | Keep1   |
|          |          |        | 610574619 | WPG16  | 2014 | 12    | 16     | 10   | 45     | 32     | -150.800  | -56.950  | 17.0  | 5.30 |         |
| 23561    | 3        | 10.2   | 606367107 | WPG16  | 2014 | 12    | 17     | 13   | 58     | 50     | -17.763   | 64.591   | 8.0   | 5.38 | Keep1   |
|          |          |        | 610574640 | WPG16  | 2014 | 12    | 17     | 13   | 58     | 53     | -17.590   | 64.550   | 12.0  | 5.30 |         |
| 23562    | 4        | 25     | 606367706 | WPG16  | 2014 | 12    | 18     | 6    | 24     | 38     | -68.888   | -20.369  | 104.0 | 4.80 | Keep2   |
|          |          |        | 610574651 | WPG16  | 2014 | 12    | 18     | 6    | 24     | 42     | -68.990   | -20.380  | 126.6 | 4.85 |         |
| 23565    | 7        | 14.4   | 606389950 | WPG16  | 2014 | 12    | 18     | 20   | 10     | 53     | -25.370   | -56.628  | 10.0  | 5.48 | Keep1   |
|          |          |        | 610574659 | WPG16  | 2014 | 12    | 18     | 20   | 11     | 0      | -25.140   | -56.640  | 13.0  | 5.40 |         |
| 23567    | 3        | 3.8    | 606393702 | WPG16  | 2014 | 12    | 19     | 4    | 47     | 40     | 145.506   | 42.704   | 32.0  | 5.35 | Keep1   |
|          |          |        | 610574664 | WPG16  | 2014 | 12    | 19     | 4    | 47     | 43     | 145.540   | 42.720   | 30.0  | 5.30 |         |
| 23573    | 2        | 19.9   | 606396468 | WPG16  | 2014 | 12    | 19     | 19   | 49     | 30     | -61.796   | 16.208   | 107.0 | 5.65 | Keep1   |
|          |          |        | 610574688 | WPG16  | 2014 | 12    | 19     | 19   | 49     | 32     | -61.820   | 16.370   | 115.0 | 5.60 |         |
| 23580    | 1        | 9.6    | 610574728 | WPG16  | 2014 | 12    | 21     | 9    | 40     | 49     | -130.540  | 50.710   | 6.0   | 5.10 | Keep2   |
|          | -        |        | 606414201 | WPG16  | 2014 | 12    | 21     | 9    | 40     | 50     | -130.520  | 50.760   | 13.7  | 5.17 |         |
| 23592    | 4        | 15.6   | 606415082 | WPG16  | 2014 | 12    | 24     | 1    | 19     | 39     | 147.257   | -56.300  | 10.0  | 5.49 | Keep1   |
| 20002    |          | .0.0   | 610574793 | WPG16  | 2014 | 12    | 24     | 1    | 19     | 43     | 147.050   | -56.380  | 12.0  | 5.50 | rtoop r |
| 23597    | 7        | 20.5   | 606417343 | WPG16  | 2014 | 12    | 26     | 23   | 52     | 15     | -82.346   | 6.519    | 10.0  | 6.02 | Keen1   |
| 20001    | ,        | 20.0   | 610574832 | WPG16  | 2014 | 12    | 26     | 23   | 52     | 22     | -82.410   | 6.680    | 17.0  | 6.00 | Пеерт   |
| 23607    | 4        | 35.8   | 606436890 | Added  | 2015 | 1     | 1      | 12   | 16     | 11     | -125.400  | 40.400   | 8.0   | 5.20 | Keen?   |
| 20007    | r        | 55.0   | 610574944 | WPG16  | 2015 | 1     | 1      | 12   | 16     | 15     | -125.775  | 40.442   | 24.0  | 5.40 | Кеерг   |
| 22611    | 1        | 27.2   | 606436926 | WPG16  | 2015 | 1     | 2      | 8    | 21     | 56     | 60.365    | 6.574    | 10.0  | 5.51 | Koon1   |
| 20011    |          | 21.3   | 610574967 | WPG16  | 2015 | 1     | 2      | 8    | 21     | 57     | 60.120    | 6.600    | 12.0  | 5.50 | Keehi   |
| 00640    | 4        | 21.2   | 606436927 | WPG16  | 2015 | 1     | 2      | 8    | 25     | 53     | 60.299    | 6.449    | 10.0  | 5.45 | Kacht   |
| 23012    |          | ∠1.3   | 610574969 | WPG16  | 2015 | 1     | 2      | 8    | 25     | 54     | 60.150    | 6.570    | 12.0  | 5.40 | кеерт   |
| 00040    | 2        | 10.0   | 606436933 | WPG16  | 2015 | 1     | 2      | 10   | 15     | 34     | -130.365  | 50.863   | 10.0  | 5.34 | Kaard   |
| 23013    | 2        | 19.8   | 610574974 | WPG16  | 2015 | 1     | 2      | 10   | 15     | 36     | -130.550  | 50.730   | 12.0  | 5.30 | кеерт   |
| 00011    | <u>_</u> |        | 606436934 | WPG16  | 2015 | 1     | 2      | 11   | 1      | 26     | -104.170  | -3.940   | 15.1  | 5.33 | K- 0    |
| 23014    | U        | 9.1    | 610574976 | WPG16  | 2015 | 1     | 2      | 11   | 1      | 26     | -104.220  | -4.000   | 18.0  | 5.30 | r.eep2  |

| 2000         30         10         600000000         WPO16         2016         1         4         1         40         60         103.040         500.00         100         4.70           2330         1         500000000         WPO16         2016         1         5         17         40         40         17         2010         100         4.70         80         50.00         100         4.70         100         4.70         100         4.70         100         4.70         100         4.70         100         4.70         100         4.70         100         4.70         100         4.70         100         4.70         100         4.70         100         4.70         100         4.70         100         4.70         100         4.70         100         100         2.70         17.70         4.70         6.70         100         100         2.70         17.70         4.70         6.70         17.70         4.70         6.70         17.70         4.70         6.70         17.70         4.70         6.70         17.70         4.70         4.70         4.70         4.70         4.70         4.70         4.70         4.70         4.70         4.70                                                                                                                                                                                                                                                  | Case  | ∆t (s) | d (km) | Event ID  | Source | Year | Month | Day | Hour     | Minute   | Second    | Longitude | Latitude | Depth | м    | Outcome  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|-----------|--------|------|-------|-----|----------|----------|-----------|-----------|----------|-------|------|----------|
| 23.22         3         12.3         000000000         VPCVP1         2015         1         4         1         40         93         11.3         000000000         10000000         10000000         10000000         10000000         10000000         10000000         10000000         10000000         10000000         1000000         1000000         1000000         1000000         1000000         1000000         10000000         1000000         1000000         1000000         1000000         1000000         1000000         10000000         1000000         10000000         1000000         1000000         1000000         1000000         1000000         10000000         10000000         10000000         10000000         10000000         10000000         10000000         10000000         10000000         100000000         100000000         100000000         100000000         1000000000         1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00000 |        | 40.0   | 610575018 | WPG16  | 2015 | 1     | 4   | 1        | 49       | 56        | -130.480  | 50.520   | 3.0   | 4.80 |          |
| 280         3         11.3         60688988         WFG16         2015         1         5         17         48         48         1711.00         4.201         1.0         6.401          2334         4         46.6         60005305         WFG16         2015         1         6         22         9         13         103.251         65.212         10.6         6.40           23630         3         11.7         60005741         WFG16         2015         1         8         2         2         67         125.00         40.005         24.00         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0         4.00         20.0                                                                                                                                                                                                                                                | 23622 | 3      | 12.9   | 606490574 | WPG16  | 2015 | 1     | 4   | 1        | 49       | 59        | -130.540  | 50.500   | 15.0  | 4.79 | Keep1    |
| 2380         3         113         60000000         WPC16         2015         1         6         7         40         66         7         103         5         500         Kep1           2383         3         17         6         60000000         WPG16         2015         1         6         22         9         171         163.86         65.10         12.0         8.50         12.0         8.50         12.0         8.50         12.0         8.50         12.0         8.50         12.0         8.50         12.0         8.50         12.0         8.50         12.0         8.50         12.0         8.50         12.0         8.50         12.0         12.50         14.000         2.50         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0         14.0                                                                                                                                                                                                                                              |       |        |        | 606498988 | WPG16  | 2015 | 1     | 5   | 17       | 48       | 43        | 171.230   | -43.071  | 9.0   | 5.61 |          |
| 2384         4         4.5         60000000         907616         2015         1         6.6         22         9         13         11027         103.00         5.40         Keep1           2383         3         11.7         68365174         WPG16         2015         1         8         2         2         54         11.87         04.0175         35.0         4.00         Keep1           23643         4         14.1         60000517         WPG16         2015         1         8         14         66         35.0         101.331         41.060         7.0         Keep1           23643         4         14.1         60000517         WPG16         2015         1         8         44         66         35.0         11.000         7.0         12.0         2.0         12.0         12.0         10.0         2.0         12.0         10.0         2.0         12.0         10.0         2.0         12.0         10.0         12.0         2.0         12.0         10.0         12.0         12.0         12.0         10.0         12.0         10.0         12.0         10.0         12.0         10.0         11.0         12.0         10.0         11.0 <td>23630</td> <td>3</td> <td>11.3</td> <td>610575061</td> <td>WPG16</td> <td>2015</td> <td>1</td> <td>5</td> <td>17</td> <td>48</td> <td>46</td> <td>171.180</td> <td>-42.980</td> <td>12.0</td> <td>5.60</td> <td>Keep1</td>                                 | 23630 | 3      | 11.3   | 610575061 | WPG16  | 2015 | 1     | 5   | 17       | 48       | 46        | 171.180   | -42.980  | 12.0  | 5.60 | Keep1    |
| 2133         4         45         6007101         VPC16         2015         1         6         22         9         7         7         53.90         6.715         12         6.90         Morple           2333         3         11.7         66050714         WPC16         2015         1         8         2         2         57         112.5703         43.08         20.0         2.0         2.0         57         125.700         43.08         2.0         5.71         45.080         2.0         5.74         45.080         2.0         5.74         45.080         1.0         5.74         45.081         1.0         5.74         45.081         1.0         5.70         45.081         1.0         5.70         45.081         1.0         5.70         45.081         1.0         5.70         45.081         1.0         5.70         45.081         1.0         5.70         45.081         1.0         5.70         45.081         1.0         5.70         45.081         1.0         5.70         45.081         4.0         4.0         1.0         5.70         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.                                                                                                                                                                                                                                         |       |        |        | 606503505 | WPG16  | 2015 | 1     | 6   | 22       | 9        | 13        | 163.251   | 55.212   | 10.0  | 5.49 |          |
| 2389         3         11.7         60057142         WPC16         2015         1         8         2         2         5         1.92700         4.9180         2.90.9         4.918           2043         4         14.1         60057158         WPC16         2015         1         8         14         96         33         161.331         -64.90         30.0         5.701         4000           20547         3         2005         60050772         WPC16         2015         1         8.8         600507172         WPC16         2015         1         10.2         5         4.40         43.262         -64.30         40.0         5.604         6.607           2086         4         2         11         10.0         2         5         4.40         6.342.0         6.370         40.0         5.604         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607         6.607                                                                                                                                                                                                                                                    | 23634 | 4      | 45.6   | 610575101 | WPG16  | 2015 | 1     | 6   | 22       | 9        | 17        | 163.960   | 55.150   | 12.0  | 5.50 | Keep1    |
| 2308         3         1.7         (mor)         2000         200         4.99         4.99         (mor)           2384         4         14         100000017         WPG16         2015         1         8         14         56         31         161.31         -61.69         1.0         6.774         Kep1           23847         3         23         500000756         Addd         2015         1         8         23         51         40         -132.80         4.00         -5.403         30.0         5.50           2387         3         8.8         (mor)         WPG16         2015         1         10         2         5         46         6.340         -5.433         10.0         5.60           23889         4         21         00055000         WPG16         2015         1         13         19         50         44         14.150         3.00         4.10         2.00         2.00         100         5.57         Kep1           2006         2         2         10057507         Addd         2.015         1         17         23         30         54         13.138         5.170         6.00         5.57 </td <td></td> <td></td> <td></td> <td>606505114</td> <td>WPG16</td> <td>2015</td> <td>1</td> <td>8</td> <td>2</td> <td>2</td> <td>54</td> <td>-125.700</td> <td>49.175</td> <td>35.0</td> <td>4.90</td> <td></td>                                                                           |       |        |        | 606505114 | WPG16  | 2015 | 1     | 8   | 2        | 2        | 54        | -125.700  | 49.175   | 35.0  | 4.90 |          |
| 2343         4         14.1         60650317<br>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23639 | 3      | 11.7   | 610575142 | WPG16  | 2015 | 1     | 8   | 2        | 2        | 57        | -125.700  | 49.080   | 29.9  | 4.95 | Keep1    |
| 2344         4         14.         4         15.         8         44.         56.         35.         161230         -61.650         17.0         8.70         Mergin           2387         3         20.         -00000728         Adad         2015         1         8         23         61         40         132205         -64.40         30.0         5.00         Morg2           23867         3         8.8         -000510008         WPc16         2015         1         10         2         5         40         63.30         -5.443         30.0         5.60         Morg1           23898         4         21         -00054007         WPc16         2015         1         10         10         50         44         14.100         7.20         1.0         5.00           23898         2         25.7         4006         WPc16         2015         1         18         4         47         40         197070         1.00         5.00         4.00         5.777         5.00         5.00         4.00         5.777         5.00         5.00         6.00         5.00         4.00         5.77         5.00         5.00         6.00         5.                                                                                                                                                                                                                                                                          |       |        |        | 606506317 | WPG16  | 2015 | 1     | 8   | 14       | 56       | 31        | 161.331   | -61.659  | 4.0   | 5.74 |          |
| 23647         3         20.3         66850726         Added         2015         1         8         23         51         46         -132.00         54.40         30.0         5.50         Keep2           23851         3         8.8         60057167         WPG16         2015         1         10         2         5         46         68.340         5.70         Keep1           23869         4         2         5         46055010         WPG16         2015         1         12         20         25         14         133.982         5.40         5.40         5.40         5.40         5.66         Keep1           23668         2         25         60055011         WPG16         2015         1         13         19         50         44         141.09         3.73         56.0         5.59           60055767         Adda         WPG16         2015         1         118         4         47         40         173.846         80.0         5.59         Keep1           23678         2         12.7         60555614         WPG16         2015         1         18         23         13         11         10.0         5.77                                                                                                                                                                                                                                                                                        | 23643 | 4      | 14.1   | 610575156 | WPG16  | 2015 | 1     | 8   | 14       | 56       | 35        | 161.230   | -61.650  | 17.0  | 5.70 | Keep1    |
| 2347         3         23         6005772         WPGr6         2015         1         48         23         51         49         432.80         4.4.30         4.0.         5.4.30         4.0.         5.4.30         4.0.         5.4.30         4.0.         5.4.30         4.0.         5.4.30         4.0.         5.4.30         4.0.         5.4.30         4.0.         5.4.30         4.0.         5.4.30         4.0.         5.4.30         4.0.         5.4.30         4.0.         5.4.30         4.0.0         5.4.30         4.0.0         5.4.30         4.0.0         5.4.30         4.0.0         5.4.30         4.0.0         5.5.7         4.6.6.31         4.0.0         5.5.7         4.6.6.31         4.0.0         5.5.7         4.6.6.31         4.0.0         5.5.9         4.6.6.31         4.0.0         5.5.9         4.6.6.31         4.0.0         5.5.9         4.6.6.31         4.0.0         5.5.9         4.6.6.31         4.0.0         5.5.9         4.6.6.31         4.0.0         5.5.9         4.6.6.31         4.0.0         5.5.9         4.6.6.31         4.0.0         5.5.9         4.6.6.31         4.0.0         5.5.9         4.6.6.31         4.0.0         5.5.9         4.6.6.31         4.0.0         5.5.9         4.6.6.31         <                                                                                                                                                                       |       |        |        | 606506726 | Added  | 2015 | 1     | 8   | 23       | 51       | 46        | -132,700  | -54,400  | 30.0  | 5.50 |          |
| 3         8.8         6051006         WPG16         215         1         10         2         5         46         68.30         5.643         10.0         5.697           20569         4         21         6055707         WPG16         2015         1         10         2         5         46         83.30         5.54         24.0         5.66         24.0         5.60         469         47.0         21.0         5.60         469         47.0         21.0         5.60         469         47.0         21.0         5.60         469         47.0         21.0         5.60         469         47.0         21.0         5.60         47.0         21.0         5.60         47.0         21.0         5.60         47.0         21.0         5.60         5.60         47.0         47.0         48.0         5.70         68.0         5.60         47.0         48.0         5.70         48.0         48.0         5.60         5.60         47.0         48.0         5.70         48.0         5.60         5.70         48.0         5.60         5.70         48.0         5.60         5.70         48.0         5.60         5.70         48.0         5.70         48.0         5.70 <td>23647</td> <td>3</td> <td>20.3</td> <td>610575172</td> <td>WPG16</td> <td>2015</td> <td>1</td> <td>8</td> <td>23</td> <td>51</td> <td>49</td> <td>-132 850</td> <td>-54 330</td> <td>14.0</td> <td>5 40</td> <td>Keep2</td>             | 23647 | 3      | 20.3   | 610575172 | WPG16  | 2015 | 1     | 8   | 23       | 51       | 49        | -132 850  | -54 330  | 14.0  | 5 40 | Keep2    |
| 2366         3         8.8         61057597         WPG16         2015         1         10         2         5         49         68.340         5.720         12.0         5.70         42.0         5.70         42.0         5.70         42.0         5.70         42.0         5.70         42.0         5.70         42.0         5.70         42.0         5.70         42.0         5.70         42.0         5.70         42.0         5.70         42.0         5.70         42.0         5.70         42.0         5.70         42.0         5.70         42.0         5.70         42.0         5.70         42.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70         40.0         5.70 <td></td> <td></td> <td></td> <td>606510066</td> <td>WPG16</td> <td>2015</td> <td>1</td> <td>10</td> <td>2</td> <td>5</td> <td>46</td> <td>68.340</td> <td>-5 643</td> <td>10.0</td> <td>5 69</td> <td></td>               |       |        |        | 606510066 | WPG16  | 2015 | 1     | 10  | 2        | 5        | 46        | 68.340    | -5 643   | 10.0  | 5 69 |          |
| 2869         4         21         2005/05         WPG16         2015         1         10         20         25         16         13.300         -5.40         24.0         5.67         24.0         5.67         24.0         5.67         24.0         5.67         24.0         5.67         24.0         5.67         24.0         5.67         24.0         5.67         24.0         5.67         24.0         5.67         24.0         5.67         24.0         5.67         24.0         5.67         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05 <td>23651</td> <td>3</td> <td>8.8</td> <td>610575197</td> <td>WPG16</td> <td>2015</td> <td>1</td> <td>10</td> <td>2</td> <td>5</td> <td>49</td> <td>68 340</td> <td>-5 720</td> <td>12.0</td> <td>5 70</td> <td>Keep1</td> | 23651 | 3      | 8.8    | 610575197 | WPG16  | 2015 | 1     | 10  | 2        | 5        | 49        | 68 340    | -5 720   | 12.0  | 5 70 | Keep1    |
| 2469         4         21         000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |        | 606512011 | WPG16  | 2015 | 1     | 10  | 20       | 25       | 1/        | 133.062   | -5.546   | 24.0  | 5.67 |          |
| 2000         2000         2000         2000         1         120         2000         64         141.800         37.276         11.0         4.10           23696         2         25.9         60053027         Added         2015         1         131         190         500         44         141.800         37.276         11.0         4.10           23677         2         2         1         600538143         WPG16         2015         1         177         23         39         52         131.883         -5.737         56.0         55.00         660057630         WPG16         2015         1         188         4         477         430         179.795         51.903         80.00         5.50           23680         4         20.6         600538740         WPG16         2015         1         188         23         133         31         170.5757         35.468         6.0         5.60         Keep1           23680         4         20.4         600538740         WPG16         2015         1         20         17         34         41         70.06.333         40.01         5.00         Keep1           23680         4         <                                                                                                                                                                                                                                                                     | 23659 | 4      | 21     | 610575262 | WPC16  | 2015 | 1     | 12  | 20       | 25       | 14        | 133.902   | -5.540   | 24.0  | 5.07 | Keep1    |
| 2         2         5         9         9         2         4         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         <th1< th=""> <th1< th=""></th1<></th1<></th1<>                                                                                                                                                                                                                                                                                                                        |       |        |        | 606544074 | WPC16  | 2015 | 1     | 12  | 10       | 23<br>50 | 10        | 141 500   | -3.470   | 21.0  | 3.00 |          |
| 1         1007327         Aude         2015         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th="">         1         <th< td=""><td>23666</td><td>2</td><td>25.9</td><td>610575207</td><td>VPG10</td><td>2015</td><td>1</td><td>13</td><td>19</td><td>50</td><td>44</td><td>141.309</td><td>37.270</td><td>26.0</td><td>4.10</td><td>Keep1</td></th<></th1<></th1<>                                                                                               | 23666 | 2      | 25.9   | 610575207 | VPG10  | 2015 | 1     | 13  | 19       | 50       | 44        | 141.309   | 37.270   | 26.0  | 4.10 | Keep1    |
| 22877         2         2         1         1         1         2         3         3         2         1         1         1         2         3         3         2         1         1         1         1         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                          |       |        |        | 610575297 |        | 2015 | 1     | 13  | 19       | 50       | 46        | 141.470   | 57.330   | 36.0  | 4.10 |          |
| 2367         2         12.7         6005/506         WPG16         2015         1         17         23         39         54         73.79         51.92         100         56.0           2368         4         30.6         60068740         WPG16         2015         1         18         4         47         30         51.940         98.0         55.07         Keep1           2368         4         30.6         60068740         WPG16         2015         1         18         23         13         37         46.577         35.46         80.         56.68           23684         4         23.2         600589242         WPG16         2015         1         19         17         19         45         119.758         4.641         7.0         5.67           23688         9         24.2         600589372         WPG16         2015         1         20         17         34         41         43.83         4.84.0         5.70         6.60         5.70           23681         6         13.8         60058937         WPG16         2015         1         21         20         8         34         14.320         5.61         6.60<                                                                                                                                                                                                                                                                                  | 23677 | 2      | 25.1   | 606586143 | WPG16  | 2015 | 1     | 17  | 23       | 39       | 52        | 131.863   | -5.773   | 56.0  | 5.59 | Keep1    |
| 2878         2         12.7         e00636148         WPG16         2015         1         18         4         47         38         17.18         51.323         100.0         5.57         resp1           23680         A         30.6         60057650         WPG16         2015         1         18         44         47         40         173.760         51.943         100.0         5.70           23680         A         23.2         600587620         WPG16         2015         1         18         23         13         41         -106.030         -35.310         16.0         5.70         resp1           23688         P         24.2         600589318         WPG16         2015         1         20         17         34         41         -70.833         -23.354         20.0         5.17           23691         A         12.4         600639372         WPG16         2015         1         21         20         8         38         146.310         -5.70         64.0         5.70           23603         A         19.8         606635972         WPG16         2015         1         23         3         47         23         18.20                                                                                                                                                                                                                                                                              |       |        |        | 610575606 | WPG16  | 2015 | 1     | 17  | 23       | 39       | 54        | 131.840   | -5.710   | 80.0  | 5.60 |          |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                              | 23678 | 2      | 12.7   | 606586148 | WPG16  | 2015 | 1     | 18  | 4        | 47       | 38        | 1/9.5/9   | 51.923   | 100.0 | 5.57 | Keep1    |
| 2368         4         30.6         606683440         WPC16         2015         1         18         23         13         37         1.05         757         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         357         1.35         1.0         1.1         19         17         19         45         110         130         110         130         110         130         110         130         110         130         110         130         110         130         110         130         110         130         110         130         110         130         110         130         110         130         110         130                                                                                                                                                                                                                                                   |       |        |        | 610575613 | WPG16  | 2015 | 1     | 18  | 4        | 47       | 40        | 179.760   | 51.940   | 98.0  | 5.50 |          |
| 1         6         610575629         WPG16         2015         1         18         23         13         41         1106.003         -5.310         16.0         5.70          23888         2         23         610575650         WPG16         2015         1         19         17         19         45         119.383         4.811         7.0         5.60           23888         9         24.2         600539318         WPG16         2015         1         20         17         34         41         -70.883         23.354         20.0         5.17           23681         4         12.4         60053977         WPG16         2015         1         21         20         8         34         146.300         -5.74         64.0         5.70           23693         6         19.8         600639976         WPG16         2015         1         23         3         47         23         14.1         14.0         23.0         6.81           23707         0         33         600559592         WPG16         2015         1         25         9         20         56         128.20         1.337         12.0         5.30                                                                                                                                                                                                                                                                                               | 23680 | 4      | 30.6   | 606587450 | WPG16  | 2015 | 1     | 18  | 23       | 13       | 37        | -105.757  | -35.456  | 8.0   | 5.68 | Keep1    |
| 2368         4         23.2         606589242         WPG16         2015         1         19         17         19         45         119.758         4.41         7.0         5.67         Meep1           2368         9         24.2         60059318         WPG16         2015         1         20         17         34         44         19.830         4.810         5.67         Meep1           2368         9         24.2         60055972         WPG16         2015         1         20         17         34         50         -71.010         -5.710         64.0         5.76         Meep1           23693         6         19.8         60055972         WPG16         2015         1         21         20         8         34         146.300         -5.710         64.0         5.76           23693         6         19.8         60055972         WPG16         2015         1         25         9         20         56         126.270         1.700         53         1.0         130         10         5.00         Meep1           2370         7         6         1057957         WPG16         2015         1         26         17 </td <td></td> <td></td> <td></td> <td>610575629</td> <td>WPG16</td> <td>2015</td> <td>1</td> <td>18</td> <td>23</td> <td>13</td> <td>41</td> <td>-106.030</td> <td>-35.310</td> <td>16.0</td> <td>5.70</td> <td></td>                                                             |       |        |        | 610575629 | WPG16  | 2015 | 1     | 18  | 23       | 13       | 41        | -106.030  | -35.310  | 16.0  | 5.70 |          |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                              | 23684 | 4      | 23.2   | 606589242 | WPG16  | 2015 | 1     | 19  | 17       | 19       | 45        | 119.758   | 4.641    | 7.0   | 5.67 | Keep1    |
| 2368         9         242         60658938         WPG16         2015         1         20         17         34         41         -70.883         -23.354         20.0         5.77         Meep1           23691         4         124         606633972         WPG16         2015         1         21         20         8         34         146.310         5.710         64.0         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.70         4.010         5.30         4.70         3.3         4.70         3.3         4.70         3.3         4.70         1.75         5.50         4.70         1.75         5.50         4.70         1.75         5.50         4.70         1.75         5.50         4.77         4.77                                                                                                                                                                                                                                  |       |        |        | 610575650 | WPG16  | 2015 | 1     | 19  | 17       | 19       | 49        | 119.830   | 4.810    | 18.0  | 5.60 |          |
| 1         1         1         20         17         34         50         -71.01         -23.220         34.0         5.00         Max           23691         4         12.4         606635972         WPG16         2015         1         21         20         8         34         146.320         -5.644         54.0         5.70         Applicable           23693         6         19.8         606635976         WPG16         2015         1         23         3         47         33         168.360         -17.060         231.0         6.60           23707         0         33.3         60659992         WPG16         2015         1         25         9         20         56         126.30         1.141         30.0         5.60           23707         0         33.3         60659750         WPG16         2015         1         25         9         20         56         126.30         1.141         30.0         5.60         Applicable                                                                                                                                                                                                                                               | 23688 | 9      | 24.2   | 606589318 | WPG16  | 2015 | 1     | 20  | 17       | 34       | 41        | -70.883   | -23.354  | 20.0  | 5.17 | Keep1    |
| 23691         4         124         606635972         WPG16         2015         1         21         20         8         34         146.320         -5.644         5.40         5.70         4.01         5.70          23693         6         19.8         606635972         WPG16         2015         1         23         3         47         37         168.527         -17.026         23.0         6.00         7.700         23.0         6.00         7.700         23.0         6.00         7.700         23.0         6.00         7.700         23.0         6.00         7.700         23.0         6.00         7.700         23.0         6.00         7.700         23.0         6.00         7.700         23.0         6.00         7.700         23.0         6.00         7.700         23.0         6.00         7.700         23.0         6.00         7.700         23.0         6.00         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700         7.700                                                                                                                                                                                                               |       | -      |        | 610575851 | WPG16  | 2015 | 1     | 20  | 17       | 34       | 50        | -71.010   | -23.220  | 34.0  | 5.10 |          |
| Loss         L.         610575872         WPG16         2015         1         21         20         8         38         146.30         -5.710         64.0         5.70         Reent           23693         6         19.8         606635976         WPG16         2015         1         23         3         47         33         168.50         -17.026         223.0         6.81         Accept           23707         0         33.3         606559592         WPG16         2015         1         25         9         20         56         126.430         1.141         35.0         5.62           23710         5         2.7         610579170         WPG16         2015         1         26         17         44         53         -135.550         -54.700         16.0         5.60           23711         4         43.5         60653750         WPG16         2015         1         27         0         53         19         97.240         1.337         12.0         5.72           23722         6         43         606631737         WPG16         2015         1         29         3         49         35         -174.157         19.287                                                                                                                                                                                                                                                                               | 23691 | 4      | 12.4   | 606635972 | WPG16  | 2015 | 1     | 21  | 20       | 8        | 34        | 146.320   | -5.644   | 54.0  | 5.76 | Keen1    |
| 23693         6         19.8         606635976         WPG16         2015         1         23         3         47         27         168.527         17.026         23.0         6.81         Reep1           23707         0         3.3         60659909         WPG16         2015         1         25         9         20         56         126.40         1.141         35.0         5.80         Reep1           23707         0         3.3         610579079         WPG16         2015         1         25         9         20         56         126.400         1.141         35.0         5.80         Reep1           23710         5         2.7         610579170         WPG16         2015         1         26         17         44         53         -135.50         -54.720         17.5         5.59           23711         4         43.5         606697530         WPG16         2015         1         27         0         53         23         96.950         1.090         22.0         5.70         Reep1           23727         6         43         606631737         WPG16         2015         1         31         17         39                                                                                                                                                                                                                                                                                      | 20001 | •      |        | 610575872 | WPG16  | 2015 | 1     | 21  | 20       | 8        | 38        | 146.310   | -5.710   | 64.0  | 5.70 | . toop . |
| 1000         0         1000         610578772         WPG16         2015         1         23         3         47         33         168.360         -17.060         231.0         6.80         Meericity           23707         0         33.3         606595992         WPG16         2015         1         25         9         20         56         126.430         1.141         35.0         5.62           23707         0         33.3         60659599         WPG16         2015         1         26         17         44         53         -135.550         -54.700         16.0         5.60 ${}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23693 | 6      | 19.8   | 606635976 | WPG16  | 2015 | 1     | 23  | 3        | 47       | 27        | 168.527   | -17.026  | 223.0 | 6.81 | Keen1    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20000 | Ű      | 10.0   | 610578772 | WPG16  | 2015 | 1     | 23  | 3        | 47       | 33        | 168.360   | -17.060  | 231.0 | 6.80 | Roop I   |
| 2370         0         30.3         610579059         WPG16         2015         1         25         9         20         56         126.270         1.370         23.0         5.30         Reep1           23710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23707 | 0      | 33.3   | 606595992 | WPG16  | 2015 | 1     | 25  | 9        | 20       | 56        | 126.430   | 1.141    | 35.0  | 5.62 | Keen1    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23101 | 0      | 00.0   | 610579059 | WPG16  | 2015 | 1     | 25  | 9        | 20       | 56        | 126.270   | 1.370    | 23.0  | 5.30 | Reepi    |
| 23710         2.7         610193417         WPG16         2015         1         26         17         44         58         -135.550         -54.720         17.5         5.59         Reep1           23711         4         43.5         606597530         WPG16         2015         1         27         0         53         19         97.240         1.337         12.0         5.72         Reep1           23722         6         43         606613653         WPG16         2015         1         29         3         49         35         -174.157         -19.287         43.0         5.49         Reep1           23730         3         16.3         606631737         WPG16         2015         1         31         17         39         11         -169.118         56.641         5.0         5.40         Reep1           23731         2         5.9         606631737         WPG16         2015         1         31         17         39         14         -169.136         56.677         12.0         5.40         Reep1           23731         2         5.9         606631740         WPG16         2015         1         31         18         5                                                                                                                                                                                                                                                                         | 22710 | 5      | 27     | 610579170 | WPG16  | 2015 | 1     | 26  | 17       | 44       | 53        | -135.550  | -54.700  | 16.0  | 5.60 | Koon1    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23710 | 5      | 2.1    | 610193417 | WPG16  | 2015 | 1     | 26  | 17       | 44       | 58        | -135.550  | -54.720  | 17.5  | 5.59 | Reepi    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00744 | 4      | 40 E   | 606597530 | WPG16  | 2015 | 1     | 27  | 0        | 53       | 19        | 97.240    | 1.337    | 12.0  | 5.72 | Keent    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23711 | 4      | 43.5   | 610579257 | WPG16  | 2015 | 1     | 27  | 0        | 53       | 23        | 96.950    | 1.090    | 22.0  | 5.70 | Reepi    |
| 23722         6         4.3         610579392         WPG16         2015         1         29         3         49         41         -173.790         -19.180         58.0         5.50         Reep1           23730         3         16.3         606631737         WPG16         2015         1         31         17         39         11         -169.118         56.641         5.0         5.40           23731         2         5.9         606631740         WPG16         2015         1         31         17         39         14         -169.070         56.770         12.0         5.40         Reep1           23731         2         5.9         606631740         WPG16         2015         1         31         18         55         44         -82.953         7.720         15.0         5.25         Reep1           23733         3         19.4         606631781         WPG16         2015         2         1         17         40         32         -169.136         56.657         10.0         5.38         Keep1           23735         5         3.3.9         60663198         WPG16         2015         2         1         20         2 <td>00700</td> <td>0</td> <td>40</td> <td>606613653</td> <td>WPG16</td> <td>2015</td> <td>1</td> <td>29</td> <td>3</td> <td>49</td> <td>35</td> <td>-174.157</td> <td>-19.287</td> <td>43.0</td> <td>5.49</td> <td>Keend</td>                                              | 00700 | 0      | 40     | 606613653 | WPG16  | 2015 | 1     | 29  | 3        | 49       | 35        | -174.157  | -19.287  | 43.0  | 5.49 | Keend    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23122 | 0      | 43     | 610579392 | WPG16  | 2015 | 1     | 29  | 3        | 49       | 41        | -173.790  | -19.180  | 58.0  | 5.50 | Reepi    |
| 23/30         3         16.3         610585898         WPG16         2015         1         31         17         39         14         -169.070         56.770         12.0         5.40         Reep1           23731         2         5.9         606631740         WPG16         2015         1         31         18         55         44         -82.953         7.720         15.0         5.25         Reep1           23734         3         19.4         606631781         WPG16         2015         2         1         17         40         32         -169.136         56.657         10.0         5.38         Reep1           23734         3         19.4         606631781         WPG16         2015         2         1         17         40         32         -169.136         56.657         10.0         5.38         Reep1           23735         5         33.9         606631998         WPG16         2015         2         1         20         2         26         -7.770         -49.520         12.0         5.60           23739         4         10.9         60663262         WPG16         2015         2         2         8                                                                                                                                                                                                                                                                                         | 00700 |        | 40.0   | 606631737 | WPG16  | 2015 | 1     | 31  | 17       | 39       | 11        | -169.118  | 56.641   | 5.0   | 5.40 | 14 4     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23730 | 3      | 16.3   | 610585898 | WPG16  | 2015 | 1     | 31  | 17       | 39       | 14        | -169.070  | 56.770   | 12.0  | 5.40 | Keep1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | _      |        | 606631740 | WPG16  | 2015 | 1     | 31  | 18       | 55       | 44        | -82.953   | 7.720    | 15.0  | 5.25 |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23731 | 2      | 5.9    | 610585905 | WPG16  | 2015 | 1     | 31  | 18       | 55       | 46        | -82.930   | 7.680    | 12.0  | 5.20 | Keep1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | _      |        | 606631781 | WPG16  | 2015 | 2     | 1   | 17       | 40       | 32        | -169.136  | 56.657   | 10.0  | 5.38 |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23734 | 3      | 19.4   | 610585934 | WPG16  | 2015 | 2     | 1   | 17       | 40       | 35        | -169.140  | 56.830   | 12.0  | 5.30 | Keep1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |        | 606631998 | WPG16  | 2015 | 2     | 1   | 20       | 2        | 21        | -8.120    | -49.318  | 10.0  | 5.65 |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23735 | 5      | 33.9   | 610585940 | WPG16  | 2015 | 2     | 1   | 20       | 2        | 26        | -7.770    | -49.520  | 12.0  | 5.60 | Keep1    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |        |        | 606632862 | WPG16  | 2015 | 2     | 2   | 8        | 25       | 48        | 145 220   | -1 524   | 23.0  | 5.98 |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23739 | 4      | 10.9   | 610585957 | WPG16  | 2015 | 2     | 2   | 8        | 25       | 52        | 145 180   | -1.470   | 15.0  | 6.00 | Keep1    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |        | 610585965 | Added  | 2015 | 2     | 2   | 15       | 22       | 9         | -70 900   | -22.300  | 10.0  | 5.00 |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23741 | 2      | 16.3   | 606636041 | WPG16  | 2015 | 2     | 2   | 15       | 22       | 11        | -70 928   | -22 311  | 26.0  | 5.30 | Keep2    |
| 23747         4         25.9         60000104         W1010         2010         2         4         60         20         44         -175.070         -22.730         19.0         5.00         Keep1           23747         4         25.9         610585996         WPG16         2015         2         4         8         20         48         -175.670         -25.600         19.0         5.60           23755         7         12.6         606696905         WPG16         2015         2         5         4         40         51         -82.622         5.222         4.0         5.70           23755         7         12.6         606696905         WPG16         2015         2         5         4         40         51         -82.622         5.222         4.0         5.70           610586013         WPG16         2015         2         5         4         40         58         82.650         5.240         40.0         570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |        |        | 60668315/ | WPG16  | 2015 | 2     | 4   | , ю<br>я | 20       | 44        | -175 878  | -25 738  | 10.0  | 5.66 |          |
| 23755         7         12.6         606696905         WPG16         2015         2         5         4         40         51         -82.622         5.222         4.0         5.70           Keep1         60689013         WPG16         2015         2         5         4         40         51         -82.622         5.222         4.0         5.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23747 | 4      | 25.9   | 610585006 | WPC16  | 2015 | 2     | 4   | 8        | 20       | 49        | -175.670  | -25.600  | 10.0  | 5.00 | Keep1    |
| 23755 7 12.6 000000000 WFG10 2015 2 5 4 40 51 -02.022 5.222 4.0 5.70 Keep1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |        |        | 606606005 | W/PC16 | 2015 | 2     | -+  | 1        | 20       | -+0<br>51 | -82.622   | 5 202    | 4.0   | 5 70 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23755 | 7      | 12.6   | 610526012 | W/PC16 | 2013 | 2     | 5   |          | 40       | 50        | -82 650   | 5 240    | 16.0  | 5.70 | Keep1    |

| Case  | ∆t (s) | d (km) | Event ID  | Source | Year | Month | Day | Hour | Minute | Second   | Longitude | Latitude | Depth | М    | Outcome |
|-------|--------|--------|-----------|--------|------|-------|-----|------|--------|----------|-----------|----------|-------|------|---------|
| 00764 | 0      | 10.6   | 606707524 | WPG16  | 2015 | 2     | 6   | 1    | 25     | 12       | 134.399   | 33.757   | 10.0  | 4.81 | Kaant   |
| 23761 | 2      | 12.6   | 610586032 | WPG16  | 2015 | 2     | 6   | 1    | 25     | 14       | 134.270   | 33.760   | 14.0  | 4.80 | Keepi   |
| 00700 | 0      | 44.0   | 610586092 | WPG16  | 2015 | 2     | 8   | 15   | 9      | 7        | 119.460   | -2.360   | 17.0  | 5.50 | 16      |
| 23766 | 2      | 14.0   | 606722341 | WPG16  | 2015 | 2     | 8   | 15   | 9      | 9        | 119.375   | -2.443   | 23.0  | 5.57 | кеерг   |
|       |        |        | 606723229 | WPG16  | 2015 | 2     | 10  | 13   | 29     | 38       | 126.182   | 11.234   | 10.0  | 5.45 |         |
| 23772 | 4      | 18.3   | 610586139 | WPG16  | 2015 | 2     | 10  | 13   | 29     | 42       | 126.330   | 11.310   | 12.0  | 5.40 | Keep1   |
|       | _      |        | 610586141 | WPG16  | 2015 | 2     | 10  | 14   | 47     | 50       | 57.380    | 9.680    | 12.0  | 5.40 |         |
| 23773 | 0      | 25.3   | 606723232 | WPG16  | 2015 | 2     | 10  | 14   | 47     | 50       | 57.592    | 9.732    | 4.0   | 5.62 | Keep2   |
|       |        |        | 606724134 | WPG16  | 2015 | 2     | 11  | 13   | 1      | 16       | -66.720   | -23.561  | 202.0 | 5.53 |         |
| 23774 | 4      | 22     | 610586167 | WPG16  | 2015 | 2     | 11  | 13   | 1      | 20       | -66.840   | -23,500  | 219.0 | 5.50 | Keep1   |
|       |        |        | 610586179 | WPG16  | 2015 | 2     | 11  | 21   | 29     | 27       | -179 661  | -65 661  | 14.0  | 5.80 |         |
| 23776 | 1      | 20.3   | 606724406 | WPG16  | 2015 | 2     | 11  | 21   | 29     | 28       | -179 650  | -65 480  | 12.0  | 5.85 | Keep2   |
|       |        |        | 606733224 | WPG16  | 2015 | 2     | 13  | 18   | 59     | 12       | -31 910   | 52 664   | 22.0  | 7 11 |         |
| 23782 | 15     | 56.2   | 610586216 | WPG16  | 2015 | 2     | 13  | 18   | 59     | 27       | -32 740   | 52 700   | 25.0  | 7.10 | Keep1   |
|       |        |        | 606725005 | WPG16  | 2015 | 2     | 13  | 20   | 6      | 32       | 121 /27   | 22.637   | 30.0  | 6.28 |         |
| 23783 | 3      | 4.2    | 610596219 | WPC16  | 2015 | 2     | 13  | 20   | 6      | 35       | 121.427   | 22.007   | 20.0  | 6.20 | Keep1   |
|       |        |        | 606726712 | WPC16  | 2015 | 2     | 15  | 12   | 40     | 40       | 176.020   | 19 205   | 29.0  | 0.20 |         |
| 23787 | 4      | 33     | 640596040 | WPGIO  | 2015 | 2     | 15  | 10   | 49     | 40<br>50 | 170.920   | - 10.303 | 10.0  | 5.51 | Keep1   |
|       |        |        | 010000242 | WPGIO  | 2015 | 2     | 15  | 13   | 49     | 52       | 170.020   | -10.230  | 12.0  | 5.50 |         |
| 23790 | 7      | 7.4    | 606760333 | WPG16  | 2015 | 2     | 16  | 22   | 0      | 53       | -28.224   | -55.511  | 19.0  | 6.30 | Keep1   |
|       |        |        | 610586270 | WPG16  | 2015 | 2     | 16  | 22   | 0      | 0        | -28.140   | -55.500  | 14.0  | 6.30 |         |
| 23793 | 0      | 12.4   | 606730497 | WPG16  | 2015 | 2     | 17  | 4    | 46     | 41       | 142.050   | 40.110   | 52.0  | 5.48 | Keep2   |
|       |        |        | 610586279 | WPG16  | 2015 | 2     | 17  | 4    | 46     | 41       | 142.160   | 40.100   | 60.0  | 5.50 |         |
| 23794 | 1      | 46.4   | 610586281 | WPG16  | 2015 | 2     | 17  | 5    | 56     | 57       | 179.970   | -37.360  | 16.0  | 5.10 | Keep2   |
|       |        |        | 606760340 | WPG16  | 2015 | 2     | 17  | 5    | 56     | 58       | 179.647   | -37.652  | 33.0  | 5.17 |         |
| 23796 | 5      | 11.1   | 606732303 | WPG16  | 2015 | 2     | 17  | 16   | 33     | 21       | 143.585   | 39.582   | 10.0  | 5.43 | Keep1   |
|       | -      |        | 610586292 | WPG16  | 2015 | 2     | 17  | 16   | 33     | 26       | 143.700   | 39.610   | 14.0  | 5.40 |         |
| 23797 | 1      | 22.7   | 606732312 | Added  | 2015 | 2     | 18  | 0    | 48     | 29       | -103.323  | 8.446    | 10.0  | 5.30 | Keen2   |
| 20101 | •      | 22.1   | 610586302 | WPG16  | 2015 | 2     | 18  | 0    | 48     | 30       | -103.134  | 8.377    | 5.0   | 5.60 | Roopz   |
| 23800 | 2      | 61     | 606745252 | WPG16  | 2015 | 2     | 18  | 4    | 43     | 39       | 159.318   | -8.894   | 135.0 | 5.48 | Koop1   |
| 23000 | 5      | 0.1    | 610586307 | WPG16  | 2015 | 2     | 18  | 4    | 43     | 42       | 159.360   | -8.890   | 139.0 | 5.50 | Keepi   |
| 22005 | 0      | 10.4   | 606733949 | WPG16  | 2015 | 2     | 19  | 10   | 24     | 4        | 159.352   | -53.442  | 10.0  | 5.50 | Koon1   |
| 23005 | 3      | 19.4   | 610586328 | WPG16  | 2015 | 2     | 19  | 10   | 24     | 7        | 159.080   | -53.380  | 12.0  | 5.50 | Keepi   |
| 00000 |        | 45.0   | 606760354 | WPG16  | 2015 | 2     | 19  | 13   | 18     | 32       | 168.118   | -16.441  | 21.0  | 6.43 |         |
| 23806 | 8      | 15.3   | 610586334 | WPG16  | 2015 | 2     | 19  | 13   | 18     | 40       | 168.230   | -16.410  | 12.0  | 6.40 | Keepi   |
|       |        |        | 606734078 | WPG16  | 2015 | 2     | 19  | 16   | 32     | 47       | 159.006   | 52.810   | 82.0  | 5.45 |         |
| 23808 | 3      | 24.7   | 610586340 | WPG16  | 2015 | 2     | 19  | 16   | 32     | 50       | 159.290   | 52.850   | 97.0  | 5.40 | Keep1   |
|       |        |        | 606734701 | WPG16  | 2015 | 2     | 20  | 4    | 25     | 23       | 143.580   | 39.837   | 12.0  | 6.22 |         |
| 23810 | 5      | 21.4   | 610586348 | WPG16  | 2015 | 2     | 20  | 4    | 25     | 28       | 143.830   | 39.850   | 12.0  | 6.20 | Keep1   |
|       |        |        | 606745453 | WPG16  | 2015 | 2     | 21  | 10   | 13     | 53       | 143.486   | 39.819   | 7.0   | 5.98 |         |
| 23811 | 5      | 22.3   | 610586373 | WPG16  | 2015 | 2     | 21  | 10   | 13     | 58       | 143,740   | 39.830   | 12.0  | 6.00 | Keep1   |
|       |        |        | 606745677 | WPG16  | 2015 | 2     | 22  | 6    | 10     | 34       | 133 902   | -4 969   | 10.0  | 5.23 |         |
| 23812 | 2      | 25.3   | 610586394 | WPG16  | 2015 | 2     | 22  | 6    | 10     | 36       | 133 990   | -4 760   | 12.0  | 5.20 | Keep1   |
|       |        |        | 610586404 | WPG16  | 2015 | 2     | 22  | 14   | 23     | 14       | -106 840  | 18 681   | 3.0   | 6.20 |         |
| 23814 | 2      | 19.5   | 606745691 | WPG16  | 2015 | 2     | 22  | 14   | 23     | 16       | -106.850  | 18 820   | 14.9  | 6.27 | Keep1   |
|       |        |        | 606745696 | WPG16  | 2015 | 2     | 22  | 18   | 26     | 52       | -67.051   | -24 207  | 167.0 | 5.08 |         |
| 23815 | 7      | 53.1   | 610596407 | WPC16  | 2015 | 2     | 22  | 19   | 20     | 50       | 67 100    | 24.080   | 218.0 | 5.00 | Keep1   |
|       |        |        | 610596415 | WPC16  | 2015 | 2     | 22  | 10   | 20     |          | -07.100   | -24.000  | 210.0 | 5.00 |         |
| 23816 | 2      | 30.8   | 010000410 | WPGIO  | 2015 | 2     | 23  | 10   | 20     | /        | 177.133   | -30.002  | 5.0   | 5.13 | Keep2   |
|       |        |        | 606746784 | WPG16  | 2015 | 2     | 23  | 10   | 25     | 9        | 177.410   | -36.450  | 12.0  | 5.10 |         |
| 23817 | 1      | 8.5    | 606746895 | Added  | 2015 | 2     | 23  | 16   | 16     | 29       | -2.680    | 38.970   | 14.1  | 4.70 | Keep1   |
|       |        |        | 610586418 | Added  | 2015 | 2     | 23  | 16   | 16     | 30       | -2.700    | 39.040   | 17.0  | 4.60 |         |
| 23818 | 4      | 10.6   | 606747123 | WPG16  | 2015 | 2     | 24  | 2    | 28     | 54       | 143.198   | 39.655   | 20.0  | 5.80 | Keep1   |
|       |        |        | 610586427 | WPG16  | 2015 | 2     | 24  | 2    | 28     | 58       | 143.320   | 39.650   | 22.0  | 5.80 |         |
| 23819 | 5      | 34     | 606747133 | WPG16  | 2015 | 2     | 24  | 5    | 13     | 50       | -66.663   | -22.745  | 188.0 | 5.35 | Keep1   |
|       |        |        | 610586433 | WPG16  | 2015 | 2     | 24  | 5    | 13     | 55       | -66.860   | -22.710  | 215.0 | 5.30 |         |
| 23820 | 1      | 35.2   | 606747137 | WPG16  | 2015 | 2     | 24  | 6    | 54     | 49       | -26.102   | 0.998    | 10.0  | 5.38 | Keep1   |
|       |        | 00.2   | 610586435 | WPG16  | 2015 | 2     | 24  | 6    | 54     | 50       | -26.410   | 1.070    | 12.0  | 5.30 |         |

| Case  | ∆t (s) | d (km) | Event ID  | Source | Year | Month | Day | Hour | Minute | Second | Longitude | Latitude | Depth | М    | Outcome  |
|-------|--------|--------|-----------|--------|------|-------|-----|------|--------|--------|-----------|----------|-------|------|----------|
| 00000 |        | 40.0   | 606748687 | WPG16  | 2015 | 2     | 25  | 1    | 31     | 42     | 119.840   | 6.082    | 9.0   | 5.70 |          |
| 23822 | 2      | 12.2   | 610586446 | WPG16  | 2015 | 2     | 25  | 1    | 31     | 44     | 119.870   | 6.150    | 18.0  | 5.70 | Keep1    |
| 00004 |        |        | 606751103 | WPG16  | 2015 | 2     | 25  | 7    | 1      | 1      | 141.820   | 31.066   | 9.0   | 5.89 |          |
| 23824 | 4      | 14     | 610586455 | WPG16  | 2015 | 2     | 25  | 7    | 1      | 5      | 141.930   | 30.990   | 13.0  | 5.90 | Keep1    |
|       | _      |        | 606757558 | WPG16  | 2015 | 2     | 28  | 8    | 40     | 40     | 140.732   | 35.654   | 48.0  | 5.04 |          |
| 23830 | 2      | 12.3   | 610586508 | WPG16  | 2015 | 2     | 28  | 8    | 40     | 42     | 140.800   | 35.560   | 46.0  | 5.00 | Keep2    |
|       | _      |        | 610586529 | WPG16  | 2015 | 3     | 1   | 15   | 48     | 19     | -71.440   | -27.200  | 25.0  | 5.04 |          |
| 23834 | 5      | 40.7   | 606758219 | WPG16  | 2015 | 3     | 1   | 15   | 48     | 24     | -71.750   | -27.420  | 36.0  | 5.00 | Keep1    |
|       |        |        | 606768011 | WPG16  | 2015 | 3     | 2   | 2    | 50     | 48     | -150.689  | -59.581  | 13.0  | 5.51 |          |
| 23837 | 3      | 25.8   | 610586536 | WPG16  | 2015 | 3     | 2   | 2    | 50     | 51     | -150.640  | -59.810  | 16.0  | 5.50 | Keep1    |
|       |        |        | 606760430 | WPG16  | 2015 | 3     | 2   | 16   | 53     | 46     | -71.083   | -27.869  | 32.0  | 5.32 |          |
| 23839 | 3      | 32.4   | 610586548 | WPG16  | 2015 | 3     | 2   | 16   | 53     | 49     | -71.340   | -28.050  | 34.0  | 5.30 | Keep1    |
|       |        |        | 606767624 | Added  | 2015 | 3     | 3   | 10   | 37     | 28     | 98.761    | -0.756   | 28.0  | 5.90 |          |
| 23843 | 3      | 6.3    | 610586569 | WPG16  | 2015 | 3     | 3   | 10   | 37     | 31     | 98.708    | -0.767   | 26.0  | 6.20 | Keep2    |
|       |        |        | 606768026 | WPG16  | 2015 | 3     | 3   | 12   | 45     | 19     | -69 183   | -20 360  | 108.0 | 5 20 |          |
| 23844 | 3      | 28.1   | 610586572 | WPG16  | 2015 | 3     | 3   | 12   | 45     | 22     | -69.330   | -20 160  | 115.7 | 5.20 | Keep2    |
|       |        |        | 606770912 | WPG16  | 2015 | 3     | 4   | 8    | 35     | 7      | -129 920  | 50 270   | 8.0   | 5.03 |          |
| 23850 | 1      | 36.4   | 610586589 | WPG16  | 2015 | 3     | 4   | 8    | 35     | 8      | -130 150  | 49 980   | 12.0  | 5.00 | Keep1    |
|       |        |        | 606777693 | WPG16  | 2015 | 3     | 5   | 0    | 7      | 12     | 96 959    | 0.206    | 8.0   | 5.00 |          |
| 23853 | 3      | 9.7    | 610586602 | WPG16  | 2015 | 3     | 5   | 0    | 7      | 12     | 90.909    | 0.200    | 14.0  | 5.20 | Keep1    |
|       |        |        | 606702825 | WPC16  | 2015 | 3     | 5   | 21   | 30     | 22     | 71 262    | 20.225   | 46.0  | 5.20 |          |
| 23857 | 3      | 22.7   | 610596622 | WPC16  | 2015 | 2     | 5   | 21   | 30     | 33     | -71.505   | -29.223  | 40.0  | 5.20 | Keep1    |
|       |        |        | 010300033 | WPGIO  | 2015 | 3     | 5   | 21   | 30     | 30     | -71.520   | -29.310  | 4.0   | 5.20 |          |
| 23859 | 5      | 14.6   | 640596646 | WPGIO  | 2015 | 3     | 0   | 0    | 22     | 19     | 80.560    | -41.322  | 4.0   | 5.99 | Keep1    |
|       |        |        | 010580040 | WPG16  | 2015 | 3     | 6   | 8    | 22     | 24     | 80.640    | -41.230  | 12.0  | 6.00 |          |
| 23865 | 2      | 41     | 610586706 | WPG16  | 2015 | 3     | 8   | 20   | 42     | 14     | -129.220  | 48.770   | 25.0  | 5.10 | Keep2    |
|       |        |        | 606816377 | WPG16  | 2015 | 3     | 8   | 20   | 42     | 16     | -128.859  | 49.051   | 28.0  | 5.09 |          |
| 23866 | 1      | 4.2    | 606816378 | WPG16  | 2015 | 3     | 8   | 20   | 47     | 27     | 19.936    | 44.126   | 9.0   | 4.54 | Keep1    |
|       |        |        | 610586708 | Added  | 2015 | 3     | 8   | 20   | 47     | 28     | 19.900    | 44.100   | 10.0  | 4.40 |          |
| 23867 | 3      | 4.6    | 606816386 | WPG16  | 2015 | 3     | 9   | 2    | 48     | 46     | -82.655   | 6.538    | 11.0  | 5.80 | Keep1    |
|       |        |        | 610586711 | WPG16  | 2015 | 3     | 9   | 2    | 48     | 49     | -82.680   | 6.510    | 13.0  | 5.80 |          |
| 23869 | 1      | 32.5   | 606816393 | WPG16  | 2015 | 3     | 9   | 7    | 53     | 37     | -73.475   | -34.347  | 15.0  | 4.91 | Keep1    |
|       |        |        | 610586718 | WPG16  | 2015 | 3     | 9   | 1    | 53     | 38     | -73.790   | -34.480  | 14.0  | 4.90 |          |
| 23873 | 4      | 27.1   | 610586754 | WPG16  | 2015 | 3     | 11  | 16   | 23     | 39     | -86.448   | 10.611   | 12.0  | 5.40 | Keep2    |
|       |        |        | 606823772 | WPG16  | 2015 | 3     | 11  | 16   | 23     | 43     | -86.660   | 10.500   | 18.8  | 5.39 |          |
| 23881 | 3      | 40.1   | 606831134 | WPG16  | 2015 | 3     | 15  | 2    | 17     | 8      | -176.378  | -22.279  | 112.0 | 5.58 | Keep1    |
|       |        |        | 610586837 | WPG16  | 2015 | 3     | 15  | 2    | 17     | 11     | -176.020  | -22.390  | 122.0 | 5.50 | -        |
| 23882 | 4      | 29.2   | 606859007 | WPG16  | 2015 | 3     | 15  | 4    | 47     | 19     | 146.423   | 18.722   | 50.0  | 5.83 | Keep1    |
|       |        |        | 610586840 | WPG16  | 2015 | 3     | 15  | 4    | 47     | 23     | 146.680   | 18.710   | 61.0  | 5.80 |          |
| 23884 | 11     | 7.8    | 606831410 | WPG16  | 2015 | 3     | 15  | 23   | 17     | 17     | 122.307   | -0.541   | 31.0  | 6.09 | Keep1    |
|       |        |        | 610586851 | WPG16  | 2015 | 3     | 15  | 23   | 17     | 28     | 122.350   | -0.530   | 25.0  | 6.10 |          |
| 23887 | 1      | 4.1    | 606985107 | WPG16  | 2015 | 3     | 16  | 3    | 0      | 6      | 152.020   | -4.120   | 198.0 | 5.97 | Keep1    |
|       |        |        | 610586857 | WPG16  | 2015 | 3     | 16  | 3    | 0      | 7      | 152.000   | -4.090   | 197.0 | 5.90 |          |
| 23890 | 3      | 5.4    | 606843601 | WPG16  | 2015 | 3     | 17  | 20   | 16     | 19     | -178.607  | -17.811  | 557.0 | 5.61 | Keep1    |
|       | -      |        | 610586904 | WPG16  | 2015 | 3     | 17  | 20   | 16     | 22     | -178.570  | -17.790  | 560.0 | 5.60 |          |
| 23894 | 5      | 38.2   | 606855453 | WPG16  | 2015 | 3     | 18  | 19   | 7      | 49     | -73.641   | -36.051  | 10.0  | 5.43 | Keep1    |
| 20001 |        | 00.2   | 610586925 | WPG16  | 2015 | 3     | 18  | 19   | 7      | 54     | -74.060   | -36.090  | 14.0  | 5.40 | . toop . |
| 23896 | 5      | 23.7   | 606855735 | WPG16  | 2015 | 3     | 19  | 8    | 34     | 17     | -73.823   | -36.022  | 11.0  | 5.05 | Keen1    |
| 20000 | 0      | 20.1   | 610586942 | WPG16  | 2015 | 3     | 19  | 8    | 34     | 22     | -74.010   | -36.170  | 14.0  | 5.00 | Пеерт    |
| 22001 | 2      | 30.3   | 610586966 | Added  | 2015 | 3     | 20  | 15   | 42     | 50     | 154.980   | -4.450   | 16.0  | 5.30 | Keen?    |
| 20301 | 2      | 09.0   | 606985144 | WPG16  | 2015 | 3     | 20  | 15   | 42     | 52     | 154.837   | -4.774   | 16.0  | 5.60 | Кеерг    |
| 22010 | л      | 24     | 606858338 | WPG16  | 2015 | 3     | 22  | 5    | 56     | 22     | 145.719   | 13.225   | 10.0  | 5.51 | Keon1    |
| 23910 | 4      | 24     | 610587009 | WPG16  | 2015 | 3     | 22  | 5    | 56     | 26     | 145.870   | 13.080   | 17.0  | 5.50 | Keehi    |
| 22020 | 2      | 17.0   | 610587061 | WPG16  | 2015 | 3     | 24  | 11   | 9      | 20     | 161.719   | 53.668   | 21.0  | 5.20 | Koort    |
| 23920 |        | 17.5   | 606860972 | WPG16  | 2015 | 3     | 24  | 11   | 9      | 22     | 161.970   | 53.630   | 23.6  | 5.19 | кеерт    |
| 22022 | F      | 10.0   | 610587075 | WPG16  | 2015 | 3     | 24  | 22   | 46     | 52     | -70.785   | -20.680  | 21.0  | 5.10 | Kocri    |
| 23922 | э      | 19.0   | 606861261 | WPG16  | 2015 | 3     | 24  | 22   | 46     | 57     | -70.940   | -20.580  | 21.2  | 5.17 | Reepi    |

| 2020         1         3.1         00000000         WPC16         2015         3         25         0         34         28         45302         42.200         000         Kep1           2025         2         2.2         2.4         500000000         WPC16         2015         3         25         10         22         44         121352         44.220         40.00         5.44         5.00         Kep1           2028         2         7.4         60000107         WPC16         2016         3         27         3         4         0         44.310         20.80         100         5.4         PC01         2016         3         27         3         4         0         44.310         20.80         6.64         22.00         100         5.4         PC01         20.15         3         28         10         163         35         7.0         16.20         8.0         6.6         6.7200         12.00         5.80         PC01         20.15         3         28         10         163         35         17.00         10.00         5.60         4.00         10.00         5.60         4.00         10.00         5.00         10.00         5.00                                                                                                                                                                                                                                                                                         | Case  | ∆t (s) | d (km) | Event ID  | Source | Year | Month | Day | Hour     | Minute | Second    | Longitude | Latitude | Depth | м    | Outcome |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|-----------|--------|------|-------|-----|----------|--------|-----------|-----------|----------|-------|------|---------|
| 2114         3         9         2         4         4         5         1         5         2         4         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5 <td>00000</td> <td></td> <td>10.0</td> <td>606861269</td> <td>WPG16</td> <td>2015</td> <td>3</td> <td>25</td> <td>0</td> <td>34</td> <td>28</td> <td>143.082</td> <td>42.266</td> <td>60.0</td> <td>5.00</td> <td></td>                                                                                                                                                           | 00000 |        | 10.0   | 606861269 | WPG16  | 2015 | 3     | 25  | 0        | 34     | 28        | 143.082   | 42.266   | 60.0  | 5.00 |         |
| 22.82         2         2.4         49900000         WFG16         2015         3         2.8         19         22         44         11.01         4.22         4.4         11.01         4.22         4.4         11.01         4.22         4.4         11.01         4.22         4.4         11.01         4.22         4.4         11.01         4.22         4.4         11.01         4.22         4.4         11.01         4.22         4.4         11.01         4.22         4.4         11.01         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20 </td <td>23923</td> <td>1</td> <td>13.6</td> <td>610587078</td> <td>Added</td> <td>2015</td> <td>3</td> <td>25</td> <td>0</td> <td>34</td> <td>29</td> <td>143.096</td> <td>42.353</td> <td>50.4</td> <td>5.00</td> <td>Keep1</td>               | 23923 | 1      | 13.6   | 610587078 | Added  | 2015 | 3     | 25  | 0        | 34     | 29        | 143.096   | 42.353   | 50.4  | 5.00 | Keep1   |
| 2100         2         20         20         20         20         20         200         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000                                                                                                                                                                                                                                                         |       |        |        | 606920960 | WPG16  | 2015 | 3     | 25  | 19       | 22     | 44        | -128.152  | 49.422   | 13.0  | 5.19 |         |
| 2282         2         7.7         60090577         WFG16         2015         5         27         3         4         7         143.180         36.350         12.0         54.02          23588         2         28         60084957         WFG16         2015         3         28         16         38         54         46.8543         32.201         12.0         57.00         42.0         67.00         42.00         67.00         42.00         67.00         42.00         67.00         42.00         67.00         42.00         67.00         42.00         67.00         42.00         67.00         42.00         67.00         42.00         67.00         42.00         67.00         42.00         67.00         42.00         67.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00         45.00 <td>23925</td> <td>2</td> <td>32.4</td> <td>610587097</td> <td>WPG16</td> <td>2015</td> <td>3</td> <td>25</td> <td>19</td> <td>22</td> <td>46</td> <td>-128.420</td> <td>49.210</td> <td>24.0</td> <td>5.20</td> <td>Keep1</td> | 23925 | 2      | 32.4   | 610587097 | WPG16  | 2015 | 3     | 25  | 19       | 22     | 46        | -128.420  | 49.210   | 24.0  | 5.20 | Keep1   |
| 2202         2         7.7         0007129         WPC10         2015         3         27         3         4         9         94.3190         90.330         12.0         5.40           2308         2         2         2         600940076         WPC16         2015         3         28         16         36         54         48.553         42.20         11.20         5.70         Korp1           2304         1         12.7         60085005         WPC16         2015         3         28         19         16         30         75.753         1.82.70         10.0         5.54           23041         1         12.7         60085005         WPC16         2015         3         28         22         28         51         121.88         0.380         10.0         5.50           23041         0         90         60085134         WPC16         2015         3         30         7         57         2         173.206         1.10         6.33           2305         0         93.9         6         84         13         9         172.80         1.50         4.0         6.33           2305         0         00                                                                                                                                                                                                                                                                                                                           |       | -      |        | 606939517 | WPG16  | 2015 | 3     | 27  | 3        | 4      | 7         | 143.120   | 36.365   | 10.0  | 5.42 |         |
| 2         2         2         4         60984976         WPC16         2015         3         28         16         36         56         65.43         22.20         1120         57.70           2300         5         12         10091498         WPC16         2015         3         28         19         16         33         176.79         1.422         1.0         5.00           23941         7         12         50005000         WPC16         2015         3         28         19         16         33<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23928 | 2      | 7.7    | 610587129 | WPG16  | 2015 | 3     | 27  | 3        | 4      | 9         | 143.190   | 36.330   | 12.0  | 5.40 | Keep1   |
| 2338         2         2         2         3         0         2         3         2         3         2         3         5         5         5         6         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65        <                                                                                                                                                                                                                                                                                                                                      |       |        |        | 606949676 | WPG16  | 2015 | 3     | 28  | 16       | 36     | 54        | -68.543   | -22.209  | 115.0 | 5.70 |         |
| 23940         5         12.6         600340881         WPG16         2015         3         28         19         16         30         176.203         -18.222         6.0         5.51           23941         1         12.7         60050003         WPG16         2015         3         28         22         28         11.18.0         6.035         180.0         5.60           23946         23         5.7         60050130         WPG16         2015         3         28         22         28         5.2         12.000         0.308         180.0         5.60           23958         8         38.9         60050130         WPG16         2015         3         30         7         66         4         173.000         1-16.200         1.0         6.00         Keep1           23958         8         28.9         60050304         WPG16         2015         3         30         8         48         24         1.72.260         1.63.30         1.0         6.00           23958         9         43.5         60059251         WPG16         2015         3         30         10         34         57         77.98         -30.20         5.01<                                                                                                                                                                                                                                                                                                     | 23938 | 2      | 28     | 610587192 | WPG16  | 2015 | 3     | 28  | 16       | 36     | 56        | -68.760   | -22.070  | 122.0 | 5.70 | Keep1   |
| 2394         5         12.6         60387194         WPC16         2015         3         28         19         16         38         176.800         -18.20         12.0         5.00         Rep1           23941         1         12         -200800000         WPC16         2015         3         28         22         28         61         17.188         0.360         100.0         500         400         100.0         500         400         100.0         7.40         4000         100.0         7.40         40.0         10.0         7.40         40.0         10.0         7.40         40.0         10.0         7.40         40.0         10.0         7.40         40.0         10.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0         40.0                                                                                                                                                                                                                                                               |       |        |        | 606949681 | WPG16  | 2015 | 3     | 28  | 19       | 16     | 33        | 176.793   | -18.282  | 8.0   | 5.54 |         |
| 23941         1         12.7         60895093         WPG16         2015         3         28         22         28         51         121.98         0.385         118.0         5.85         Keep1           23945         23         604         60085728         WPG16         2015         3         29         23         48         54         152.500         51.800         5.86         Keep1           2395         8         38.9         60085728         WPG16         2015         3         30         7         56         54         173.095         153.00         16.0         6.06           2995         8         286         66085044         WPG16         2015         3         30         8         18         1         173.095         15.30         14.0         6.33         6.04         4.06         6.33         6.05         6.0995213         WPG16         2015         3         30         8         48         9         172.60         15.30         14.0         6.33         43         172.260         15.33         20.0         5.90         Keep1           23966         3         48         2.94         19         172.840         15.30                                                                                                                                                                                                                                                                                               | 23940 | 5      | 12.6   | 610587194 | WPG16  | 2015 | 3     | 28  | 19       | 16     | 38        | 176.680   | -18.270  | 12.0  | 5.50 | Keep1   |
| 2394         1         127         6105719         WPG16         2015         3         28         22         28         52         12200         0.430         1300         5.90         Keep1           23945         23         60651381         WPG16         2015         3         28         23         48         31         152.562         4.7.2         4.10         7.48         Keep1           23954         28         48         34         152.562         4.7.20         15.300         10.0         6.04         6.04         6.04         6.04         6.04         6.04         6.04         6.04         6.04         6.04         6.04         6.04         6.05         3         30         8         48         9         4.72.600         15.30         10.0         8.4         25         47.32.00         15.40         10.0         6.04         6.05         6.05         3         30         10         34         54         77.79         2.05         12.0         1.0         6.0         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00                                                                                                                                                                                                                                                                              |       |        |        | 606950093 | WPG16  | 2015 | 3     | 28  | 22       | 28     | 51        | 121,988   | 0.395    | 118.0 | 5.95 |         |
| 2398         23         64         6086131         WPG16         215         3         23         23         48         51         152.52         4.7.9         41.0         7.48           2385         8         39         6055724         WPG16         2015         3         30         7         56         41.7.200         15.30         17.0         6.00           2385         9         6055724         WPG16         2015         3         30         7         57         2         172.700         15.30         14.0         6.30           2385         9         43.5         60585214         WPG16         2015         3         30         8         48         1         1.72.841         14.0         6.30         40         6.30           2395         9         43.5         60585136         WPG16         2015         3         30         10         34         54         77.300         30.30         10.0         44           2396         8         28         60595136         WPG16         2015         3         31         12         10         44         16.32         20.0         55.0         46.0         55.0 <t< td=""><td>23941</td><td>1</td><td>12.7</td><td>610587199</td><td>WPG16</td><td>2015</td><td>3</td><td>28</td><td>22</td><td>28</td><td>52</td><td>122 000</td><td>0.430</td><td>130.0</td><td>5.90</td><td>Keep1</td></t<>                                                                                           | 23941 | 1      | 12.7   | 610587199 | WPG16  | 2015 | 3     | 28  | 22       | 28     | 52        | 122 000   | 0.430    | 130.0 | 5.90 | Keep1   |
| 238         23         0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |        |        | 606951381 | WPG16  | 2015 | 3     | 29  | 23       | 48     | 31        | 152 562   | -4 729   | 41.0  | 7 48 |         |
| 23953         8         36.9         600650243         WPG16         2015         3         300         7         67         2         172.707         15.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309         16.309                                                                                                                                                                                       | 23946 | 23     | 50.4   | 610587229 | WPG16  | 2015 | 3     | 29  | 23       | 48     | 54        | 152 590   | -5 180   | 37.0  | 7.50 | Keep1   |
| 2388         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                   |       |        |        | 606950943 | WPG16  | 2015 | 3     | 30  | 7        | 56     | 54        | -173 095  | -15 409  | 13.0  | 6.04 |         |
| 23964         3         200         200         200         3         300         8         1         1.12.104         1.5.302         1.40         6.33           23954         3         208         600557240         WPG16         2015         3         300         8         18         1         1.12.2041         1.5.302         1.40         6.33         6.93           23956         3         30         8         300         8         48         24         1.72.800         1.5.300         1.40         6.33         6.93           23956         3         30         10         34         48         24         17.144         .43.33         20.0         5.90         .5.30         .5.00         .5.80         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         .6.90         <                                                                                                                                                                                                                                                                    | 23953 | 8      | 38.9   | 610587244 | WPG16  | 2015 | 3     | 30  | 7        | 57     | 2         | -172 770  | -15 260  | 17.0  | 6.00 | Keep1   |
| 2386         8         28         000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |        |        | 606050044 | WPC16  | 2015 | 3     | 30  | ,<br>o   | 19     | 1         | 172.041   | 15 202   | 14.0  | 6.33 |         |
| 1         1         0.032 2.0         0.030 2.00         2016         3         30         8         16         9         172.00         16.300         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30         10.30                                                                                                                                                                                                                      | 23954 | 8      | 29.8   | 610597046 | WPC16  | 2015 | 2     | 30  | 0        | 10     | 0         | 172.541   | 15 200   | 14.0  | 6.30 | Keep1   |
| 2365         9         43.5         6003332.13         WPG16         2015         3         30         8         48         201         173.289         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.389         173.38                                                                                                                                                             |       |        |        | 606095212 | WPG10  | 2015 | 3     | 30  | 0        | 10     | 9         | -172.000  | -15.300  | 14.0  | 0.30 |         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23955 | 9      | 43.5   | 606965213 | WPG10  | 2015 | 3     | 30  | <u> </u> | 40     | 20        | -173.029  | -15.499  | 11.0  | 0.48 | Keep2   |
| 2396         3         18.5         60065738         WPG16         2015         3         30         10         34         57         77.980         -3.320         2.00         5.01           23968         8         28.8         600651560         WPG16         2015         3         30         18         2         11         -172.844         -15.426         9.0         5.80           23969         0         8.8         60065277         WPG16         2015         3         31         12         10         44         162.30         -10.00         38.0         5.70           23961         4         16.3         600685217         WPG16         2015         3         31         12         15         22         152.475         4.915         3.0         5.68           23962         5         22.1         600682328         WPG16         2015         3         31         12         18         24         152.430         -4.805         30.0         6.00           23963         3         14         600682342         WPG16         2015         3         31         15         48         41         20.300         38.347         13.0                                                                                                                                                                                                                                                                                                            |       |        |        | 610587248 | WPG16  | 2015 | 3     | 30  | 8        | 48     | 34        | -172.650  | -15.370  | 17.0  | 6.40 |         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23956 | 3      | 18.5   | 606951384 | WPG16  | 2015 | 3     | 30  | 10       | 34     | 54        | 78.144    | -39.330  | 20.0  | 5.91 | Keep1   |
| 2398         8         28.8         6008951960         WPC16         2015         3         30         18         2         11         1.712,884         -15,426         9.0         5.80         Conc           23980         0         8.8         610587285         WPC16         2015         3         31         12         10         44         162,300         -11,000         38.0         5.70         Keep1           23981         4         606895217         WPC16         2015         3         31         12         15         22         152,475         4.915         35.0         5.60         7.0           23982         5         2.1         60696233         WPC16         2015         3         31         12         18         24         152,490         4.835         39.0         6.02         Keep1           23983         3         1         606962342         WPC16         2015         3         31         15         48         41         20.300         38.347         13.0         4.91           23986         3         2.8.9         600992387         WPC16         2015         4         1         8         17         31                                                                                                                                                                                                                                                                                                             |       |        |        | 610587251 | WPG16  | 2015 | 3     | 30  | 10       | 34     | 57        | 77.980    | -39.250  | 12.0  | 5.90 |         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23958 | 8      | 28.8   | 606951560 | WPG16  | 2015 | 3     | 30  | 18       | 2      | 11        | -172.864  | -15.426  | 9.0   | 5.80 | Keep1   |
| 23960         0         8.8         610587285         WPG16         2015         3         31         12         10         44         162.430         -10.960         38.0         5.70         Keep1           23961         4         16.3         606985217         WPG16         2015         3         31         12         10         44         162.360         -11.000         38.0         5.70         Keep1           23961         4         16.3         606985217         WPG16         2015         3         31         12         18         24         152.480         -5.050         41.0         5.70         Keep1           23962         5         22.1         606962342         WPG16         2015         3         31         12         18         24         152.480         -5.050         47.0         6.002           23967         3         14         606962342         WPG16         2015         4         1         8         17         28         43.34         3.0         5.50           23967         3         25.7         610587315         WPG16         2015         4         1         9         35         58         132.516                                                                                                                                                                                                                                                                                                         |       |        |        | 610587264 | WPG16  | 2015 | 3     | 30  | 18       | 2      | 19        | -172.640  | -15.530  | 20.0  | 5.80 |         |
| 23961         4         16.3<br>606985217         WPG16         2015         3         31         12         10         44         16.3<br>162.300         11.000         38.0         5.70         Keep1           23962         5         22.1         606982318         WPG16         2015         3         31         12         15         22         152.475         4.915         35.0         5.68           23962         5         22.1         606982332         WPG16         2015         3         31         12         18         24         152.430         -5.070         47.0         6.00           23968         3         14         606962367         WPG16         2015         3         31         15         48         41         20.300         38.347         13.0         6.00           23968         3         28.9         606962367         WPG16         2015         4         1         8         17         28         -71.718         -29.344         31.0         5.39           23967         3         25.7         606962387         WPG16         2015         4         1         9         36         51         132.516         -6.840                                                                                                                                                                                                                                                                                                    | 23960 | 0      | 8.8    | 610587285 | WPG16  | 2015 | 3     | 31  | 12       | 10     | 44        | 162.430   | -10.960  | 38.0  | 5.70 | Keep1   |
| 23961         4         16.3         606985218         WPG16         2015         3         31         12         15         22         152.475         -4.915         35.0         5.68         Reep1           23962         5         22.1         60698233         WPG16         2015         3         31         12         16         26         152.460         -5.050         41.0         5.070         47.0         6.002           23963         3         14         606962342         WPG16         2015         3         31         15         48         41         20.300         38.347         13.0         4.91           23966         3         28.9         606962347         WPG16         2015         4         1         8         17         31         -71.718         29.344         31.0         5.59         4.90         4.90         5.90         4.90         4.90         5.90         4.90         4.90         5.90         4.90         5.90         4.90         5.90         4.90         5.90         4.90         5.90         4.90         5.90         4.90         5.90         4.90         5.90         4.90         5.90         4.90         5.90         <                                                                                                                                                                                                                                                                             |       |        |        | 606985217 | WPG16  | 2015 | 3     | 31  | 12       | 10     | 44        | 162.360   | -11.000  | 38.0  | 5.70 |         |
| 1         610587287         WPG16         2015         3         31         12         15         26         152.400         -5.050         41.0         5.70           23962         5         22.1         606962333         WPG16         2015         3         31         12         18         24         152.400         -5.050         41.0         5.070           23963         3         14         606962342         WPG16         2015         3         31         15         48         44         20.300         38.347         13.0         4.91           23966         3         28.9         606962367         WPG16         2015         4         1         8         17         28         -71.718         29.344         31.0         5.50           23967         3         25.7         61058737         WPG16         2015         4         1         9         36         1         132.516         6.021         10.0         5.50           23978         4         42.3         606962387         WPG16         2015         4         1         11         6         36         172.835         16.021         10.0         5.51           <                                                                                                                                                                                                                                                                                                              | 23961 | 4      | 16.3   | 606985218 | WPG16  | 2015 | 3     | 31  | 12       | 15     | 22        | 152.475   | -4.915   | 35.0  | 5.68 | Keep1   |
| 23962         5         22.1         600962333         WPG16         2015         3         31         12         18         24         152.430         -4.895         39.0         6.027           23963         3         14         600962342         WPG16         2015         3         31         15         48         44         20.300         38.347         13.0         4.91           23966         3         28.9         600962367         WPG16         2015         4         1         88         17         28         -71.718         -29.344         31.0         5.39         6.009           23967         3         28.9         600962367         WPG16         2015         4         1         8         17         31         -71.718         -29.344         31.0         5.39         6.009           23967         3         25.7         600962357         WPG16         2015         4         1         11         6         32         13.2516         -6.021         10.0         5.45         Keep1           23967         3         21.5         600962393         WPG16         2015         4         12         4         10         11                                                                                                                                                                                                                                                                                                         |       |        |        | 610587287 | WPG16  | 2015 | 3     | 31  | 12       | 15     | 26        | 152.460   | -5.050   | 41.0  | 5.70 |         |
| 1         6         20.0         6         606862342         WPG16         2015         3         31         12         18         29         152.430         -5.070         47.0         6.00         Month           23963         3         14         606962342         WPG16         2015         3         31         15         48         41         20.300         38.347         13.0         4.90         Accord           23966         3         28.9         606962367         WPG16         2015         4         1         8         17         23         -71.718         -29.344         31.0         5.39         Keep1           23967         3         25.7         610587317         WPG16         2015         4         1         9         36         1         132.40         -6.820         29.0         5.49           23968         6         42.3         606982387         WPG16         2015         4         1         11         6         36         -172.810         -15.540         4.0         5.60         5.90         5.46           23973         3         21.5         606983939         WPG16         2015         4         3                                                                                                                                                                                                                                                                                                             | 23962 | 5      | 22.1   | 606962333 | WPG16  | 2015 | 3     | 31  | 12       | 18     | 24        | 152.490   | -4.895   | 39.0  | 6.02 | Keep1   |
| 23863         3         14         606962342         WPG16         2015         3         31         15         48         41         20.300         38.347         13.0         4.91         Reep1           23966         3         28.9         606962367         WPG16         2015         4         1         8         17         28         -71.718         29.344         31.0         5.39         Reep1           23967         3         25.7         610587315         WPG16         2015         4         1         9         35         58         132.516         6.943         9.0         5.50         Reep1           23967         3         25.7         610587317         WPG16         2015         4         1         11         6         36         -172.835         -16.021         10.0         5.54         Reep1           23978         6         42.3         606963939         WPG16         2015         4         2         4         10         114         -178.686         178.480         563.0         5.90         Keep1           23975         4         47.9         60698134         WPG16         2015         4         3         12                                                                                                                                                                                                                                                                                                      |       | -      |        | 610587291 | WPG16  | 2015 | 3     | 31  | 12       | 18     | 29        | 152.430   | -5.070   | 47.0  | 6.00 |         |
| 1         610587295         WPG16         2015         3         31         15         48         44         20.400         38.250         22.0         4.90         Access           23966         3         28.9         605662367         WPG16         2015         4         1         8         17         28         -71.718         -29.340         31.0         5.39         Keep1           23967         3         25.7         605662365         WPG16         2015         4         1         9         35         58         132.516         -6.943         9.0         5.50         Keep2           23968         6         42.3         606962857         WPG16         2015         4         1         11         6         36         -172.450         -16.021         10.0         5.49         Keep1           23973         3         21.5         606962839         WPG16         2015         4         2         4         10         11         -178.668         -17.849         563.0         5.90         Keep1           23973         3         21.5         60698139         WPG16         2015         4         3         12         32         39                                                                                                                                                                                                                                                                                                       | 23963 | 3      | 14     | 606962342 | WPG16  | 2015 | 3     | 31  | 15       | 48     | 41        | 20.390    | 38.347   | 13.0  | 4.91 | Keep1   |
| 23966         3         28.9         606962367         WPG16         2015         4         1         8         17         28         -71.718         -29.344         31.0         5.39         Reep1           23967         3         25.7         6010587315         WPG16         2015         4         1         9         35         58         132.516         -6.940         28.0         5.40         Reep1           23967         3         25.7         600592585         WPG16         2015         4         1         9         36         1         132.40         -8.820         29.0         5.49         Reep1           23968         6         42.3         606962587         WPG16         2015         4         1         11         6         42         -172.450         -15.940         14.0         5.49         Reep1           23973         3         21.5         606980399         WPG16         2015         4         2         4         10         14         -172.450         -15.94         10.0         5.45         Reep1           23975         4         47.9         606981631         WPG16         2015         4         3         12 <td>20000</td> <td>Ŭ</td> <td></td> <td>610587295</td> <td>WPG16</td> <td>2015</td> <td>3</td> <td>31</td> <td>15</td> <td>48</td> <td>44</td> <td>20.400</td> <td>38.250</td> <td>22.0</td> <td>4.90</td> <td></td>                                                                                | 20000 | Ŭ      |        | 610587295 | WPG16  | 2015 | 3     | 31  | 15       | 48     | 44        | 20.400    | 38.250   | 22.0  | 4.90 |         |
| 2000         0         200         610587315         WPG16         2015         4         1         8         17         31         -71.970         -29.480         28.0         5.40         Reep1           23967         3         25.7         610587317         WPG16         2015         4         1         9         35         58         132.516         -6.943         9.0         5.50         Reep2           23968         6         42.3         606962587         WPG16         2015         4         1         11         6         36         -172.835         -16.021         10.0         5.49         Reep1           23973         3         21.5         606962587         WPG16         2015         4         2         4         10         11         -178.668         -172.435         -16.021         10.0         5.40         Keep1           23973         3         21.5         60696339         WPG16         2015         4         2         4         10         14         -178.686         -17.849         563.0         5.90         Keep1           23975         4         47.9         606981631         WPG16         2015         4 <t< td=""><td>23966</td><td>з</td><td>28.9</td><td>606962367</td><td>WPG16</td><td>2015</td><td>4</td><td>1</td><td>8</td><td>17</td><td>28</td><td>-71.718</td><td>-29.344</td><td>31.0</td><td>5.39</td><td>Keen1</td></t<>                                                                          | 23966 | з      | 28.9   | 606962367 | WPG16  | 2015 | 4     | 1   | 8        | 17     | 28        | -71.718   | -29.344  | 31.0  | 5.39 | Keen1   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20000 | Ŭ      | 20.5   | 610587315 | WPG16  | 2015 | 4     | 1   | 8        | 17     | 31        | -71.970   | -29.480  | 28.0  | 5.40 | Пеерт   |
| 2301         3         2.5.7         606962585         WPG16         2015         4         1         9         36         1         132.40         -6.820         29.0         5.49         Reep2           23968         6         42.3         606962587         WPG16         2015         4         1         11         6         36         -172.835         -16.021         10.0         5.49         Reep1           23978         3         21.5         606983393         WPG16         2015         4         2         4         10         11         -172.656         -172.849         564.0         5.95         Keep1           23973         3         21.5         606981631         WPG16         2015         4         2         4         10         14         -175.90         -176.86         56.0         5.90         Keep1           23975         4         47.9         606981631         WPG16         2015         4         3         21         17         54         147.694         -6.313         3.0         5.49         Keep1           23976         6         16.3         610587383         WPG16         2015         4         3         21 </td <td>23067</td> <td>з</td> <td>25.7</td> <td>610587317</td> <td>WPG16</td> <td>2015</td> <td>4</td> <td>1</td> <td>9</td> <td>35</td> <td>58</td> <td>132.516</td> <td>-6.943</td> <td>9.0</td> <td>5.50</td> <td>Keen?</td>                                                                  | 23067 | з      | 25.7   | 610587317 | WPG16  | 2015 | 4     | 1   | 9        | 35     | 58        | 132.516   | -6.943   | 9.0   | 5.50 | Keen?   |
| 23968         6         42.3         606962587         WPG16         2015         4         1         11         6         36         -172.835         -16.021         10.0         5.45         Reep1           23973         3         21.5         605963939         WPG16         2015         4         2         4         10         11         -172.450         -15.940         14.0         5.40         5.40           23973         3         21.5         606963939         WPG16         2015         4         2         4         10         14         -178.570         -17.680         56.0         5.90         Keep1           23975         4         47.9         606981631         WPG16         2015         4         3         12         32         39         -176.346         -23.016         59.0         5.46         Keep1           23976         6         16.3         606982074         WPG16         2015         4         3         21         17         0         147.730         -6.450         37.0         5.90         Keep1           23978         17.6         606982102         WPG16         2015         4         4         8         6                                                                                                                                                                                                                                                                                                 | 20301 | 5      | 20.1   | 606962585 | WPG16  | 2015 | 4     | 1   | 9        | 36     | 1         | 132.440   | -6.820   | 29.0  | 5.49 | Кеерг   |
| 2390         0         42.3         610587319         WPG16         2015         4         1         11         6         42         -172.450         -15.940         14.0         5.40         Reep1           23973         3         21.5         606963939         WPG16         2015         4         2         4         10         11         -178.668         -17.849         564.0         5.95         Reep1           23973         3         21.5         606963939         WPG16         2015         4         2         4         10         14         -178.668         -17.849         564.0         5.90         Reep1           23975         4         7.9         606981631         WPG16         2015         4         3         12         32         39         -176.346         -23.016         59.0         5.40           23976         6         16.3         606982074         WPG16         2015         4         3         21         17         0         147.730         -6.450         37.0         5.90         Reep1           23978         3         17.6         606982102         WPG16         2015         4         4         17         48<                                                                                                                                                                                                                                                                                                 | 22060 | 6      | 12.2   | 606962587 | WPG16  | 2015 | 4     | 1   | 11       | 6      | 36        | -172.835  | -16.021  | 10.0  | 5.45 | Koon1   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23900 | 0      | 42.3   | 610587319 | WPG16  | 2015 | 4     | 1   | 11       | 6      | 42        | -172.450  | -15.940  | 14.0  | 5.40 | Keepi   |
| 23973         3         21.5         610587340         WPG16         2015         4         2         4         10         14         -178.570         -17.680         563.0         5.90         Reep1           23975         4         47.9         606981631         WPG16         2015         4         3         12         32         39         -176.346         -23.016         59.0         5.46         Reep1           23976         6         16.3         606982074         WPG16         2015         4         3         21         17         54         147.694         -6.313         33.0         5.94           23978         6         16.3         606982074         WPG16         2015         4         4         8         6         18         127.683         -2.773         24.0         5.32         Keep1           23978         3         17.6         606982102         WPG16         2015         4         4         8         6         18         127.740         -2.640         15.0         5.30         Keep1           23979         2         18.1         606982122         WPG16         2015         4         4         17         48                                                                                                                                                                                                                                                                                                      | 22072 | 0      | 24.5   | 606963939 | WPG16  | 2015 | 4     | 2   | 4        | 10     | 11        | -178.668  | -17.849  | 564.0 | 5.95 | Keent   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23973 | 3      | 21.5   | 610587340 | WPG16  | 2015 | 4     | 2   | 4        | 10     | 14        | -178.570  | -17.680  | 563.0 | 5.90 | Reepi   |
| 23975         4         47.3         610587374         WPG16         2015         4         3         12         32         43         -175.990         -23.090         89.0         5.40         Keep1           23976         6         16.3         606982074         WPG16         2015         4         3         21         17         54         147.694         -6.313         33.0         5.94         Keep1           23978         3         17.6         606982102         WPG16         2015         4         4         8         6         18         127.683         -2.773         24.0         5.32         Keep1           23978         3         17.6         606982102         WPG16         2015         4         4         8         6         18         127.683         -2.773         24.0         5.32         Keep1           23979         2         18.1         606982102         WPG16         2015         4         4         17         48         48         130.672         -6.074         111.0         5.16           23979         2         18.1         610587412         WPG16         2015         4         5         20         51                                                                                                                                                                                                                                                                                                       | 00075 |        | 47.0   | 606981631 | WPG16  | 2015 | 4     | 3   | 12       | 32     | 39        | -176.346  | -23.016  | 59.0  | 5.46 | 16      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23975 | 4      | 47.9   | 610587374 | WPG16  | 2015 | 4     | 3   | 12       | 32     | 43        | -175.990  | -23.090  | 89.0  | 5.40 | Keepi   |
| 23976         6         16.3         610587383         WPG16         2015         4         3         21         17         0         147.730         -6.450         37.0         5.90         Keep1           23978         3         17.6         606982102         WPG16         2015         4         4         8         6         18         127.683         -2.773         24.0         5.32         Keep1           23978         3         17.6         606982102         WPG16         2015         4         4         8         6         21         127.010         -2.640         15.0         5.30           23979         2         18.1         606982122         WPG16         2015         4         4         17         48         48         130.672         -6.074         111.0         5.16           23981         1         27.4         610587442         WPG16         2015         4         5         20         51         44         152.675         -5.581         8.0         5.50           23985         5         17         607270391         WPG16         2015         4         7         0         46         22         -173.225                                                                                                                                                                                                                                                                                                              |       |        |        | 606982074 | WPG16  | 2015 | 4     | 3   | 21       | 17     | 54        | 147.694   | -6.313   | 33.0  | 5.94 |         |
| 23978         3         17.6         606982102         WPG16         2015         4         4         8         6         18         127.683         -2.773         24.0         5.32         Keep1           23978         3         17.6         610587401         WPG16         2015         4         4         8         6         21         127.710         -2.640         15.0         5.30         Keep1           23979         2         18.1         606982122         WPG16         2015         4         4         17         48         48         130.672         -6.074         111.0         5.16           23979         2         18.1         606982122         WPG16         2015         4         4         17         48         50         130.690         -6.000         127.0         5.10           23981         1         27.4         610587442         WPG16         2015         4         5         20         51         44         152.800         -5.790         12.0         5.55           23985         5         17         607270391         WPG16         2015         4         7         0         46         27         -173.170                                                                                                                                                                                                                                                                                                           | 23976 | 6      | 16.3   | 610587383 | WPG16  | 2015 | 4     | 3   | 21       | 17     | 0         | 147.730   | -6.450   | 37.0  | 5.90 | Keep1   |
| 23978         3         17.6         610587401         WPG16         2015         4         4         8         6         21         127.710         -2.640         15.0         5.30         Keep1           23979         2         18.1         606982122         WPG16         2015         4         4         17         48         48         130.672         -6.074         111.0         5.16         Keep1           23979         2         18.1         606982122         WPG16         2015         4         4         17         48         48         130.672         -6.074         111.0         5.16           23981         1         27.4         610587412         WPG16         2015         4         5         20         51         44         152.675         -5.581         8.0         5.50           23985         5         17         607270391         WPG16         2015         4         7         0         46         22         -173.225         -15.168         30.0         6.33           23995         5         17         607008353         WPG16         2015         4         10         6         10         39         -88.752                                                                                                                                                                                                                                                                                                           |       | _      |        | 606982102 | WPG16  | 2015 | 4     | 4   | 8        | 6      | 18        | 127.683   | -2.773   | 24.0  | 5.32 |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23978 | 3      | 17.6   | 610587401 | WPG16  | 2015 | 4     | 4   | 8        | 6      | 21        | 127.710   | -2.640   | 15.0  | 5.30 | Keep1   |
| 23979         2         18.1         610587412         WPG16         2015         4         4         17         48         50         130.690         -6.000         127.0         5.10         Keep1           23981         1         27.4         610587412         WPG16         2015         4         5         20         51         44         152.675         -5.581         8.0         5.50         Keep2           23981         1         27.4         6058742         WPG16         2015         4         5         20         51         44         152.675         -5.581         8.0         5.50         Keep2           23985         5         17         607270391         WPG16         2015         4         7         0         46         22         -173.225         -15.168         30.0         6.33         Keep1           23995         1         17.7         60708353         WPG16         2015         4         10         6         10         39         -88.752         -41.232         10.0         5.30           23995         1         17.7         60708353         WPG16         2015         4         10         6         10                                                                                                                                                                                                                                                                                                           |       |        |        | 606982122 | WPG16  | 2015 | 4     | 4   | 17       | 48     | 48        | 130.672   | -6.074   | 111.0 | 5.16 |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23979 | 2      | 18.1   | 610587412 | WPG16  | 2015 | 4     | 4   | 17       | 48     | 50        | 130.690   | -6.000   | 127.0 | 5.10 | Keep1   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |        |        | 610587442 | WPG16  | 2015 | 4     | 5   | 20       | 51     | 44        | 152 675   | -5 581   | 8.0   | 5 50 |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23981 | 1      | 27.4   | 606982799 | WPG16  | 2015 | 4     | 5   | 20       | 51     | 45        | 152 800   | -5,790   | 12.0  | 5.55 | Keep2   |
| 23985         5         17         60121001         1100         2100         1         1         0         10         22         110122         100100         00.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td></td> <td></td> <td></td> <td>607270391</td> <td>WPG16</td> <td>2015</td> <td>4</td> <td>7</td> <td>0</td> <td>46</td> <td>22</td> <td>-173 225</td> <td>-15 168</td> <td>30.0</td> <td>6.33</td> <td></td>                                    |       |        |        | 607270391 | WPG16  | 2015 | 4     | 7   | 0        | 46     | 22        | -173 225  | -15 168  | 30.0  | 6.33 |         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23985 | 5      | 17     | 610587474 | WPG16  | 2015 | 4     | 7   | 0        | 46     | 27        | -173 170  | -15 250  | 43.0  | 6.30 | Keep1   |
| 23995         1         17.7         60700300         W1010         2010         4         10         6         10         39         -60.702         -41.32         10.0         3.37         Keep2           23995         4         18.7         607008373         WPG16         2015         4         10         16         23         4         65.860         -13.766         6.0         5.74           23996         4         18.7         607008373         WPG16         2015         4         10         16         23         4         65.860         -13.766         6.0         5.74           610587560         WPG16         2015         4         10         16         23         8         65.740         13.740         48.0         5.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |        |        | 607008353 | WPG16  | 2015 | 4     | 10  | 6        | 10     | 30        | -88 752   | -41 222  | 10.0  | 5 37 |         |
| 23996         4         18.7         607008373         WPG16         2015         4         10         16         23         4         65.860         -13.766         6.0         5.74           610587560         WPG16         2015         4         10         16         23         4         65.860         -13.766         6.0         5.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23995 | 1      | 17.7   | 610587547 | WPC16  | 2015 |       | 10  | 6        | 10     | <u>40</u> | -88 730   | -41 300  | 12.0  | 5 30 | Keep2   |
| 23996 4 18.7 610587560 WPC16 2015 4 10 16 23 4 05.000 -15.700 6.0 5.74 Keep1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |        |        | 607002272 | W/PC16 | 2015 |       | 10  | 16       | 22     | -+0       | 65,860    | -13 766  | 6.0   | 5.30 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23996 | 4      | 18.7   | 610587560 | W/PC16 | 2015 |       | 10  | 10       | 20     | - 4<br>0  | 65 740    | -13 710  | 12.0  | 5 70 | Keep1   |

| Case  | ∆t (s) | d (km)    | Event ID  | Source | Year | Month | Day | Hour    | Minute      | Second  | Longitude | Latitude | Depth | М            | Outcome  |
|-------|--------|-----------|-----------|--------|------|-------|-----|---------|-------------|---------|-----------|----------|-------|--------------|----------|
| 22007 | 1      | 14.6      | 607011044 | WPG16  | 2015 | 4     | 10  | 18      | 59          | 39      | -126.157  | 40.418   | 19.0  | 4.94         | Koon1    |
| 23997 | 1      | 14.6      | 610587566 | WPG16  | 2015 | 4     | 10  | 18      | 59          | 40      | -126.290  | 40.500   | 21.0  | 4.90         | Keepi    |
| 00000 | 0      | 00        | 607019134 | WPG16  | 2015 | 4     | 11  | 5       | 0           | 42      | 126.695   | 2.117    | 50.0  | 5.65         | 16 4     |
| 23998 | 2      | 20        | 610587576 | WPG16  | 2015 | 4     | 11  | 5       | 0           | 44      | 126.520   | 2.210    | 36.0  | 5.60         | Keepi    |
|       |        |           | 610587638 | WPG16  | 2015 | 4     | 13  | 13      | 37          | 37      | 152.968   | -4.690   | 45.0  | 5.20         |          |
| 24004 | 0      | 27.7      | 610424366 | WPG16  | 2015 | 4     | 13  | 13      | 37          | 37      | 153.000   | -4.930   | 51.3  | 5.25         | Keep1    |
|       | _      |           | 607120309 | WPG16  | 2015 | 4     | 14  | 8       | 13          | 55      | -173.350  | -15.197  | 8.0   | 5.72         |          |
| 24005 | 8      | 39.3      | 610587651 | WPG16  | 2015 | 4     | 14  | 8       | 14          | 3       | -173.060  | -14.990  | 15.0  | 5.70         | Keep2    |
|       |        |           | 607121199 | WPG16  | 2015 | 4     | 15  | 8       | 25          | 12      | 32.331    | 34.808   | 10.0  | 5.34         |          |
| 24007 | 3      | 12.3      | 610587672 | WPG16  | 2015 | 4     | 15  | 8       | 25          | 15      | 32.360    | 34.720   | 17.0  | 5.30         | Keep1    |
|       |        |           | 607121234 | WPG16  | 2015 | 4     | 15  | 10      | 22          | 8       | 151.672   | -3,795   | 10.0  | 5.51         |          |
| 24008 | 5      | 18.8      | 610587674 | WPG16  | 2015 | 4     | 15  | 10      | 22          | 13      | 151 540   | -3 690   | 12.0  | 5 50         | Keep1    |
|       |        |           | 607167804 | WPG16  | 2015 | 4     | 17  | 15      | 52          | 52      | -178 620  | -15 875  | 12.0  | 6.51         |          |
| 24018 | 8      | 12.4      | 610587708 | WPG16  | 2015 | 4     | 17  | 15      | 52          | 0       | -178 510  | -15 900  | 15.0  | 6.50         | Keep1    |
|       |        |           | 610587758 | WPG16  | 2015 | 4     | 20  | ۱۵<br>۵ | 5           | 32      | 102 484   | -5 717   | 18.0  | 5.81         |          |
| 24036 | 6      | 28.2      | 607175602 | WPC16  | 2015 | 4     | 20  | 0       | 5           | 32      | 102.404   | 5.010    | 30.0  | 5.01         | Keep1    |
|       |        |           | 607175609 | WPC16  | 2015 | 4     | 20  | 11      | - J<br>- AE | 12      | 102.300   | -3.910   | 20.0  | 5.00         |          |
| 24037 | 2      | 24.2      | 640597760 | WPGIO  | 2015 | 4     | 20  | 11      | 45          | 15      | 122.400   | 24.000   | 29.0  | 5.92         | Keep1    |
|       |        |           | 610507700 | WPGIO  | 2015 | 4     | 20  | 10      | 45          | 15      | 122.400   | 23.880   | 35.0  | 5.90         |          |
| 24046 | 1      | 17.3      | 610587790 | WPG16  | 2015 | 4     | 21  | 13      | 1           | 24      | -96.668   | 15.998   | 18.0  | 4.90         | Keep2    |
|       |        |           | 607182601 | WPG16  | 2015 | 4     | 21  | 13      | 1           | 25      | -96.550   | 16.070   | 26.8  | 4.93         |          |
| 24048 | 3      | 6.1       | 607182614 | WPG16  | 2015 | 4     | 21  | 19      | 0           | 21      | -71.354   | -14.764  | 153.0 | 5.32         | Keep1    |
|       |        |           | 610587799 | WPG16  | 2015 | 4     | 21  | 19      | 0           | 24      | -71.360   | -14.710  | 154.0 | 5.30         |          |
| 24049 | 1      | 27.2      | 610587802 | WPG16  | 2015 | 4     | 21  | 19      | 10          | 18      | 154.758   | -6.343   | 35.0  | 5.40         | Keep1    |
|       |        |           | 607200926 | WPG16  | 2015 | 4     | 21  | 19      | 10          | 19      | 154.670   | -6.540   | 47.9  | 5.45         |          |
| 24056 | 5      | 21.8      | 610587823 | WPG16  | 2015 | 4     | 22  | 22      | 57          | 16      | 166.424   | -12.025  | 75.0  | 6.20         | Keep1    |
|       |        | 607188894 | WPG16     | 2015   | 4    | 22    | 22  | 57      | 21          | 166.330 | -12.070   | 93.6     | 6.29  |              |          |
| 24062 | 3      | 11 7      | 607203497 | WPG16  | 2015 | 4     | 24  | 1       | 34          | 56      | -127.190  | 40.430   | 18.0  | 5.46         | Keen1    |
| 2.002 |        |           | 610587840 | WPG16  | 2015 | 4     | 24  | 1       | 34          | 59      | -127.280  | 40.510   | 17.0  | 5.40         | . toop . |
| 24063 | 4      | 60        | 607203502 | WPG16  | 2015 | 4     | 24  | 3       | 36          | 42      | 173.007   | -42.060  | 48.0  | 6.03         | Keen1    |
| 24003 | Ŧ      | 0.9       | 610587844 | WPG16  | 2015 | 4     | 24  | 3       | 36          | 46      | 173.070   | -42.020  | 48.0  | 6.00         | Keepi    |
| 24067 | 1      | 11.2      | 607206280 | WPG16  | 2015 | 4     | 24  | 13      | 56          | 15      | -130.771  | 51.615   | 8.0   | 6.20         | Koon1    |
| 24007 | 1      | 14.5      | 610587861 | Added  | 2015 | 4     | 24  | 13      | 56          | 16      | -130.752  | 51.738   | 12.0  | 6.30         | Keepi    |
| 04070 | 0      |           | 607260021 | WPG16  | 2015 | 4     | 25  | 6       | 22          | 3       | 85.114    | 27.801   | 10.0  | 5.21         | 16 4     |
| 24072 | 9      | 11.4      | 607260024 | Added  | 2015 | 4     | 25  | 6       | 22          | 12      | 85.079    | 27.763   | 0.0   | 7.10         | Keep1    |
|       | -      |           | 607260065 | WPG16  | 2015 | 4     | 25  | 6       | 45          | 21      | 84.822    | 28.224   | 10.0  | 6.70         |          |
| 24086 | 8      | 43.3      | 610587874 | WPG16  | 2015 | 4     | 25  | 6       | 45          | 29      | 84.930    | 27.860   | 21.0  | 6.70         | Keep1    |
|       |        |           | 607211055 | WPG16  | 2015 | 4     | 26  | 7       | 9           | 11      | 86.017    | 27.771   | 22.0  | 6.73         |          |
| 24142 | 9      | 24.5      | 610587895 | WPG16  | 2015 | 4     | 26  | 7       | 9           | 20      | 85.950    | 27.560   | 20.0  | 6.70         | Keep1    |
|       |        |           | 607211832 | WPG16  | 2015 | 4     | 26  | 23      | 35          | 30      | -79.836   | -8.311   | 19.0  | 5.76         |          |
| 24154 | 2      | 36.4      | 610587910 | WPG16  | 2015 | 4     | 26  | 23      | 35          | 32      | -80,160   | -8.330   | 26.0  | 5.70         | Keep2    |
|       |        |           | 607213198 | WPG16  | 2015 | 4     | 28  | 11      | 19          | 50      | -79.623   | -2.086   | 89.0  | 5.41         |          |
| 24158 | 2      | 36.4      | 610587936 | WPG16  | 2015 | 4     | 28  | 11      | 19          | 52      | -79 810   | -2 300   | 107.0 | 5.40         | Keep1    |
|       |        |           | 610431679 | WPG16  | 2015 | 4     | 30  | 10      | 19          | 9       | -26 800   | -60.377  | 4.0   | 5.70         |          |
| 24169 | 6      | 46.2      | 610587975 | WPG16  | 2015 | 4     | 30  | 10      | 10          | 15      | -26.440   | -60 740  | 15.0  | 5.70         | Keep1    |
|       |        |           | 610587977 | WPG16  | 2015 | 4     | 30  | 10      | 45          | 5       | 151 831   | -5 393   | 35.0  | 6.60         |          |
| 24170 | 4      | 21.1      | 607216705 | WPC16  | 2015 | 4     | 30  | 10      | 45          | 0       | 151.001   | 5 590    | 39.3  | 6.64         | Keep1    |
|       |        |           | 607210755 | WDC16  | 2015 | -     | 20  | 16      | +0<br>50    | 42      | 140.010   | 21 520   | 10.0  | 6.04<br>5.75 |          |
| 24176 | 6      | 26.8      | 640599004 | WPGIO  | 2015 | 5     | 2   | 10      | 50          | 43      | 140.213   | 31.529   | 10.0  | 5.75         | Keep1    |
|       |        |           | 610588021 | WPG16  | 2015 | 5     | 2   | 16      | 50          | 49      | 139.940   | 31.470   | 12.0  | 5.70         |          |
| 24178 | 8      | 26.8      | 00/2192// | WPG16  | 2015 | 5     | 3   | 22      | 32          | 39      | 151.6/6   | -5.631   | 24.0  | 5.96         | Keep1    |
|       |        |           | 610588046 | WPG16  | 2015 | 5     | 3   | 22      | 32          | 47      | 151.880   | -5.760   | 23.0  | 5.90         |          |
| 24179 | 3      | 17.4      | 610431718 | WPG16  | 2015 | 5     | 3   | 23      | 40          | 57      | 151.927   | -5.539   | 35.0  | 5.87         | Keep1    |
|       |        |           | 610588050 | WPG16  | 2015 | 5     | 3   | 23      | 40          | 0       | 151.890   | -5.690   | 33.0  | 5.80         |          |
| 24180 | 3      | 17.2      | 607219231 | WPG16  | 2015 | 5     | 4   | 2       | 29          | 11      | 168.883   | -44.523  | 10.0  | 5.58         | Keep1    |
|       |        |           | 610588056 | WPG16  | 2015 | 5     | 4   | 2       | 29          | 14      | 168.730   | -44.420  | 14.0  | 5.50         |          |
| 24183 | 4      | 11.1      | 610588076 | WPG16  | 2015 | 5     | 4   | 12      | 24          | 10      | 154.154   | -61.284  | 14.0  | 5.70         | Keep1    |
|       |        |           | 607219470 | WPG16  | 2015 | 5     | 4   | 12      | 24          | 14      | 154.030   | -61.360  | 16.8  | 5.75         |          |

| Case     | ∆t (s) | d (km) | Event ID  | Source | Year | Month | Day | Hour | Minute | Second | Longitude | Latitude | Depth | М    | Outcome |
|----------|--------|--------|-----------|--------|------|-------|-----|------|--------|--------|-----------|----------|-------|------|---------|
|          |        |        | 607744335 | WPG16  | 2015 | 5     | 5   | 1    | 44     | 6      | 151.875   | -5.462   | 55.0  | 7.49 | 14 4    |
| 24184    | 20     | 34.1   | 610588097 | WPG16  | 2015 | 5     | 5   | 1    | 44     | 26     | 152.100   | -5.320   | 38.0  | 7.50 | Keep1   |
|          |        |        | 607281859 | WPG16  | 2015 | 5     | 5   | 8    | 16     | 58     | 152.235   | -5.529   | 45.0  | 5.87 |         |
| 24194    | 2      | 34.3   | 610588103 | WPG16  | 2015 | 5     | 5   | 8    | 17     | 0      | 152.180   | -5.780   | 26.0  | 5.80 | Keep2   |
|          |        |        | 607220666 | WPG16  | 2015 | 5     | 5   | 20   | 53     | 22     | 67.160    | -15.340  | 12.0  | 5.47 |         |
| 24199    | 1      | 4.9    | 610588116 | WPG16  | 2015 | 5     | 5   | 20   | 53     | 23     | 67.140    | -15.380  | 12.0  | 5.40 | Keep2   |
|          |        |        | 607281870 | WPG16  | 2015 | 5     | 7   | 7    | 10     | 20     | 154.557   | -7.218   | 10.0  | 7.01 |         |
| 24203    | 14     | 17.6   | 610588152 | WPG16  | 2015 | 5     | 7   | 7    | 10     | 34     | 154.490   | -7.360   | 12.0  | 7.00 | Keep1   |
|          |        |        | 607222175 | WPG16  | 2015 | 5     | 7   | 11   | 33     | 1      | 154.402   | -7.086   | 10.0  | 5.50 |         |
| 24209    | 3      | 21.5   | 610588156 | WPG16  | 2015 | 5     | 7   | 11   | 33     | 4      | 154.450   | -7.250   | 20.0  | 5.50 | Keep1   |
|          |        |        | 610588178 | WPG16  | 2015 | 5     | 8   | 3    | 12     | 21     | 97.884    | 1.559    | 36.0  | 5.78 |         |
| 24217    | 1      | 18.8   | 607222906 | WPG16  | 2015 | 5     | 8   | 3    | 12     | 22     | 97.720    | 1.580    | 32.0  | 5.70 | Keep1   |
|          |        |        | 607281878 | WPG16  | 2015 | 5     | 8   | 7    | 52     | 7      | 149.831   | -6.159   | 35.0  | 5.95 |         |
| 24218    | 3      | 28.8   | 610588184 | WPG16  | 2015 | 5     | 8   | 7    | 52     | 10     | 149.940   | -6.390   | 40.0  | 5.90 | Keep1   |
|          |        |        | 610588222 | Added  | 2015 | 5     | 9   | 12   | 18     | 48     | -155 593  | 19 143   | 8.8   | 4 50 |         |
| 24223    | 1      | 15.7   | 607228529 | Added  | 2015 | 5     | 9   | 12   | 18     | 49     | -155 537  | 19 247   | 0.0   | 4.30 | Keep1   |
|          |        |        | 607229912 | WPG16  | 2015 | 5     | 10  | 21   | 25     | 46     | 142 016   | 31 237   | 6.0   | 5.89 |         |
| 24226    | 5      | 17.7   | 610588251 | WPG16  | 2015 | 5     | 10  | 21   | 25     | 51     | 142.010   | 31 090   | 12.0  | 5.80 | Keep1   |
|          |        |        | 607281897 | WPG16  | 2015 | 5     | 10  | 11   | 51     | 17     | 154 417   | -7 206   | 10.0  | 5.00 |         |
| 24227    | 2      | 15.1   | 610588267 | WPG16  | 2015 | 5     | 11  | 11   | 51     | 10     | 154.420   | -7.340   | 12.0  | 5.20 | Keep1   |
|          |        |        | 607234486 | WPC16  | 2015 | 5     | 12  | 7    | 5      | 20     | 96.066    | 27 800   | 28.0  | 7.26 |         |
| 24230    | 7      | 22.3   | 610599279 | WPC16  | 2015 | 5     | 12  | 7    | 5      | 20     | 96,090    | 27.009   | 12.0  | 7.20 | Keep1   |
|          |        |        | 607024400 | WPGIO  | 2015 | 5     | 12  | 7    | 3      | 21     | 00.000    | 27.070   | 12.0  | 7.20 |         |
| 24236    | 6      | 34.3   | 607234490 | WPGIO  | 2015 | 5     | 12  | 7    | 30     | 54     | 00.102    | 27.025   | 15.0  | 0.10 | Keep1   |
|          |        |        | 610588280 | WPG16  | 2015 | 5     | 12  | 1    | 36     | 0      | 86.350    | 27.370   | 20.0  | 6.10 |         |
| 24256    | 5      | 25.5   | 607244002 | WPG16  | 2015 | 5     | 14  | 15   | 8      | 4      | -/1.4/4   | -28.666  | 18.0  | 5.27 | Keep1   |
| $\vdash$ |        |        | 610588312 | WPG16  | 2015 | 5     | 14  | 15   | 8      | 9      | -71.690   | -28.780  | 25.0  | 5.20 |         |
| 24260    | 2      | 7.7    | 610588344 | WPG16  | 2015 | 5     | 15  | 20   | 26     | 56     | 102.201   | -2.620   | 155.0 | 6.00 | Keep1   |
| $\vdash$ |        |        | 607250635 | WPG16  | 2015 | 5     | 15  | 20   | 26     | 58     | 102.140   | -2.610   | 158.4 | 6.08 |         |
| 24261    | 2      | 29.9   | 607250754 | WPG16  | 2015 | 5     | 16  | 11   | 34     | 10     | 86.033    | 27.537   | 5.0   | 5.38 | Keep1   |
|          |        |        | 610588359 | WPG16  | 2015 | 5     | 16  | 11   | 34     | 12     | 86.260    | 27.370   | 12.0  | 5.30 |         |
| 24264    | 1      | 4.4    | 610588377 | WPG16  | 2015 | 5     | 17  | 8    | 52     | 41     | 165.580   | -12.120  | 25.0  | 5.60 | Keep1   |
|          |        |        | 607281927 | WPG16  | 2015 | 5     | 17  | 8    | 52     | 42     | 165.550   | -12.130  | 22.2  | 5.68 |         |
| 24268    | 3      | 9.7    | 607252315 | WPG16  | 2015 | 5     | 18  | 4    | 2      | 46     | 80.320    | -41.550  | 12.0  | 5.76 | Keep1   |
|          |        |        | 610588403 | WPG16  | 2015 | 5     | 18  | 4    | 2      | 49     | 80.250    | -41.480  | 12.0  | 5.70 |         |
| 24271    | 4      | 16.7   | 607281932 | WPG16  | 2015 | 5     | 18  | 17   | 4      | 54     | 154.442   | -7.148   | 10.0  | 5.71 | Keep1   |
|          |        |        | 610588417 | WPG16  | 2015 | 5     | 18  | 17   | 4      | 58     | 154.400   | -7.290   | 13.0  | 5.70 |         |
| 24273    | 4      | 16.2   | 609901458 | WPG16  | 2015 | 5     | 19  | 13   | 54     | 56     | 168.490   | -18.609  | 45.0  | 5.88 | Keep1   |
|          |        |        | 610588435 | WPG16  | 2015 | 5     | 19  | 13   | 55     | 0      | 168.390   | -18.560  | 56.0  | 5.80 |         |
| 24274    | 8      | 27.5   | 607254107 | WPG16  | 2015 | 5     | 19  | 15   | 25     | 21     | -132.162  | -54.331  | 7.0   | 6.65 | Keep1   |
|          |        |        | 610588439 | WPG16  | 2015 | 5     | 19  | 15   | 25     | 29     | -132.390  | -54.530  | 14.0  | 6.60 |         |
| 24275    | 0      | 15.3   | 610588443 | Added  | 2015 | 5     | 19  | 18   | 36     | 2      | -120.884  | 36.667   | 0.0   | 3.80 | Keep2   |
|          | -      |        | 607254111 | Added  | 2015 | 5     | 19  | 18   | 36     | 2      | -120.798  | 36.547   | 0.0   | 4.00 |         |
| 24276    | 3      | 31.8   | 610588455 | WPG16  | 2015 | 5     | 20  | 0    | 30     | 54     | -175.438  | -19.326  | 201.0 | 6.00 | Keep1   |
| 2.2.0    | Ŭ      | 00     | 607254906 | WPG16  | 2015 | 5     | 20  | 0    | 30     | 57     | -175.140  | -19.350  | 206.0 | 6.05 |         |
| 24277    | 1      | 23.2   | 607254909 | WPG16  | 2015 | 5     | 20  | 3    | 31     | 43     | 70.196    | 38.642   | 14.0  | 5.21 | Keen1   |
| 27211    |        | 20.2   | 610588459 | WPG16  | 2015 | 5     | 20  | 3    | 31     | 44     | 69.970    | 38.750   | 17.0  | 5.20 | Пеерт   |
| 2/270    | з      | 26.8   | 607255835 | WPG16  | 2015 | 5     | 20  | 17   | 20     | 44     | 126.398   | 1.824    | 36.0  | 5.58 | Keen1   |
| 24213    | 5      | 20.0   | 610588471 | WPG16  | 2015 | 5     | 20  | 17   | 20     | 47     | 126.260   | 2.020    | 34.0  | 5.50 | Кеерт   |
| 24200    | 10     | 277    | 607270290 | WPG16  | 2015 | 5     | 20  | 22   | 48     | 53     | 164.144   | -10.873  | 16.0  | 6.83 | Koon1   |
| 24200    | 10     | 21.1   | 610588475 | WPG16  | 2015 | 5     | 20  | 22   | 49     | 3      | 163.910   | -10.780  | 19.0  | 6.80 | Keehi   |
| 24200    | 2      | 77     | 610612755 | WPG16  | 2015 | 5     | 21  | 19   | 32     | 58     | 160.330   | -9.776   | 6.0   | 5.70 | Kacht   |
| 24288    | 3      | 21     | 610634724 | WPG16  | 2015 | 5     | 21  | 19   | 33     | 1      | 160.400   | -10.000  | 13.0  | 5.70 | кеерт   |
| 24200    | 7      | 26.4   | 610634750 | WPG16  | 2015 | 5     | 22  | 21   | 45     | 19     | 163.685   | -11.086  | 13.0  | 6.98 | Keerd   |
| 24292    | /      | 20.1   | 607281992 | WPG16  | 2015 | 5     | 22  | 21   | 45     | 26     | 163.540   | -10.900  | 15.0  | 7.00 | reepi   |
| 04007    | 6      | 04.4   | 607261306 | WPG16  | 2015 | 5     | 22  | 23   | 59     | 34     | 163.194   | -11.157  | 13.0  | 6.89 | K.      |
| 24294    | o      | 21.1   | 610634754 | WPG16  | 2015 | 5     | 22  | 23   | 59     | 40     | 163.220   | -10.970  | 15.0  | 6.90 | Reepi   |
| Case   | ∆t (s) | d (km) | Event ID  | Source | Year | Month | Day | Hour | Minute | Second | Longitude | Latitude | Depth | М    | Outcome  |
|--------|--------|--------|-----------|--------|------|-------|-----|------|--------|--------|-----------|----------|-------|------|----------|
| 0.4000 |        |        | 607263622 | WPG16  | 2015 | 5     | 23  | 19   | 28     | 17     | 152.591   | -4.785   | 29.0  | 5.87 |          |
| 24299  | 4      | 29.9   | 610634772 | WPG16  | 2015 | 5     | 23  | 19   | 28     | 21     | 152.620   | -5.020   | 43.0  | 5.80 | Keep2    |
|        |        |        | 607263633 | WPG16  | 2015 | 5     | 24  | 4    | 53     | 24     | -14.171   | -16.855  | 10.0  | 6.34 |          |
| 24303  | 5      | 11.4   | 610634778 | WPG16  | 2015 | 5     | 24  | 4    | 53     | 29     | -14.100   | -16.780  | 12.0  | 6.30 | Keep1    |
|        | -      |        | 607274096 | WPG16  | 2015 | 5     | 24  | 14   | 38     | 0      | -175.963  | -19.393  | 10.0  | 6.29 |          |
| 24306  | 6      | 11     | 610634789 | WPG16  | 2015 | 5     | 24  | 14   | 39     | 6      | -176.050  | -19.400  | 16.0  | 6.30 | Keep1    |
|        | -      |        | 607264419 | WPG16  | 2015 | 5     | 24  | 21   | 6      | 41     | -26.415   | -59.644  | 35.0  | 5.78 |          |
| 24307  | 6      | 51.2   | 610634794 | WPG16  | 2015 | 5     | 24  | 21   | 6      | 47     | -25.820   | -59.980  | 46.0  | 5.80 | Keep1    |
|        |        |        | 607282006 | WPG16  | 2015 | 5     | 25  | 4    | 48     | 24     | 154.920   | -6.530   | 61.2  | 5.36 |          |
| 24308  | 0      | 8      | 610634798 | WPG16  | 2015 | 5     | 25  | 4    | 48     | 24     | 154.980   | -6.490   | 62.0  | 5.30 | Keep2    |
|        |        |        | 607265447 | WPG16  | 2015 | 5     | 26  | 10   | 32     | 3      | -68.508   | -22.057  | 124.0 | 5.64 |          |
| 24313  | 3      | 25.5   | 610634832 | WPG16  | 2015 | 5     | 26  | 10   | 32     | 6      | -68.630   | -21,940  | 142.0 | 5.60 | Keep1    |
|        |        |        | 607265562 | WPG16  | 2015 | 5     | 26  | 16   | 42     | 33     | 135.734   | -0.328   | 15.0  | 5.80 |          |
| 24314  | 3      | 58.8   | 610634841 | Added  | 2015 | 5     | 26  | 16   | 42     | 36     | 136.140   | -0.260   | 52.0  | 5.70 | Keep1    |
|        |        |        | 607282017 | WPG16  | 2015 | 5     | 26  | 23   | 41     | 41     | -25 214   | -58 736  | 35.0  | 5.68 |          |
| 24317  | 4      | 48.4   | 610634851 | WPG16  | 2015 | 5     | 26  | 23   | 41     | 45     | -24 510   | -58 970  | 30.0  | 5 70 | Keep1    |
|        |        |        | 607269403 | Added  | 2015 | 5     | 29  | 4    | 28     | 16     | -70.637   | -28 221  | 42.7  | 5.40 |          |
| 24324  | 5      | 47.9   | 610634880 | WPG16  | 2015 | 5     | 20  | 4    | 28     | 21     | -71 100   | -28.230  | 58.0  | 5.40 | Keep2    |
|        |        |        | 607269414 | WPG16  | 2015 | 5     | 29  | 8    | 40     | 13     | 99 924    | -20.230  | 10.0  | 5.20 |          |
| 24332  | 5      | 20.6   | 61063/802 | WPG16  | 2015 | 5     | 20  | 8    | 40     | 10     | 100 100   | -47.330  | 14.0  | 5.03 | Keep1    |
|        |        |        | 607273371 | WPC16  | 2015 | 5     | 20  | 11   | -+0    | 3      | 140,402   | 27 929   | 660.0 | 7.90 |          |
| 24339  | 7      | 24     | 610624019 | WPC16  | 2015 | 5     | 20  | 11   | 23     | 10     | 140.492   | 27.030   | 690.0 | 7.09 | Keep1    |
|        |        |        | 607070200 | WPGIO  | 2015 | 5     | 30  | 11   | 23     | 10     | 140.000   | 27.940   | 10.0  | 7.90 |          |
| 24340  | 11     | 63.5   | 607273382 | WPGIO  | 2015 | 5     | 30  | 17   | 10     | 35     | -1/3.362  | -15.722  | 70.0  | 0.01 | Keep1    |
|        |        |        | 610634924 | WPG16  | 2015 | 5     | 30  | 17   | 18     | 46     | -173.190  | -15.690  | 70.0  | 6.00 |          |
| 24341  | 1      | 7.8    | 610634927 | Added  | 2015 | 5     | 30  | 18   | 49     | 6      | 143.040   | 30.770   | 2.0   | 6.20 | Keep2    |
|        |        |        | 607273388 | WPG16  | 2015 | 5     | 30  | 18   | 49     | /      | 142.972   | 30.786   | 6.0   | 6.20 |          |
| 24342  | 7      | 31.1   | 60/2/3416 | WPG16  | 2015 | 5     | 31  | 16   | 8      | 28     | -70.909   | -19.942  | 20.0  | 5.06 | Keep1    |
|        |        |        | 610634941 | WPG16  | 2015 | 5     | 31  | 16   | 8      | 35     | -/1.180   | -19.850  | 28.0  | 5.00 |          |
| 24345  | 1      | 32.6   | 60/2/4454 | WPG16  | 2015 | 6     | 1   | 6    | 52     | 42     | -129.761  | 44.448   | 6.0   | 5.84 | Keep2    |
|        |        |        | 610634957 | WPG16  | 2015 | 6     | 1   | 6    | 52     | 43     | -130.130  | 44.350   | 15.0  | 5.80 |          |
| 24350  | 1      | 37     | 610634963 | WPG16  | 2015 | 6     | 1   | 10   | 46     | 27     | -129.990  | 44.360   | 12.0  | 5.40 | Keep2    |
|        |        |        | 607274705 | WPG16  | 2015 | 6     | 1   | 10   | 46     | 28     | -129.588  | 44.519   | 18.0  | 5.44 |          |
| 24358  | 3      | 9.3    | 607281187 | WPG16  | 2015 | 6     | 3   | 19   | 34     | 16     | 144.104   | 43.468   | 10.0  | 4.75 | Keep1    |
|        |        |        | 610635021 | WPG16  | 2015 | 6     | 3   | 19   | 34     | 19     | 144.060   | 43.540   | 13.0  | 4.70 | -        |
| 24364  | 3      | 27     | 607283827 | WPG16  | 2015 | 6     | 5   | 14   | 54     | 1      | 78.127    | -37.155  | 5.0   | 5.57 | Keep1    |
|        |        |        | 610635055 | WPG16  | 2015 | 6     | 5   | 14   | 54     | 4      | 78.210    | -36.930  | 12.0  | 5.50 |          |
| 24365  | 2      | 39.1   | 607284876 | WPG16  | 2015 | 6     | 5   | 20   | 2      | 55     | -107.545  | -34.863  | 7.0   | 5.46 | Keep1    |
|        |        |        | 610635058 | WPG16  | 2015 | 6     | 5   | 20   | 2      | 57     | -107.930  | -34.990  | 17.0  | 5.40 |          |
| 24371  | 6      | 22.6   | 607286708 | WPG16  | 2015 | 6     | 8   | 6    | 1      | 8      | 142.031   | 41.562   | 42.0  | 6.09 | Keep1    |
|        |        |        | 610635101 | WPG16  | 2015 | 6     | 8   | 6    | 1      | 14     | 142.240   | 41.490   | 54.0  | 6.10 |          |
| 24373  | 3      | 17.7   | 607287572 | WPG16  | 2015 | 6     | 9   | 1    | 9      | 3      | 23.383    | 38.663   | 9.0   | 5.32 | Keep1    |
| 2.0.0  | Ű      |        | 610635122 | WPG16  | 2015 | 6     | 9   | 1    | 9      | 6      | 23.430    | 38.510   | 12.0  | 5.30 | . toop . |
| 24374  | 4      | 28     | 607287580 | WPG16  | 2015 | 6     | 9   | 6    | 41     | 39     | -105.782  | -35.356  | 14.0  | 5.46 | Keen1    |
| 21071  |        | 2.0    | 610635125 | WPG16  | 2015 | 6     | 9   | 6    | 41     | 43     | -105.760  | -35.340  | 15.0  | 5.40 | RoopT    |
| 24382  | 10     | 20     | 607288481 | WPG16  | 2015 | 6     | 10  | 8    | 33     | 4      | 143.319   | 39.680   | 31.0  | 5.73 | Keen1    |
| 24002  | 10     | 25     | 610635146 | WPG16  | 2015 | 6     | 10  | 8    | 33     | 14     | 143.640   | 39.660   | 22.0  | 5.70 | Пеерт    |
| 2/383  | з      | 24     | 607288602 | WPG16  | 2015 | 6     | 10  | 13   | 52     | 10     | -68.432   | -22.400  | 124.0 | 6.10 | Keen1    |
| 24000  | 5      | 24     | 610635148 | WPG16  | 2015 | 6     | 10  | 13   | 52     | 13     | -68.470   | -22.480  | 146.0 | 6.10 | Кеерт    |
| 2/200  | 2      | 10.9   | 607289498 | WPG16  | 2015 | 6     | 11  | 4    | 45     | 30     | 143.331   | 39.672   | 10.0  | 5.70 | Koon1    |
| 24309  | 3      | 19.0   | 610635158 | WPG16  | 2015 | 6     | 11  | 4    | 45     | 33     | 143.540   | 39.650   | 18.0  | 5.70 | Keehi    |
| 24200  | 4      | 22.2   | 607289499 | WPG16  | 2015 | 6     | 11  | 4    | 51     | 24     | 143.312   | 39.615   | 10.0  | 5.68 | Kacht    |
| 24390  | 4      | 23.3   | 610635160 | WPG16  | 2015 | 6     | 11  | 4    | 51     | 28     | 143.520   | 39.610   | 25.0  | 5.70 | кеерт    |
| 24204  | 4      | 44 7   | 607289500 | WPG16  | 2015 | 6     | 11  | 4    | 56     | 32     | 143.241   | 39.610   | 10.0  | 5.37 | Kaard    |
| ∠4391  | 4      | 41.7   | 610635163 | WPG16  | 2015 | 6     | 11  | 4    | 56     | 36     | 143.640   | 39.610   | 34.0  | 5.30 | љеер1    |
| 04007  | -      | 07.0   | 610612921 | WPG16  | 2015 | 6     | 12  | 11   | 7      | 8      | -173.010  | -15.676  | 48.0  | 6.04 | K- 4     |
| 24394  | э      | 37.0   | 610635195 | WPG16  | 2015 | 6     | 12  | 11   | 7      | 13     | -172.690  | -15.540  | 51.0  | 6.00 | кеерт    |

| Case  | ∆t (s)   | d (km) | Event ID  | Source | Year | Month | Day | Hour | Minute | Second | Longitude | Latitude | Depth | М    | Outcome       |
|-------|----------|--------|-----------|--------|------|-------|-----|------|--------|--------|-----------|----------|-------|------|---------------|
| 24206 | 2        | 49.0   | 607292893 | WPG16  | 2015 | 6     | 13  | 3    | 17     | 24     | -176.211  | -24.598  | 35.0  | 5.60 | Koon1         |
| 24390 | 3        | 46.9   | 610635218 | WPG16  | 2015 | 6     | 13  | 3    | 17     | 27     | -175.730  | -24.600  | 30.0  | 5.60 | Reepi         |
|       |          |        | 607292900 | WPG16  | 2015 | 6     | 13  | 7    | 8      | 59     | 143.886   | -3.233   | 8.0   | 5.42 |               |
| 24397 | 2        | 9.8    | 610635223 | WPG16  | 2015 | 6     | 13  | 7    | 9      | 1      | 143.850   | -3.160   | 12.0  | 5.40 | Keep1         |
|       |          |        | 607295785 | WPG16  | 2015 | 6     | 15  | 17   | 40     | 54     | 125,252   | -9.742   | 20.0  | 5.84 |               |
| 24402 | 6        | 19.9   | 610635264 | WPG16  | 2015 | 6     | 15  | 17   | 40     | 0      | 125 120   | -9 620   | 18.0  | 5.80 | Keep1         |
|       |          |        | 607296674 | WPG16  | 2015 | 6     | 16  | 6    | 17     | 1      | -178 991  | -20 401  | 653.0 | 6.04 |               |
| 24404 | 3        | 12.9   | 610635278 | WPG16  | 2015 | 6     | 16  | 6    | 17     | 4      | -178 930  | -20.420  | 664.0 | 6.00 | Keep2         |
|       |          |        | 607297678 | WPG16  | 2015 | 6     | 17  | 12   | 51     | 33     | -17 161   | -35 364  | 10.0  | 6.05 |               |
| 24410 | 16       | 69.8   | 610635200 | WPC16  | 2015 | 6     | 17  | 12   | 51     | 40     | 16.400    | 35 390   | 21.0  | 6.00 | Keep1         |
|       |          |        | 607008404 | WPC16  | 2015 | 0     | 17  | 7    | 20     | 49     | -10.400   | -33.300  | 21.0  | 0.90 |               |
| 24411 | 1        | 18.6   | 007290424 | WPGIO  | 2015 | 0     | 10  | 7    | 20     | 55     | 109.021   | -19.130  | 24.0  | 5.39 | Keep1         |
|       |          |        | 60700000  | WPGIO  | 2015 | 0     | 10  | 7    | 20     | 00     | 109.710   | - 19.040 | 12.0  | 5.40 |               |
| 24412 | 3        | 29     | 607299900 | WPG16  | 2015 | 6     | 19  | 0    | 35     | 14     | 141.573   | 37.516   | 36.0  | 4.78 | Keep1         |
|       | -        |        | 610635324 | WPG16  | 2015 | 6     | 19  | 0    | 35     | 17     | 141.740   | 37.580   | 60.0  | 4.80 |               |
| 24413 | 6        | 28.2   | 607304048 | WPG16  | 2015 | 6     | 20  | 2    | 10     | /      | -73.789   | -36.358  | 8.0   | 6.45 | Keep1         |
|       |          |        | 610635339 | WPG16  | 2015 | 6     | 20  | 2    | 10     | 13     | -74.100   | -36.350  | 12.0  | 6.40 |               |
| 24415 | 3        | 32.4   | 610635349 | WPG16  | 2015 | 6     | 20  | 5    | 22     | 19     | -73.764   | -36.368  | 8.0   | 5.40 | Keep2         |
|       |          |        | 607304056 | WPG16  | 2015 | 6     | 20  | 5    | 22     | 22     | -74.100   | -36.470  | 12.0  | 5.44 |               |
| 24416 | 3        | 56.5   | 607304059 | WPG16  | 2015 | 6     | 20  | 5    | 32     | 9      | -26.503   | -59.629  | 50.0  | 5.71 | Keep1         |
|       | Ŭ        | 00.0   | 610635352 | WPG16  | 2015 | 6     | 20  | 5    | 32     | 12     | -25.820   | -60.000  | 44.0  | 5.70 | . toop .      |
| 24421 | 0        | 47     | 607307131 | WPG16  | 2015 | 6     | 21  | 21   | 28     | 16     | -178.328  | -20.431  | 562.0 | 6.00 | Keen1         |
| 27721 | 0        | 7.7    | 610635398 | Added  | 2015 | 6     | 21  | 21   | 28     | 16     | -178.340  | -20.470  | 563.0 | 6.00 | Пеерт         |
| 24425 | 2        | 22.2   | 607308951 | WPG16  | 2015 | 6     | 23  | 8    | 59     | 56     | -175.040  | -19.569  | 138.0 | 5.45 | Koon1         |
| 24420 | 3        | 23.2   | 610635428 | WPG16  | 2015 | 6     | 23  | 8    | 59     | 59     | -174.940  | -19.720  | 150.0 | 5.40 | Reepi         |
| 04400 | 0        | 04.7   | 607309728 | Added  | 2015 | 6     | 24  | 22   | 32     | 20     | -152.260  | 61.730   | 114.0 | 5.80 | 16 0          |
| 24429 | 2        | 21.7   | 610635456 | WPG16  | 2015 | 6     | 24  | 22   | 32     | 22     | -152.010  | 61.850   | 125.0 | 5.80 | Keep2         |
|       | _        |        | 607310148 | WPG16  | 2015 | 6     | 25  | 2    | 53     | 13     | -82.866   | 8.303    | 7.0   | 4.87 |               |
| 24430 | 3        | 12.4   | 610635459 | WPG16  | 2015 | 6     | 25  | 2    | 53     | 16     | -82.770   | 8.340    | 12.0  | 4.80 | Keep1         |
|       |          |        | 610635470 | WPG16  | 2015 | 6     | 25  | 15   | 41     | 18     | 152,130   | -10.280  | 12.0  | 5.40 |               |
| 24431 | 0        | 3.1    | 607312880 | WPG16  | 2015 | 6     | 25  | 15   | 41     | 18     | 152 110   | -10 260  | 12.0  | 5 40 | Keep1         |
|       |          |        | 607312883 | WPG16  | 2015 | 6     | 25  | 18   | 45     | 57     | -178 324  | -32 072  | 10.0  | 5.90 |               |
| 24432 | 7        | 65.7   | 610635473 | WPG16  | 2015 | 6     | 25  | 18   | 46     | 4      | -177 650  | -32 220  | 14.0  | 5.00 | Keep1         |
|       |          |        | 607313505 | WPG16  | 2015 | 6     | 20  | 10   | 30     | 51     | -15/ 103  | 57 701   | 21.0  | 1 01 |               |
| 24435 | 1        | 14.4   | 610635493 | WPC16  | 2015 | 6     | 20  | 4    | 30     | 52     | 154.090   | 57 720   | 21.0  | 4.00 | Keep1         |
|       |          |        | 610625510 | WPC16  | 2015 | 6     | 20  | 4    | 29     | 52     | 121 500   | 49.000   | 12.0  | 4.90 |               |
| 24439 | 1        | 3.4    | 010000019 | WPGIO  | 2015 | 0     | 27  | 7    | 20     | 55     | 121.000   | -40.990  | 12.0  | 5.40 | Keep1         |
|       |          |        | 607317004 | WPG16  | 2015 | 6     | 27  | 1    | 28     | 54     | 121.490   | -48.960  | 12.0  | 5.43 |               |
| 24441 | 1        | 40.9   | 607317236 | WPG16  | 2015 | 6     | 28  | 1    | 5      | 29     | 90.425    | 26.639   | 15.0  | 5.36 | Keep2         |
|       |          |        | 610635540 | WPG16  | 2015 | 6     | 28  | 1    | 5      | 30     | 90.590    | 26.380   | 39.0  | 5.30 |               |
| 24445 | 5        | 29.5   | 607318481 | WPG16  | 2015 | 6     | 29  | 9    | 9      | 16     | -74.256   | -16.025  | 28.0  | 5.89 | Keep1         |
|       |          |        | 610635566 | WPG16  | 2015 | 6     | 29  | 9    | 9      | 21     | -74.510   | -16.090  | 37.0  | 5.80 |               |
| 24448 | 0        | 16.4   | 610635579 | WPG16  | 2015 | 6     | 29  | 22   | 7      | 48     | 71.130    | 36.680   | 195.0 | 5.50 | Keep2         |
|       |          |        | 607318873 | WPG16  | 2015 | 6     | 29  | 22   | 7      | 48     | 71.305    | 36.677   | 190.0 | 5.52 |               |
| 24449 | 3        | 18.5   | 607318881 | WPG16  | 2015 | 6     | 30  | 3    | 39     | 29     | 151.486   | -5.495   | 43.0  | 6.01 | Keep1         |
|       | -        |        | 610635583 | WPG16  | 2015 | 6     | 30  | 3    | 39     | 32     | 151.610   | -5.600   | 47.0  | 6.00 |               |
| 24456 | 3        | 11.4   | 607321271 | WPG16  | 2015 | 7     | 2   | 7    | 26     | 49     | -16.184   | -34.704  | 10.0  | 5.19 | Keep1         |
| 21100 | 0        |        | 610635635 | WPG16  | 2015 | 7     | 2   | 7    | 26     | 52     | -16.100   | -34.630  | 12.0  | 5.20 | RoopT         |
| 24460 | 1        | 25.3   | 607675407 | WPG16  | 2015 | 7     | 6   | 0    | 50     | 33     | -150.705  | 62.141   | 65.0  | 5.00 | Koon1         |
| 24409 | I        | 23.5   | 610635697 | WPG16  | 2015 | 7     | 6   | 0    | 50     | 34     | -150.840  | 62.320   | 79.0  | 5.00 | Keepi         |
| 24474 | 2        | 24.0   | 610432369 | WPG16  | 2015 | 7     | 6   | 3    | 50     | 58     | -142.110  | -56.600  | 10.0  | 5.54 | Keer 1        |
| ∠44/1 | 2        | 24.2   | 610635699 | WPG16  | 2015 | 7     | 6   | 3    | 50     | 0      | -142.430  | -56.700  | 19.0  | 5.50 | <b>кеер</b> 1 |
| 04.77 | <u> </u> | 0-     | 607328459 | WPG16  | 2015 | 7     | 7   | 7    | 1      | 43     | -111.632  | -13.329  | 10.0  | 5.91 | 14 0          |
| 24473 | 2        | 65     | 610635719 | WPG16  | 2015 | 7     | 7   | 7    | 1      | 45     | -112.230  | -13.360  | 15.0  | 5.90 | Keep2         |
|       |          |        | 607334499 | WPG16  | 2015 | 7     | 7   | 16   | 8      | 4      | -111.302  | -13.386  | 10.0  | 5.74 |               |
| 24476 | 6        | 8.3    | 610635729 | WPG16  | 2015 | 7     | 7   | 16   | 8      | 10     | -111.260  | -13,430  | 15.0  | 5,70 | Keep1         |
|       |          |        | 607339202 | WPG16  | 2015 | 7     | 7   | 18   | 4      | 47     | -111 639  | -13 727  | 10.0  | 5 33 |               |
| 24477 | 5        | 46.6   | 610635732 | WPG16  | 2015 | 7     | 7   | 18   | 4      | 52     | -111 340  | -13 430  | 16.0  | 5.30 | Keep1         |
|       |          |        | 010000102 |        | 2010 | '     |     | 10   |        | 52     |           | - 10.400 | 10.0  | 0.00 |               |

| Case  | ∆t (s) | d (km) | Event ID  | Source | Year | Month | Day | Hour | Minute | Second | Longitude | Latitude | Depth | м    | Outcome  |
|-------|--------|--------|-----------|--------|------|-------|-----|------|--------|--------|-----------|----------|-------|------|----------|
|       |        |        | 607351517 | WPG16  | 2015 | 7     | 9   | 13   | 25     | 54     | -90.244   | 13.295   | 45.0  | 5.62 |          |
| 24483 | 12     | 53.1   | 610635765 | WPG16  | 2015 | 7     | 9   | 13   | 26     | 6      | -90.660   | 13.100   | 27.0  | 5.60 | Keep2    |
|       | _      |        | 607467356 | WPG16  | 2015 | 7     | 16  | 10   | 48     | 4      | -71.820   | -29.481  | 16.0  | 5.23 |          |
| 24506 | 6      | 18.4   | 610635901 | WPG16  | 2015 | 7     | 16  | 10   | 48     | 10     | -71.820   | -29.400  | 32.0  | 5.20 | Keep1    |
|       | _      |        | 607467358 | WPG16  | 2015 | 7     | 16  | 11   | 1      | 46     | -58.474   | 13.877   | 7.0   | 5.74 |          |
| 24507 | 3      | 15.6   | 610635903 | WPG16  | 2015 | 7     | 16  | 11   | 1      | 49     | -58.360   | 13.910   | 16.0  | 5.70 | Keep1    |
|       |        |        | 607467802 | WPG16  | 2015 | 7     | 16  | 15   | 16     | 34     | -58.548   | 13.867   | 20.0  | 6.48 |          |
| 24508 | 3      | 19.1   | 610635907 | WPG16  | 2015 | 7     | 16  | 15   | 16     | 37     | -58.380   | 13.920   | 19.0  | 6.50 | Keep1    |
|       |        |        | 607643784 | WPG16  | 2015 | 7     | 17  | 11   | 11     | 22     | -73.205   | -35.524  | 18.0  | 5.35 |          |
| 24509 | 4      | 20.3   | 610635928 | WPG16  | 2015 | 7     | 17  | 11   | 11     | 26     | -73.420   | -35.570  | 21.0  | 5.30 | Keep1    |
|       |        |        | 610635940 | Added  | 2015 | 7     | 17  | 19   | 36     | 49     | 69.318    | 36.761   | 0.0   | 3.50 |          |
| 24511 | 4      | 33.7   | 607500565 | Added  | 2015 | 7     | 17  | 19   | 36     | 53     | 69.450    | 37.000   | 17.0  | 3.80 | Keep1    |
|       |        |        | 610432501 | Added  | 2015 | 7     | 20  | 9    | 23     | 57     | -72.314   | -33.782  | 0.0   | 3.90 |          |
| 24520 | 1      | 37.8   | 610635985 | Added  | 2015 | 7     | 20  | 9    | 23     | 58     | -72.560   | -33.786  | 30.2  | 4.10 | Keep2    |
|       |        |        | 607502551 | WPG16  | 2015 | 7     | 20  | 11   | 8      | 19     | -105.084  | -35,525  | 14.0  | 5.83 |          |
| 24521 | 5      | 24.6   | 610635989 | WPG16  | 2015 | 7     | 20  | 11   | 8      | 24     | -104.830  | -35,450  | 17.0  | 5.80 | Keep1    |
|       |        |        | 607505156 | WPG16  | 2015 | 7     | 23  | 3    | 56     | 53     | -21 178   | -0.694   | 8.0   | 5.66 |          |
| 24527 | 3      | 24.5   | 610636043 | WPG16  | 2015 | 7     | 23  | 3    | 56     | 56     | -21 050   | -0.600   | 25.0  | 5.60 | Keep1    |
|       |        |        | 607506869 | WPG16  | 2015 | 7     | 24  | 23   | 14     | 39     | -70 282   | -20 291  | 40.0  | 5.30 |          |
| 24533 | 5      | 39.2   | 610636079 | WPG16  | 2015 | 7     | 24  | 23   | 14     | 44     | -70.650   | -20 280  | 48.0  | 5.30 | Keep1    |
|       |        |        | 610636096 |        | 2015 | 7     | 25  | 19   | 57     | 41     | -152 190  | 62 060   | 100.0 | 5 10 |          |
| 24534 | 4      | 32     | 607507191 | WPG16  | 2015 | 7     | 25  | 10   | 57     | 45     | -152.100  | 62 130   | 131.0 | 5.20 | Keep2    |
|       |        |        | 607574064 | WPC16  | 2015 | 7     | 20  | 19   | 51     | 40     | 140.051   | 56 072   | 0.0   | 5.20 |          |
| 24606 | 5      | 27.7   | 610636402 | WPC16  | 2015 | 7     | 30  | 10   | 51     | 11     | 141 240   | 57.030   | 22.0  | 5.60 | Keep1    |
|       |        |        | 607641552 | WPC16  | 2015 | 0     | 30  | 10   | 1      | 52     | 174 251   | -57.050  | 170.0 | 5.00 |          |
| 24617 | 3      | 23     | 610626474 | WPG10  | 2015 | 0     | 2   | 14   | 1      | 55     | 174.331   | -10.473  | 1/9.0 | 5.70 | Keep1    |
|       |        |        | 010030474 | WPGIO  | 2015 | 0     | 3   | 14   | 1      | 20     | -174.140  | - 10.430 | 103.U | 5.60 |          |
| 24623 | 2      | 9.9    | 640626520 | WPGIO  | 2015 | 0     | 0   | 9    | 22     | 30     | 140.595   | 30.452   | 52.0  | 5.18 | Keep1    |
|       |        |        | 010030339 | WPGIO  | 2015 | 0     | 0   | 9    | 22     | 32     | 140.690   | 30.400   | 57.0  | 5.20 |          |
| 24626 | 3      | 30     | 607646409 | WPG16  | 2015 | 8     | 7   | 1    | 28     | 37     | 28.952    | -2.091   | 10.0  | 5.58 | Keep1    |
|       |        |        | 010030503 | WPG16  | 2015 | 8     | 7   | 1    | 28     | 40     | 28.760    | -2.110   | 31.0  | 5.50 |          |
| 24631 | 2      | 25.9   | 607646421 | Added  | 2015 | 8     | 7   | 5    | 53     | 57     | -108.600  | 24.200   | 10.0  | 5.20 | Keep2    |
|       |        |        | 610636570 | WPGIO  | 2015 | 0     | 7   | 5    | 53     | 59     | - 106.600 | 24.180   | 15.0  | 5.30 |          |
| 24633 | 2      | 21     | 607646520 | WPG16  | 2015 | 8     | /   | 12   | 18     | 49     | -85.208   | 1.086    | 10.0  | 5.62 | Keep1    |
|       |        |        | 610636584 | WPG16  | 2015 | 8     | /   | 12   | 18     | 51     | -85.370   | 1.000    | 15.0  | 5.60 |          |
| 24636 | 5      | 20     | 607646899 | WPG16  | 2015 | 8     | 9   | 8    | 36     | 13     | -82.643   | 5.180    | 10.0  | 5.44 | Keep1    |
|       |        |        | 610636645 | WPG16  | 2015 | 8     | 9   | 8    | 36     | 18     | -82.650   | 5.020    | 19.0  | 5.40 |          |
| 24640 | 3      | 9.5    | 607647629 | WPG16  | 2015 | 8     | 10  | 4    | 24     | 31     | 157.954   | -9.300   | 10.0  | 5.91 | Keep1    |
|       |        |        | 610636666 | WPG16  | 2015 | 8     | 10  | 4    | 24     | 34     | 157.870   | -9.310   | 12.0  | 5.90 |          |
| 24644 | 5      | 48.6   | 607726098 | WPG16  | 2015 | 8     | 10  | 19   | 19     | 32     | -1/6.241  | -27.081  | 6.0   | 5.58 | Keep1    |
|       |        |        | 610636680 | WPG16  | 2015 | 8     | 10  | 19   | 19     | 37     | -1/5./60  | -27.080  | 16.0  | 5.50 |          |
| 24652 | 5      | 42.2   | 607648573 | WPG16  | 2015 | 8     | 11  | 13   | 35     | 49     | -176.246  | -27.060  | 4.0   | 5.52 | Keep1    |
|       |        |        | 610636692 | WPG16  | 2015 | 8     | 11  | 13   | 35     | 54     | -175.870  | -26.900  | 13.0  | 5.50 |          |
| 24654 | 4      | 4.7    | 607648574 | WPG16  | 2015 | 8     | 11  | 13   | 49     | 4      | -176.258  | -19.172  | 10.0  | 5.45 | Keep1    |
|       |        |        | 610636695 | WPG16  | 2015 | 8     | 11  | 13   | 49     | 8      | -176.250  | -19.140  | 13.0  | 5.40 |          |
| 24656 | 4      | 23.1   | 607649017 | WPG16  | 2015 | 8     | 12  | 0    | 14     | 40     | -71.613   | -31.698  | 39.0  | 5.54 | Keep1    |
|       |        |        | 610636707 | WPG16  | 2015 | 8     | 12  | 0    | 14     | 44     | -71.790   | -31.840  | 38.0  | 5.50 |          |
| 24657 | 6      | 18.4   | 607726112 | WPG16  | 2015 | 8     | 12  | 18   | 49     | 24     | 157.868   | -9.363   | 18.0  | 6.52 | Keep1    |
|       |        |        | 610636721 | WPG16  | 2015 | 8     | 12  | 18   | 49     | 30     | 157.710   | -9.320   | 14.0  | 6.50 |          |
| 24662 | 5      | 53.4   | 607652999 | WPG16  | 2015 | 8     | 13  | 10   | 39     | 54     | 78.010    | -37.070  | 4.0   | 5.99 | Keep1    |
|       | -      |        | 610636738 | WPG16  | 2015 | 8     | 13  | 10   | 39     | 59     | 78.490    | -36.790  | 12.0  | 6.00 |          |
| 24663 | 5      | 2.4    | 607653000 | WPG16  | 2015 | 8     | 13  | 11   | 28     | 15     | 78.352    | -36.853  | 10.0  | 5.62 | Keep1    |
|       | -      |        | 610636740 | WPG16  | 2015 | 8     | 13  | 11   | 28     | 20     | 78.340    | -36.860  | 12.0  | 5.60 |          |
| 24670 | 6      | 43.2   | 607726126 | WPG16  | 2015 | 8     | 14  | 13   | 28     | 1      | -176.053  | -27.315  | 11.0  | 5.59 | Keep1    |
|       | -      |        | 610636767 | WPG16  | 2015 | 8     | 14  | 13   | 28     | 7      | -175.640  | -27.190  | 14.0  | 5.60 |          |
| 24671 | 1      | 14 7   | 607661762 | WPG16  | 2015 | 8     | 14  | 18   | 3      | 3      | -45.852   | 21.104   | 10.0  | 5.61 | Keen1    |
| 2.0/1 |        |        | 610636770 | WPG16  | 2015 | 8     | 14  | 18   | 3      | 4      | -45.730   | 21.170   | 12.0  | 5.60 | i toop i |

| Case   | ∆t (s) | d (km) | Event ID  | Source | Year | Month | Day | Hour | Minute | Second   | Longitude | Latitude | Depth | М    | Outcome |
|--------|--------|--------|-----------|--------|------|-------|-----|------|--------|----------|-----------|----------|-------|------|---------|
| 04670  | 0      | 20.7   | 607665384 | WPG16  | 2015 | 8     | 14  | 22   | 3      | 35       | 131.342   | -6.873   | 35.0  | 5.14 | Kaan2   |
| 24672  | 2      | 30.7   | 610636777 | WPG16  | 2015 | 8     | 14  | 22   | 3      | 37       | 131.300   | -7.040   | 59.0  | 5.10 | кеер∠   |
| 0.4070 |        | 04.5   | 607665976 | WPG16  | 2015 | 8     | 15  | 7    | 47     | 6        | 163.823   | -10.897  | 8.0   | 6.46 |         |
| 24673  | 6      | 21.5   | 610636783 | WPG16  | 2015 | 8     | 15  | 7    | 47     | 12       | 163.710   | -10.780  | 20.0  | 6.40 | Keep1   |
|        |        |        | 607666518 | WPG16  | 2015 | 8     | 15  | 20   | 16     | 21       | -175.158  | 51.674   | 32.0  | 5.68 |         |
| 24676  | 1      | 13.6   | 610636790 | WPG16  | 2015 | 8     | 15  | 20   | 16     | 22       | -175.070  | 51.600   | 41.0  | 5.60 | Keep1   |
|        |        |        | 607674243 | WPG16  | 2015 | 8     | 20  | 11   | 0      | 10       | 126.597   | 0.503    | 52.0  | 5.84 |         |
| 24684  | 1      | 26     | 610636867 | WPG16  | 2015 | 8     | 20  | 11   | 0      | 11       | 126.500   | 0.630    | 71.0  | 5.80 | Keep1   |
|        |        |        | 607677064 | WPG16  | 2015 | 8     | 23  | 23   | 10     | 4        | -71.351   | -29.693  | 46.0  | 5.73 |         |
| 24694  | 6      | 20.7   | 610636925 | WPG16  | 2015 | 8     | 23  | 23   | 10     | 10       | -71.530   | -29,590  | 46.0  | 5.70 | Keep1   |
|        |        |        | 607677244 | WPG16  | 2015 | 8     | 24  | 11   | 50     | 58       | 164 268   | 56 188   | 8.0   | 5.51 |         |
| 24695  | 3      | 24.1   | 610636939 | WPG16  | 2015 | 8     | 24  | 11   | 51     | 1        | 164 540   | 56,300   | 20.0  | 5.50 | Keep1   |
|        |        |        | 610636983 | WPG16  | 2015 | 8     | 26  | 13   | 51     | 36       | -25 894   | -57 482  | 35.0  | 5.00 |         |
| 24700  | 5      | 46.5   | 607682902 | WPG16  | 2015 | 8     | 26  | 13   | 51     | 41       | -25 170   | -57 570  | 49.2  | 5.76 | Keep2   |
|        |        |        | 610637123 | WPC16  | 2015 | 0     | 20  | 10   | 12     | 50       | 53 400    | 14 260   | 12.0  | 5.70 |         |
| 24719  | 2      | 51.2   | 607725247 | WPC16  | 2015 | 9     | 2   | 1    | 10     | 50       | 52,906    | 14.200   | 12.0  | 5.30 | Keep2   |
|        |        |        | 007720527 | WPGIO  | 2015 | 9     | 2   | 10   | 13     | JZ<br>40 | 142 407   | 14.033   | 4.0   | 5.35 |         |
| 24738  | 2      | 6.7    | 00/720027 | WPGIO  | 2015 | 9     | 3   | 10   | 51     | 40       | 143.497   | 37.164   | 9.0   | 5.37 | Keep1   |
|        |        |        | 610637163 | WPG16  | 2015 | 9     | 3   | 16   | 51     | 50       | 143.550   | 37.150   | 12.0  | 5.30 |         |
| 24746  | 3      | 9      | 607728827 | WPG16  | 2015 | 9     | 5   | /    | 0      | 1        | -1/4.368  | 51.440   | 15.0  | 5.58 | Keep1   |
|        |        |        | 610637215 | WPG16  | 2015 | 9     | 5   | 7    | 0      | 4        | -174.270  | 51.390   | 17.0  | 5.50 |         |
| 24755  | 2      | 22.8   | 607729013 | WPG16  | 2015 | 9     | 5   | 13   | 16     | 9        | 155.682   | 49.361   | 38.0  | 5.88 | Keep1   |
|        |        |        | 610637248 | WPG16  | 2015 | 9     | 5   | 13   | 16     | 11       | 155.980   | 49.340   | 45.0  | 5.80 |         |
| 24760  | 7      | 13.2   | 607861556 | WPG16  | 2015 | 9     | 7   | 9    | 13     | 57       | -177.860  | -32.820  | 17.0  | 6.21 | Keep1   |
|        |        | -      | 610637298 | WPG16  | 2015 | 9     | 7   | 9    | 14     | 4        | -177.730  | -32.830  | 12.0  | 6.20 |         |
| 24772  | 3      | 36.7   | 607732863 | WPG16  | 2015 | 9     | 8   | 6    | 48     | 33       | -178.534  | -33.030  | 10.0  | 5.77 | Keep1   |
| 21112  | 0      | 00.1   | 610637324 | WPG16  | 2015 | 9     | 8   | 6    | 48     | 36       | -178.150  | -33.070  | 17.0  | 5.70 | Roop I  |
| 24774  | 2      | 13     | 607732866 | Added  | 2015 | 9     | 8   | 8    | 3      | 56       | -93.810   | 14.740   | 15.0  | 5.70 | Keen1   |
| 24114  | 2      | 40     | 610637326 | WPG16  | 2015 | 9     | 8   | 8    | 3      | 58       | -94.200   | 14.660   | 12.0  | 5.80 | Кеерт   |
| 04775  | -      | 11.0   | 607732868 | WPG16  | 2015 | 9     | 8   | 8    | 19     | 54       | -178.205  | -33.115  | 12.0  | 5.57 | Keent   |
| 24775  | Э      | 11.9   | 610637328 | WPG16  | 2015 | 9     | 8   | 8    | 19     | 59       | -178.110  | -33.110  | 20.0  | 5.50 | Reepi   |
| 0.4700 | 0      | 45.4   | 607734336 | WPG16  | 2015 | 9     | 9   | 7    | 5      | 44       | -116.303  | -49.540  | 20.0  | 5.74 | 16      |
| 24783  | ю      | 15.4   | 610637341 | WPG16  | 2015 | 9     | 9   | 7    | 5      | 50       | -116.470  | -49.600  | 13.0  | 5.70 | Keepi   |
|        |        |        | 607734345 | WPG16  | 2015 | 9     | 9   | 21   | 3      | 24       | 70.485    | 36.006   | 107.0 | 5.28 |         |
| 24785  | 1      | 6.4    | 610637348 | WPG16  | 2015 | 9     | 9   | 21   | 3      | 25       | 70.460    | 36.010   | 113.0 | 5.20 | Keep1   |
|        |        |        | 607735769 | WPG16  | 2015 | 9     | 10  | 10   | 26     | 44       | -169.537  | 52.085   | 18.0  | 6.02 |         |
| 24789  | 4      | 13.7   | 610637364 | WPG16  | 2015 | 9     | 10  | 10   | 26     | 48       | -169.480  | 51.970   | 15.0  | 6.00 | Keep1   |
|        |        |        | 607737232 | WPG16  | 2015 | 9     | 11  | 20   | 49     | 7        | 139,906   | 35.504   | 51.0  | 5.09 |         |
| 24797  | 3      | 14.7   | 610637390 | WPG16  | 2015 | 9     | 11  | 20   | 49     | 10       | 139,780   | 35.450   | 44.0  | 5.10 | Keep1   |
|        |        |        | 607737234 | WPG16  | 2015 | 9     | 11  | 21   | 19     | 19       | 146 660   | -5.972   | 23.0  | 5 54 |         |
| 24798  | 4      | 16.4   | 610637392 | WPG16  | 2015 | 9     | 11  | 21   | 19     | 23       | 146 720   | -5 970   | 38.0  | 5.50 | Keep1   |
|        |        |        | 607738208 | WPG16  | 2015 | q     | 12  | 20   | 32     | 26       | -178 097  | -32 612  | 8.0   | 5.80 |         |
| 24802  | 4      | 28.6   | 610637420 | WPG16  | 2015 | 9     | 12  | 20   | 32     | 30       | -177 800  | -32.650  | 13.0  | 5.80 | Keep1   |
|        |        |        | 607960397 | WPC16  | 2015 | 0     | 12  | 20   | 16     | 30       | 147 366   | 6 124    | 27.0  | 5.60 |         |
| 24803  | 5      | 19.6   | 610627422 | WPC16  | 2015 | 9     | 12  | 22   | 10     | 12       | 147.300   | -0.124   | 27.0  | 5.55 | Keep1   |
|        |        |        | 6077423   | WPGIO  | 2015 | 9     | 12  | 22   | 10     | 13       | 70.004    | -0.200   | 30.0  | 5.50 |         |
| 24848  | 5      | 34.1   | 007742135 | WPGIO  | 2015 | 9     | 15  | 22   | 3      | 34       | -70.894   | -20.043  | 18.0  | 5.04 | Keep2   |
|        |        |        | 610637482 | WPG16  | 2015 | 9     | 15  | - 22 | 3      | 39       | -71.170   | -19.900  | 27.0  | 5.00 |         |
| 24858  | 3      | 16.8   | 607742160 | WPG16  | 2015 | 9     | 16  | -    | 40     | 59       | 126.429   | 1.884    | 41.0  | 6.36 | Keep1   |
|        |        |        | 610637492 | WPG16  | 2015 | 9     | 16  | 1    | 41     | 2        | 126.470   | 2.010    | 33.0  | 6.30 |         |
| 24876  | 6      | 22.9   | 607742365 | WPG16  | 2015 | 9     | 16  | 14   | 3      | 22       | 151.477   | -6.011   | 6.0   | 6.05 | Keep1   |
|        |        |        | 610637504 | WPG16  | 2015 | 9     | 16  | 14   | 3      | 28       | 151.530   | -6.200   | 13.0  | 6.00 |         |
| 24887  | 5      | 23.5   | 607742370 | WPG16  | 2015 | 9     | 16  | 18   | 24     | 21       | -70.943   | -19.971  | 12.0  | 4.99 | Keep1   |
|        |        | -      | 610637509 | WPG16  | 2015 | 9     | 16  | 18   | 24     | 26       | -71.140   | -19.950  | 23.0  | 5.00 |         |
| 24900  | 10     | 56.1   | 607860416 | WPG16  | 2015 | 9     | 16  | 23   | 18     | 42       | -71.426   | -31.562  | 28.0  | 7.13 | Keep1   |
|        |        |        | 610637518 | WPG16  | 2015 | 9     | 16  | 23   | 18     | 52       | -71.950   | -31.790  | 35.0  | 7.10 |         |
| 24048  | 2      | 14 4   | 610637536 | Added  | 2015 | 9     | 17  | 5    | 44     | 38       | -72.024   | -31.781  | 0.0   | 5.40 | Keen?   |
| 24340  | 2      | 14.4   | 607743136 | WPG16  | 2015 | 9     | 17  | 5    | 44     | 40       | -72.131   | -31.801  | 10.0  | 5.50 | Neehz   |

| Case   | ∆t (s) | d (km) | Event ID  | Source | Year | Month | Day | Hour | Minute | Second | Longitude | Latitude | Depth | М    | Outcome |
|--------|--------|--------|-----------|--------|------|-------|-----|------|--------|--------|-----------|----------|-------|------|---------|
| 0.4070 |        | 45.4   | 607743707 | WPG16  | 2015 | 9     | 17  | 13   | 32     | 26     | -72.378   | -32.143  | 10.0  | 5.96 |         |
| 24972  | 8      | 15.1   | 610637544 | WPG16  | 2015 | 9     | 17  | 13   | 32     | 34     | -72.280   | -32.230  | 17.0  | 5.90 | Keep1   |
|        |        |        | 610433425 | WPG16  | 2015 | 9     | 18  | 3    | 15     | 41     | -71.576   | -31.455  | 36.0  | 5.05 |         |
| 24997  | 3      | 17.9   | 610637580 | WPG16  | 2015 | 9     | 18  | 3    | 15     | 44     | -71.760   | -31.440  | 40.0  | 5.00 | Keep1   |
|        |        |        | 610433427 | WPG16  | 2015 | 9     | 18  | 4    | 24     | 3      | -72.055   | -31.361  | 9.0   | 5.50 |         |
| 24999  | 3      | 21.9   | 610637582 | Added  | 2015 | 9     | 18  | 4    | 24     | 6      | -72.100   | -31.400  | 30.0  | 5.30 | Keep1   |
|        |        |        | 610433436 | WPG16  | 2015 | 9     | 18  | 8    | 18     | 18     | -72.368   | -32.229  | 6.0   | 5.49 |         |
| 25005  | 4      | 24.8   | 610637591 | WPG16  | 2015 | 9     | 18  | 8    | 18     | 22     | -72.600   | -32.320  | 12.0  | 5.50 | Keep1   |
|        | _      |        | 607745130 | WPG16  | 2015 | 9     | 18  | 9    | 10     | 45     | -72.229   | -32.368  | 8.0   | 6.13 |         |
| 25007  | 7      | 10.5   | 610637593 | WPG16  | 2015 | 9     | 18  | 9    | 10     | 52     | -72.300   | -32.310  | 13.0  | 6.10 | Keep1   |
|        |        |        | 610637607 | WPG16  | 2015 | 9     | 18  | 13   | 51     | 18     | -71.896   | -31.408  | 27.0  | 4.96 |         |
| 25012  | 5      | 8.6    | 607760496 | WPG16  | 2015 | 9     | 18  | 13   | 51     | 23     | -71.900   | -31.480  | 30.0  | 4.90 | Keep1   |
|        |        |        | 610433470 | WPG16  | 2015 | 9     | 18  | 22   | 35     | 21     | -72.640   | -30.264  | 10.0  | 4.97 |         |
| 25023  | 0      | 30.7   | 610637635 | WPG16  | 2015 | 9     | 18  | 22   | 35     | 21     | -72.950   | -30.330  | 12.0  | 4.90 | Keep1   |
|        |        |        | 607770395 | WPG16  | 2015 | 9     | 19  | 5    | 6      | 48     | -72.081   | -29.642  | 7.0   | 5.98 |         |
| 25028  | 4      | 23.9   | 610637647 | WPG16  | 2015 | 9     | 19  | 5    | 6      | 52     | -72.300   | -29.730  | 12.0  | 6.00 | Keep1   |
|        |        |        | 607770404 | WPG16  | 2015 | 9     | 19  | 8    | 31     | 25     | -72.232   | -30,100  | 8.0   | 5.42 |         |
| 25029  | 5      | 19.6   | 610637654 | WPG16  | 2015 | 9     | 19  | 8    | 31     | 30     | -72.300   | -30,260  | 13.0  | 5.40 | Keep1   |
|        |        |        | 610637657 | WPG16  | 2015 | 9     | 19  | 9    | 7      | 9      | -71.585   | -31,106  | 28.0  | 5.82 |         |
| 25030  | 4      | 29.3   | 610433486 | WPG16  | 2015 | 9     | 19  | 9    | 7      | 13     | -71 860   | -31 200  | 36.0  | 5.80 | Keep1   |
|        |        |        | 607776564 | WPG16  | 2015 | 9     | 19  | 12   | 52     | 20     | -72 008   | -32,330  | 18.0  | 6.25 |         |
| 25033  | 6      | 4.3    | 610637668 | WPG16  | 2015 | q     | 19  | 12   | 52     | 26     | -72.050   | -32 340  | 19.0  | 6.20 | Keep1   |
|        |        |        | 610637670 | WPG16  | 2015 | 9     | 19  | 12   | 9      | 20     | -72.000   | -30 670  | 23.0  | 5.60 |         |
| 25034  | 3      | 13.2   | 610/33/06 | WPG16  | 2015 | 9     | 10  | 13   | 9      | 5      | -72.000   | -30.710  | 23.0  | 5.63 | Keep2   |
|        |        |        | 610637680 | WPC16  | 2015 | 0     | 10  | 10   | 12     | 17     | 71 002    | 31 270   | 20.0  | 5.00 |         |
| 25040  | 2      | 27.2   | 607776566 | WPG10  | 2015 | 9     | 19  | 10   | 13     | 10     | 72 140    | -31.279  | 39.2  | 5.00 | Keep2   |
|        |        |        | 607776792 | WPC16  | 2015 | 9     | 19  | 10   | 50     | 19     | 120 649   | 40 422   | 10.0  | 4 70 |         |
| 25042  | 1      | 33.1   | 610627601 | WPG10  | 2015 | 9     | 19  | 21   | 50     | 20     | -129.040  | 49.423   | 21.0  | 4.70 | Keep2   |
|        |        |        | 610637091 | WPGIO  | 2015 | 9     | 19  | 21   | 50     | 32     | -129.910  | 49.200   | 21.0  | 4.00 |         |
| 25052  | 4      | 13.3   | 607776709 | WPGIO  | 2015 | 9     | 20  | 9    | 2      | 34     | -72.207   | -30.251  | 13.0  | 5.10 | Keep1   |
|        |        |        | 607060422 | WPGIO  | 2015 | 9     | 20  | 9    | 2      | 30     | -72.300   | -30.300  | 17.4  | 0.12 |         |
| 25062  | 4      | 15.3   | 640607707 | WPG16  | 2015 | 9     | 21  | 5    | 39     | 35     | -/1./3/   | -31.574  | 30.0  | 6.13 | Keep1   |
|        |        |        | 607770224 | WPGIO  | 2015 | 9     | 21  | 10   | 39     | 39     | -71.040   | -31.000  | 37.0  | 0.10 |         |
| 25065  | 2      | 22     | 607779224 | WPGIO  | 2015 | 9     | 21  | 12   | 49     | 20     | -72.000   | -31.005  | 10.0  | 4.80 | Keep1   |
|        |        |        | 610637743 | WPG16  | 2015 | 9     | 21  | 12   | 49     | 28     | -72.850   | -31.170  | 12.0  | 4.86 |         |
| 25068  | 4      | 16.6   | 610433564 | WPG16  | 2015 | 9     | 21  | 15   | 37     | 8      | -71.864   | -31.042  | 33.0  | 5.50 | Keep1   |
|        |        |        | 610637748 | WPG16  | 2015 | 9     | 21  | 15   | 37     | 12     | -71.950   | -31.170  | 31.0  | 5.50 |         |
| 25070  | 6      | 41.2   | 607860433 | WPG16  | 2015 | 9     | 21  | 17   | 40     | 0      | -/1.3/9   | -31.728  | 35.0  | 6.62 | Keep2   |
|        |        |        | 610637750 | WPG16  | 2015 | 9     | 21  | 1/   | 40     | 6      | -/1.810   | -31.770  | 39.0  | 6.60 |         |
| 25071  | 5      | 30.8   | 610433566 | WPG16  | 2015 | 9     | 21  | 18   | 36     | 53     | -/1./20   | -31.053  | 32.0  | 5.82 | Keep1   |
|        |        |        | 610637752 | WPG16  | 2015 | 9     | 21  | 18   | 36     | 58     | -72.020   | -31.140  | 38.0  | 5.80 |         |
| 25073  | 5      | 31.2   | 607779466 | WPG16  | 2015 | 9     | 21  | 19   | 56     | 9      | -71.641   | -31.782  | 28.0  | 5.76 | Keep1   |
|        |        |        | 610637756 | WPG16  | 2015 | 9     | 21  | 19   | 56     | 14     | -71.870   | -31.940  | 42.0  | 5.70 |         |
| 25083  | 3      | 20.1   | 610433581 | WPG16  | 2015 | 9     | 22  | 7    | 13     | 1      | -71.265   | -31.444  | 58.0  | 6.09 | Keep1   |
|        |        |        | 610637770 | WPG16  | 2015 | 9     | 22  | 7    | 13     | 4      | -71.390   | -31.580  | 64.0  | 6.00 |         |
| 25087  | 1      | 11.2   | 607793641 | WPG16  | 2015 | 9     | 22  | 13   | 24     | 51     | -130.227  | 50.326   | 10.0  | 4.80 | Keep1   |
|        |        |        | 610637780 | Added  | 2015 | 9     | 22  | 13   | 24     | 52     | -130.253  | 50.227   | 10.0  | 4.70 | -       |
| 25096  | 2      | 29     | 607811389 | WPG16  | 2015 | 9     | 24  | 13   | 48     | 58     | -130.208  | 50.783   | 10.0  | 5.78 | Keep1   |
|        |        |        | 610637825 | WPG16  | 2015 | 9     | 24  | 13   | 49     | 0      | -130.420  | 50.560   | 12.0  | 5.80 |         |
| 25108  | 4      | 23.9   | 607831512 | WPG16  | 2015 | 9     | 26  | 2    | 51     | 18     | -71.385   | -30.820  | 46.0  | 6.30 | Keep1   |
|        |        |        | 610637872 | WPG16  | 2015 | 9     | 26  | 2    | 51     | 22     | -71.620   | -30.880  | 51.0  | 6.30 |         |
| 25116  | 5      | 45.5   | 607832217 | WPG16  | 2015 | 9     | 26  | 21   | 40     | 35     | -142.286  | -57.063  | 13.0  | 6.03 | Keep2   |
|        | -      |        | 610637893 | WPG16  | 2015 | 9     | 26  | 21   | 40     | 40     | -142.490  | -56.680  | 23.0  | 6.00 |         |
| 25117  | 1      | 11.4   | 607832234 | WPG16  | 2015 | 9     | 27  | 2    | 56     | 15     | 129.640   | -7.290   | 125.3 | 5.59 | Keen2   |
|        |        |        | 610637896 | WPG16  | 2015 | 9     | 27  | 2    | 56     | 16     | 129.720   | -7.240   | 130.0 | 5.60 |         |
| 25120  | 1      | 12.4   | 610637933 | WPG16  | 2015 | 9     | 28  | 0    | 32     | 34     | -45.580   | 20.360   | 12.0  | 5.30 | Keen?   |
| 20120  |        |        | 607833228 | WPG16  | 2015 | 9     | 28  | 0    | 32     | 35     | -45.658   | 20.278   | 10.0  | 5.13 | 1.00pz  |

| Case  | ∆t (s) | d (km) | Event ID  | Source | Year | Month | Day | Hour | Minute | Second | Longitude | Latitude | Depth | М    | Outcome |
|-------|--------|--------|-----------|--------|------|-------|-----|------|--------|--------|-----------|----------|-------|------|---------|
| 05404 | 0      | 20.0   | 607833229 | WPG16  | 2015 | 9     | 28  | 0    | 42     | 24     | -45.460   | 20.093   | 10.0  | 5.43 | Kaano   |
| 20121 | 2      | 38.2   | 610637935 | WPG16  | 2015 | 9     | 28  | 0    | 42     | 26     | -45.600   | 20.410   | 12.0  | 5.40 | Reepz   |
| 25125 | 7      | 22 5   | 610637958 | WPG16  | 2015 | 9     | 28  | 15   | 28     | 3      | -66.579   | -23.776  | 223.0 | 6.01 | Koon1   |
| 20120 | 1      | 32.5   | 607833730 | WPG16  | 2015 | 9     | 28  | 15   | 28     | 10     | -66.890   | -23.840  | 221.0 | 6.00 | Reepi   |
| 25126 | 4      | 14     | 607834786 | WPG16  | 2015 | 9     | 29  | 8    | 46     | 51     | 143.684   | 40.309   | 10.0  | 5.27 | Koon1   |
| 23120 | 4      | 14     | 610637978 | WPG16  | 2015 | 9     | 29  | 8    | 46     | 55     | 143.830   | 40.290   | 16.0  | 5.20 | Keepi   |
| 25120 | 4      | 25.1   | 607835507 | WPG16  | 2015 | 9     | 29  | 15   | 35     | 17     | 152.073   | -5.439   | 21.0  | 5.35 | Keen1   |
| 20129 | -      | 20.1   | 610637989 | WPG16  | 2015 | 9     | 29  | 15   | 35     | 21     | 152.130   | -5.650   | 27.0  | 5.30 | Кеерт   |
| 25133 | з      | 26.7   | 607846018 | WPG16  | 2015 | 9     | 29  | 23   | 20     | 51     | 140.198   | -2.559   | 19.0  | 5.45 | Keen1   |
| 23133 | 5      | 20.7   | 610638003 | WPG16  | 2015 | 9     | 29  | 23   | 20     | 54     | 140.290   | -2.360   | 30.0  | 5.40 | Reepi   |
| 25340 | 2      | 51     | 607997006 | WPG16  | 2015 | 10    | 29  | 2    | 49     | 28     | 178.518   | 51.816   | 90.0  | 5.33 | Keen1   |
| 23340 | 2      | 5.4    | 610459249 | WPG16  | 2015 | 10    | 29  | 2    | 49     | 30     | 178.590   | 51.810   | 88.0  | 5.30 | Keepi   |
| 25686 | з      | 40     | 608297695 | Added  | 2016 | 1     | 26  | 1    | 16     | 46     | -4.080    | 35.521   | 0.0   | 3.60 | Keen2   |
| 20000 | 5      | 40     | 610460288 | Added  | 2016 | 1     | 26  | 1    | 16     | 49     | -3.653    | 35.494   | 10.0  | 3.50 | Кеерг   |
| 25691 | 4      | 21.5   | 610460342 | WPG16  | 2016 | 1     | 29  | 20   | 7      | 16     | -71.539   | -30.363  | 39.0  | 5.15 | Keen1   |
| 20031 | -      | 21.5   | 608301779 | WPG16  | 2016 | 1     | 29  | 20   | 7      | 20     | -71.740   | -30.280  | 41.0  | 5.10 | Кеерт   |
| 25834 | 2      | 58.9   | 608556985 | WPG16  | 2016 | 4     | 17  | 7    | 14     | 1      | -80.201   | -0.385   | 23.0  | 6.03 | Keen2   |
| 20001 | -      | 00.0   | 610468912 | WPG16  | 2016 | 4     | 17  | 7    | 14     | 3      | -80.700   | -0.510   | 37.0  | 6.00 | Roopz   |
| 25835 | 2      | 38.9   | 608556988 | WPG16  | 2016 | 4     | 17  | 9    | 23     | 41     | -80.694   | -0.234   | 10.0  | 5.73 | Keen1   |
| 20000 | -      | 00.0   | 610468914 | WPG16  | 2016 | 4     | 17  | 9    | 23     | 43     | -81.030   | -0.300   | 18.0  | 5.70 | Roop I  |
| 25840 | 2      | 28.9   | 608588062 | WPG16  | 2016 | 4     | 19  | 17   | 12     | 57     | -81.080   | -1.160   | 18.7  | 4.98 | Keen2   |
| 20010 | -      | 20.0   | 610468953 | WPG16  | 2016 | 4     | 19  | 17   | 12     | 59     | -80.865   | -1.306   | 18.0  | 5.00 | Roopz   |
| 25962 | 4      | 11.8   | 609087200 | Added  | 2016 | 7     | 8   | 4    | 28     | 41     | -80.832   | -0.338   | 0.0   | 4.90 | Keen2   |
| LOOOL |        | 11.0   | 610502517 | WPG16  | 2016 | 7     | 8   | 4    | 28     | 45     | -80.814   | -0.427   | 6.0   | 5.40 | Roopz   |
| 26098 | 0      | 26     | 609586572 | Added  | 2016 | 8     | 28  | 15   | 55     | 36     | 13.433    | 42.692   | 11.2  | 4.70 | Keen2   |
| 20000 | Ŭ      |        | 609386763 | WPG16  | 2016 | 8     | 28  | 15   | 55     | 36     | 13.152    | 42.787   | 5.0   | 4.85 | 100002  |
| 26363 | 1      | 14 4   | 609625012 | WPG16  | 2016 | 10    | 30  | 13   | 34     | 56     | 13.122    | 42.802   | 10.0  | 4.85 | Keep1   |
| 20000 | •      |        | 609916459 | Added  | 2016 | 10    | 30  | 13   | 34     | 57     | 13.143    | 42.675   | 12.2  | 4.70 | 10001   |
| 26519 | 4      | 15.9   | 609767203 | WPG16  | 2016 | 11    | 15  | 5    | 9      | 25     | 173.745   | -42.354  | 10.0  | 5.16 | Keen1   |
| 20010 |        | 10.0   | 610504817 | WPG16  | 2016 | 11    | 15  | 5    | 9      | 29     | 173.620   | -42.400  | 21.0  | 5.10 |         |
| 26521 | 5      | 11.1   | 609774479 | WPG16  | 2016 | 11    | 15  | 19   | 53     | 1      | 174.415   | -41.723  | 13.0  | 4.94 | Keep1   |
|       | Ŭ.     |        | 610504842 | WPG16  | 2016 | 11    | 15  | 19   | 53     | 6      | 174.470   | -41.650  | 19.0  | 4.90 |         |
| 26944 | 2      | 27.3   | 610660928 | Added  | 2017 | 3     | 29  | 23   | 37     | 57     | 18.354    | 43.911   | 12.0  | 3.80 | Keep2   |
| _0014 | -      | 21.0   | 610452487 | Added  | 2017 | 3     | 29  | 23   | 37     | 59     | 18.565    | 44.071   | 0.0   | 3.50 | 100pz   |

# APPENDIX IV: LIST OF SMALL-TO-MEDIUM MAGNITUDE EVENTS WITH CONSEQUENCES FOR THE POPULATION

The earthquakes that make up the world database of small-to-medium magnitude events with consequences for the population are listed herein. They are sub-grouped into the cases described in Section 4.1.

Table IV.1 explains a series of abbreviations used to present the database in the tables that follow.

| Abbreviation | Meaning        | Content                                                |
|--------------|----------------|--------------------------------------------------------|
| Ind.         | Induced        | "I" if anthropogenic origin, nothing otherwise         |
| Dam.         | Damaged        | "X" if damaged buildings observed, nothing otherwise   |
| Destr.       | Destroyed      | "X" if destroyed buildings observed, nothing otherwise |
| Infrastr.    | Infrastructure | "Y" if infrastructure affected, nothing otherwise      |
| Landsl.      | Landslides     | "Y" if landslides observed, nothing otherwise          |
| Liquef.      | Liquefaction   | "Y" if liquefaction observed, nothing otherwise        |

Table IV.1. Abbreviations used in the tables that follow.

The column labelled "Consequences" contains comments regarding the damage or casualties described being related to more than one event (*e.g.* if the consequences correspond to the whole series, if they include the main shock, if it includes the aftershocks, etc).

Whenever an event is not marked as having had any casualties or damaged or destroyed buildings, it means that it was found within one of the loss databases only with a monetary estimate of losses, without any specifications of the damage observed.

## IV.1. Damaging Events that Belong to the World Database of Crustal Small-to-Medium Magnitude Earthquakes Near Urbanised Areas

The 282 events presented in Table IV.2 are those earthquakes with consequences for the population that satisfy all the criteria described in Chapter 2 regarding magnitude, depth and closeness to populations, the latter measure in terms of the predicted exposure to MMI values equal to or larger than IV.

Table IV.2. Earthquakes with consequences to the population that belong to the world database of crustal small-to-medium magnitude events near urbanised areas.

| Bagian               | Country    |      | Date | and 1 | lime ( | UTC) |    | Co      | oordinate | S     | м    | Ind  | Casu | alties  | Build | lings  | Infracto  | Londol  | Linual  | Conservation |
|----------------------|------------|------|------|-------|--------|------|----|---------|-----------|-------|------|------|------|---------|-------|--------|-----------|---------|---------|--------------|
| Region               | Country    | Y    | М    | D     | н      | м    | S  | Lon.    | Lat.      | Depth | IVI  | ina. | Dead | Injured | Dam.  | Destr. | inirasır. | Lanusi. | Liquei. | consequences |
| Mediterranean Europe | Serbia     | 1999 | 7    | 1     | 7      | 40   | 59 | 21.064  | 43.668    | 15    | 5.19 |      |      |         |       | х      |           |         |         |              |
| North South America  | Colombia   | 1999 | 7    | 17    | 12     | 21   | 56 | -72.543 | 6.24      | 25    | 5.08 |      |      |         | х     |        |           |         |         |              |
| Indian Subcontinent  | Bangladesh | 1999 | 7    | 22    | 10     | 42   | 16 | 91.924  | 21.625    | 25    | 5.08 |      | х    | х       | х     |        | Y         |         |         |              |
| Middle East          | Iran       | 1999 | 8    | 10    | 19     | 34   | 0  | 54.635  | 36.153    | 20    | 5.08 |      | Х    | х       |       |        |           |         |         |              |
| Asia Minor           | Turkey     | 1999 | 8    | 31    | 8      | 10   | 51 | 29.911  | 40.767    | 8     | 5.18 |      | х    | х       |       |        |           |         |         |              |
| North America        | Mexico     | 1999 | 9    | 10    | 13     | 40   | 3  | -115.02 | 32.234    | 5     | 4.95 |      |      |         |       |        |           |         |         |              |
| Middle East          | Iran       | 1999 | 9    | 13    | 23     | 32   | 7  | 50.601  | 31.907    | 15    | 5.01 |      |      |         | Х     |        |           |         |         |              |
| Middle East          | Iran       | 1999 | 9    | 24    | 19     | 17   | 14 | 51.353  | 28.66     | 13    | 5.28 |      |      | Х       |       |        | Y         |         |         |              |

| Beaten                      | 0t          |      | Date   | and ' | Time ( | UTC) |    | Co      | ordinate | s     |      | la d | Casu | alties  | Build | dings  | 1         | 1       | 1.1     | 0                            |
|-----------------------------|-------------|------|--------|-------|--------|------|----|---------|----------|-------|------|------|------|---------|-------|--------|-----------|---------|---------|------------------------------|
| Region                      | Country     | Y    | М      | D     | Н      | М    | S  | Lon.    | Lat.     | Depth | IVI  | ina. | Dead | Injured | Dam.  | Destr. | infrastr. | Landsi. | Liquer. | Consequences                 |
| Middle East                 | Iran        | 1999 | 9      | 27    | 2      | 31   | 23 | 51.326  | 28.692   | 9     | 4.85 |      |      |         | х     |        |           |         |         |                              |
| Asia Minor                  | Turkey      | 1999 | 9      | 29    | 0      | 13   | 7  | 29.354  | 40.734   | 7     | 5.19 |      | Х    |         |       |        |           |         |         |                              |
| Asia Minor                  | Turkey      | 1999 | 10     | 5     | 0      | 53   | 30 | 28.226  | 36.739   | 19    | 5.19 |      |      | Х       | Х     |        |           |         |         |                              |
| Middle East                 | Iran        | 1999 | 10     | 31    | 15     | 9    | 39 | 51.845  | 29.354   | 15    | 5.19 |      |      | Х       | Х     |        | Y         |         |         |                              |
| East Asia                   | China       | 1999 | 11     | 1     | 13     | 25   | 19 | 114.02  | 39.89    | 15    | 5.27 |      |      | Х       | Х     | х      | Y         |         |         |                              |
| Asia Minor                  | Turkey      | 1999 | 11     | 7     | 16     | 54   | 45 | 30.728  | 40.701   | 16    | 4.97 |      | Х    |         |       |        |           |         |         |                              |
| Middle East                 | Iran        | 1999 | 11     | 8     | 21     | 37   | 22 | 61.217  | 35.677   | 10    | 5.50 |      |      |         |       | Х      |           |         |         | Possibly of many (5)         |
| East Asia                   | China       | 1999 | 11     | 24    | 16     | 40   | 21 | 102.777 | 24.602   | 15    | 5.20 |      | Х    | Х       |       | Х      |           |         |         |                              |
| Middle East                 | Iran        | 1999 | 11     | 26    | 4      | 27   | 23 | 54.886  | 36.918   | 10    | 5.33 |      |      |         |       |        |           |         |         |                              |
| East Asia                   | China       | 1999 | 11     | 29    | 4      | 10   | 42 | 122.952 | 40.478   | 8     | 5.46 |      |      |         | Х     |        |           |         |         |                              |
| South-East Asia             | Philippines | 1999 | 12     | 15    | 5      | 12   | 33 | 124.516 | 11.295   | 16    | 5.14 |      | Х    |         | Х     |        |           |         |         |                              |
| East Asia                   | China       | 2000 | 1      | 26    | 20     | 55   | 18 | 103.621 | 24.137   | 15    | 5.20 |      |      | Х       | Х     |        |           |         |         |                              |
| Middle East                 | Iran        | 2000 | 2      | 2     | 22     | 58   | 2  | 58.207  | 35.227   | 21    | 5.30 |      | Х    | Х       | Х     | Х      |           |         |         |                              |
| Asia Minor                  | Turkey      | 2000 | 2      | 14    | 6      | 56   | 37 | 31.735  | 41.028   | 10    | 5.40 |      |      | Х       | Х     |        |           |         |         |                              |
| Indian Subcontinent         | India       | 2000 | 4      | 6     | 22     | 30   | 12 | 73.724  | 17.202   | 4     | 4.89 |      |      | Х       | Х     |        |           |         |         |                              |
| Asia Minor                  | Turkey      | 2000 | 5      | 7     | 23     | 10   | 53 | 38.855  | 38.154   | 4     | 4.82 |      | Х    | Х       | Х     |        |           |         |         |                              |
| East Asia                   | Taiwan      | 2000 | 5      | 17    | 3      | 25   | 51 | 121.078 | 24.167   | 15    | 5.44 |      | Х    | Х       |       |        |           | Y       |         |                              |
| Central America             | Nicaragua   | 2000 | 7      | 6     | 19     | 30   | 18 | -86.05  | 11.943   | 10    | 5.43 |      | Х    | Х       | Х     | Х      |           |         |         |                              |
| Asia Minor                  | Turkey      | 2000 | 7      | 7     | 0      | 15   | 32 | 29.339  | 40.863   | 8     | 4.63 |      | Х    | Х       |       |        |           |         |         |                              |
| North America               | USA         | 2000 | 8      | 17    | 1      | 8    | 5  | -101.7  | 35.361   | 5     | 4.65 | Т    |      |         | Х     |        |           |         |         |                              |
| East Asia                   | China       | 2000 | 8      | 21    | 13     | 25   | 42 | 102.228 | 25.774   | 6     | 5.01 |      | Х    | Х       | Х     |        | Y         |         |         |                              |
| Asia Minor                  | Turkey      | 2000 | 8      | 23    | 13     | 41   | 29 | 30.781  | 40.787   | 15    | 5.30 |      |      | Х       | Х     |        |           |         |         |                              |
| North America               | USA         | 2000 | 9      | 3     | 8      | 36   | 30 | -122.34 | 38.319   | 7     | 5.27 |      |      | Х       | Х     |        | Y         |         |         |                              |
| Asia Minor                  | Turkey      | 2000 | 10     | 4     | 2      | 34   | 1  | 29.029  | 37.87    | 19    | 4.95 |      |      | Х       |       |        |           |         |         |                              |
| North South America         | Ecuador     | 2000 | 10     | 8     | 20     | 12   | 31 | -78.104 | 0.332    | 15    | 5.13 |      | Х    |         | Х     |        | Y         |         |         |                              |
| Indian Subcontinent         | India       | 2000 | 12     | 12    | 1      | 23   | 58 | 76.763  | 9.824    | 10    | 4.44 |      |      |         | Х     |        | Y         |         |         |                              |
| Indian Subcontinent         | India       | 2001 | 1      | 7     | 2      | 56   | 0  | 76.797  | 9.688    | 16    | 4.80 |      | х    | х       | Х     |        | l         | i       | l       |                              |
| Indian Subcontinent         | India       | 2001 | 2      | 8     | 16     | 54   | 42 | 70.478  | 23.652   | 6     | 5.33 |      |      | Х       |       |        |           | 1       |         |                              |
| Central America             | El Salvador | 2001 | 2      | 17    | 20     | 25   | 17 | -89.201 | 13.716   | 11    | 4.61 |      | х    | х       |       |        | 1         | 1       |         |                              |
| South-East Asia             | Vietnam     | 2001 | 2      | 19    | 15     | 51   | 37 | 102.83  | 21.384   | 4     | 5.33 |      |      | X       | х     | х      |           |         |         |                              |
| Indian Subcontinent         | India       | 2001 | 3      | 9     | 12     | 40   | 54 | 70.217  | 23.652   | 10    | 4.65 |      |      | X       |       |        |           |         |         |                              |
| Asia Minor                  | Turkey      | 2001 | 5      | 29    | 13     | 14   | 29 | 41.667  | 39.843   | 20    | 4.95 |      |      | X       | х     | х      | l –       | 1       | 1       | May include main shock       |
| East Asia                   | China       | 2001 | 6      | 7     | 18     | 3    | 31 | 99.059  | 24 767   | 8     | 5.14 |      |      | X       | X     | ~      |           |         |         | ,                            |
| Central America             | Nicaragua   | 2001 | 6      | 13    | 12     | 25   | 59 | -85 958 | 13 612   | 12    | 4 72 |      |      | ~       | X     |        |           |         |         |                              |
| Northern and Central Europe | France      | 2001 | 6      | 21    | 10     | 55   | 46 | 6 688   | 49 179   | 0     | 4.72 | 1    | x    | x       | X     |        |           |         |         |                              |
| Asia Minor                  | Turkey      | 2001 | 6      | 25    | 13     | 28   | 50 | 36 213  | 37 182   | 13    | 5.45 | •    |      | X       | X     |        |           |         |         |                              |
| South-East Asia             | Indonesia   | 2001 | 6      | 20    | 3      | 46   | 27 | 108 167 | -7.023   | 15    | 1 95 |      |      | X       | X     |        |           |         |         |                              |
| Fast Asia                   | China       | 2001 | 7      | 14    | 18     | 36   | 7  | 102 564 | 24 423   | 10    | 5.01 |      |      | X       | X     |        |           |         |         |                              |
| Indian Subcontinent         | Nenal       | 2001 | 7      | 16    | 16     | 12   | 15 | 8/ 002  | 29.046   | 3     | 5.01 |      |      | X       | ^     | ×      |           |         |         |                              |
| Mediterranean Europe        | Itolu       | 2001 | 7      | 17    | 10     | 6    | 16 | 11 222  | 46 726   | 5     | 5.01 |      | ×    | ×       | ×     | ×      |           | v       |         |                              |
| Asia Minor                  | Turkey      | 2001 | ,<br>, | 26    | 0      | 41   | 16 | 21 522  | 40.720   | 17    | 5.01 |      | ^    | ×       | ^     | ^      |           | 1       |         |                              |
| Mediterranean Europe        | Crosses     | 2001 | 0      | 16    | 2      | -    | 47 | 21.025  | 40.330   | 10    | 5.00 |      |      | ^       | ×     |        |           |         |         |                              |
| Northern and Control Europe | Gleece      | 2001 | 10     | 20    | 16     | 25   | 47 | 0.720   | 52 961   | 10    | 3.47 |      |      |         | ^     |        |           |         |         |                              |
| Acia Minor                  | UK          | 2001 | 10     | 20    | 10     | 20   | 20 | -0.739  | 32.001   | 10    | 4.00 |      |      | v       | v     |        |           |         |         |                              |
| Control Asia                | Tolikiston  | 2001 | 10     | 0     | 6      | 45   | 50 | 60.962  | 20 642   | 22    | 5.27 |      | ×    | ×       | ×     |        |           |         |         |                              |
| Sub-Sabaran Africa          | Rwanda      | 2002 | 1      | 3     | 20     | 40   | 20 | 20.16   | 1 795    | 12    | 5.20 |      | ×    | ×       | ^     | v      |           |         |         | May include volcano eruntion |
| Sub-Saharah Alinca          | Rwanida     | 2002 | 2      | 17    | 20     | 1    | 50 | 29.10   | -1.700   | 13    | 5.01 |      | Ň    | ~       | ~     | ^      |           |         |         | way include voicano eruption |
| Nothern and Central Evenes  | Dalaad      | 2002 | 2      | 20    | 13     | 3    | 40 | 15.000  | 20.030   | 0     | 5.04 |      | ^    | ~<br>V  | ~     |        |           |         |         |                              |
| Northern and Central Europe | Poland      | 2002 | 2      | 20    | 10     | 21   | 40 | 15.900  | 12.000   | 0     | 5.05 | -    |      | ^       | ~     | ~      |           |         |         | Includes aftersheeks         |
| Nette America               | Bulgana     | 2002 | 4      | 20    | 10     | 14   | 47 | 24.003  | 42.009   | 5     | 4.70 |      |      |         | ~     | ^      | v         | v       | v       | Includes allershocks         |
| North America               | USA         | 2002 | 4      | 20    | 10     | 40   | 4/ | -73.710 | 44.400   | 9     | 5.15 |      |      | ~       | ~     |        | T V       | т       | T       |                              |
| Middle East                 | iran .      | 2002 | 4      | 24    | 19     | 48   | 8  | 47.399  | 34.604   | 25    | 5.40 |      | ~    | X       | X     |        | Ŷ         |         |         |                              |
| Mediterranean Europe        | Romania     | 2002 | 5      | 24    | 20     | 42   | 20 | 21.649  | 44.729   | /     | 4.70 |      |      | X X     | ~     |        |           |         |         |                              |
| Middle East                 | iran        | 2002 | 0      | 20    | 18     | 18   | 10 | 48.891  | 35.542   | 8     | 4.63 |      |      | X       | ×     |        |           |         |         |                              |
| Mediterranean Europe        | Spain       | 2002 | 8      | 6     | 6      | 16   | 20 | -1.911  | 37.959   | 10    | 5.14 |      |      | X       | X     |        |           |         |         |                              |
| North America               | Mexico      | 2002 | 9      | 25    | 18     | 14   | 49 | -99.958 | 16.894   | 23    | 5.34 |      |      | X       | X     |        | ~         |         |         |                              |
| Mediterranean Europe        | Italy       | 2002 | 10     | 29    | 10     | 2    | 23 | 15.179  | 37.637   | 10    | 5.01 |      | ~    | X       | X     |        | Y         | ~       |         |                              |
| Indian Subcontinent         | Pakistan    | 2002 | 11     | 1     | 22     | 9    | 30 | /4.63   | 35.392   | 24    | 5.35 |      | ×    | X       | X     |        | Y         | Y       |         |                              |
| Middle East                 | Iran        | 2002 | 12     | 24    | 17     | 3    | 3  | 47.492  | 34.553   | 20    | 5.20 |      |      | X       | X     | X      |           |         |         |                              |
| Middle East                 | Iran        | 2003 |        | 11    | 17     | 45   | 29 | 51.491  | 29.629   | 10    | 5.20 |      |      | ×       | X     | X      |           |         |         |                              |
| Northern and Central Europe | France      | 2003 | 2      | 22    | 20     | 41   | 5  | 6.625   | 48.32    | 7     | 4.99 |      |      |         | X     |        | Υ Υ       |         |         | A 1997 - 1 - 1               |
| East Asia                   | China       | 2003 | 2      | 25    | 3      | 52   | 44 | //.358  | 39.405   | 17    | 5.35 |      | ×    |         | X     |        |           |         |         | Additional damage            |
| Mediterranean Europe        | Italy       | 2003 | 4      | 11    | 9      | 26   | 59 | 8.88    | 44.777   | 15    | 5.08 |      |      | X       | X     |        |           |         |         |                              |
| Middle East                 | Iran        | 2003 | 6      | 24    | 13     | 1    | 33 | 49.449  | 33.038   | 15    | 4.82 |      | X    |         |       |        |           | Y       |         |                              |
| Middle East                 | Iran        | 2003 | 7      | 3     | 14     | 59   | 27 | 60.85   | 35.575   | 2     | 5.18 |      |      | Х       | Х     |        |           |         |         | Possibly of many (3)         |
| Japan                       | Japan       | 2003 | 7      | 25    | 15     | 13   | 9  | 141.056 | 38.529   | 12    | 5.46 |      |      | Х       | X     |        | Y         | Y       |         | Includes main shock          |
| Asia Minor                  | Turkey      | 2003 | 7      | 26    | 1      | 0    | 57 | 28.888  | 38.111   | 5     | 4.70 |      |      | X       | X     |        |           |         |         | May include main shock       |
| Asia Minor                  | Turkey      | 2003 | 7      | 26    | 8      | 36   | 51 | 28.913  | 38.057   | 21    | 5.44 |      |      | х       | Х     |        |           |         |         |                              |
| Indian Subcontinent         | Bangladesh  | 2003 | 7      | 27    | 12     | 7    | 29 | 92.336  | 22.837   | 7     | 5.45 |      | Х    | Х       | Х     |        | Y         |         |         | Includes main shock          |
| Middle East                 | Iran        | 2003 | 8      | 11    | 20     | 12   | 8  | 44.801  | 38.754   | 10    | 4.82 |      |      |         | Х     |        | Y         |         | L       |                              |
| East Asia                   | China       | 2003 | 8      | 16    | 10     | 58   | 44 | 119.715 | 43.779   | 23    | 5.42 |      | х    | х       | Х     | Х      | Y         | Y       |         |                              |
| East Asia                   | China       | 2003 | 8      | 21    | 2      | 17   | 54 | 101.289 | 27.358   | 16    | 5.01 |      |      | Х       | Х     | Х      | Y         |         |         |                              |
| Mediterranean Europe        | Italy       | 2003 | 9      | 14    | 21     | 42   | 54 | 11.391  | 44.313   | 20    | 5.31 |      |      | х       | Х     | Х      |           |         |         |                              |
| East Asia                   | China       | 2003 | 11     | 13    | 2      | 35   | 10 | 103.885 | 34.713   | 4     | 5.13 |      | х    | х       | Х     | Х      | Y         |         |         |                              |
| Mediterranean Africa        | Algeria     | 2004 | 1      | 10    | 18     | 38   | 13 | 3.372   | 36.99    | 10    | 4.89 |      |      | Х       | Х     |        | Y         |         |         |                              |
| Asia Minor                  | Turkey      | 2004 | 2      | 26    | 4      | 13   | 57 | 38.233  | 37.948   | 5     | 4.82 |      |      |         | Х     |        |           |         |         | Joint with M232              |
| East Asia                   | China       | 2004 | 3      | 24    | 1      | 53   | 48 | 118.209 | 45.349   | 18    | 5.37 |      |      | Х       | Х     |        | Y         |         |         |                              |
| Asia Minor                  | Turkey      | 2004 | 4      | 13    | 21     | 47   | 24 | 31.621  | 40.812   | 5     | 4.57 |      |      | Х       |       |        |           |         |         |                              |
| East Asia                   | China       | 2004 | 5      | 4     | 5      | 4    | 56 | 96.704  | 37.452   | 13    | 5.38 |      |      |         | Х     |        |           |         |         | Additional damage            |
| Indian Subcontinent         | Pakistan    | 2004 | 5      | 8     | 20     | 11   | 42 | 67.124  | 30.131   | 5     | 4.76 |      | х    | х       | Х     |        |           |         |         |                              |
| Asia Minor                  | Turkey      | 2004 | 7      | 1     | 22     | 30   | 8  | 43.968  | 39.779   | 5     | 5.13 |      | х    | Х       |       |        |           |         |         |                              |
| Mediterranean Europe        | Slovenia    | 2004 | 7      | 12    | 13     | 4    | 5  | 13.657  | 46.322   | 4     | 5.20 |      | X    | х       | Х     | Х      |           | Y       |         |                              |
| Central Asia                | Afghanistan | 2004 | 7      | 14    | 14     | 36   | 2  | 61.891  | 35.014   | 14    | 4.57 |      |      |         | Х     |        |           |         |         |                              |
| Central Asia                | Afghanistan | 2004 | 7      | 18    | 8      | 31   | 44 | 69.521  | 33.286   | 15    | 5.19 |      | х    | Х       |       | Х      |           |         |         |                              |
| Asia Minor                  | Turkey      | 2004 | 7      | 30    | 7      | 14   | 8  | 43.974  | 39.761   | 10    | 4.95 |      | х    | Х       | х     |        |           |         |         |                              |

|                              | _              |       | Date | and ' | Time ( | UTC) |          | Co      | ordinate | s     |              |      | Casu | alties  | Build  | linas  |           |         |         | _                     |
|------------------------------|----------------|-------|------|-------|--------|------|----------|---------|----------|-------|--------------|------|------|---------|--------|--------|-----------|---------|---------|-----------------------|
| Region                       | Country        | Y     | M    | D     | н      | M    | s        | Lon.    | Lat.     | Depth | M            | Ind. | Dead | Iniured | Dam.   | Destr. | Infrastr. | Landsl. | Liquef. | Consequences          |
| East Asia                    | China          | 2004  | 8    | 10    | 10     | 26   | 14       | 103.821 | 27,226   | 10    | 5.35         |      | X    | X       | X      | X      | Y         |         |         |                       |
| Northern and Central Europe  | Russia         | 2004  | 9    | 21    | 13     | 32   | 29       | 19 974  | 54 825   | 10    | 4 76         |      | ~    | X       | X      | ~      | Ŷ         |         |         |                       |
| Fast Asia                    | China          | 2004  | 10   | 18    | 22     | 11   | 42       | 99.018  | 25.033   | 10    | 5.01         |      |      | X       | X      |        |           |         |         |                       |
| Japan                        | Japan          | 2004  | 11   | 3     | 23     | 57   | 29       | 138 894 | 37 464   | 25    | 5.26         |      |      | X       | ~      |        |           |         |         |                       |
| Japan                        | Japan          | 2004  | 11   | 9     | 18     | 43   | 8        | 138 926 | 37 392   | 13    | 5.06         |      |      | X       |        |        |           | Y       |         |                       |
| Mediterranean Europe         | Albania        | 2004  | 11   | 23    | 2      | 26   | 13       | 20.62   | 40 327   | 6     | 5.48         |      |      | ~       | x      |        | v         | · ·     |         |                       |
| Mediterranean Europe         | Italy          | 2004  | 11   | 24    | 22     | 50   | 38       | 10.582  | 40.327   | 11    | 5.07         |      |      | x       | Y      | ¥      | v         | v       | v       |                       |
| Mediterranean Africa         | Algeria        | 2004  | 12   | 1     | 17     | 12   | 23       | 3 388   | 36 057   | 10    | 4 70         |      |      | X       | ~      | ~      |           |         |         |                       |
| Mediterranean Africa         | Algeria        | 2004  | 12   | 5     | 0      | 20   | 50       | 2 2 97  | 26.022   | 15    | 4.70         |      |      | ×       |        |        |           |         |         |                       |
| Mediterranean Europe         | Algena         | 2004  | 12   | 0     | 10     | 25   | 10       | 20.270  | 42.04    | 10    | 4.02         |      |      | ^       | ~      |        |           |         |         |                       |
| Asia Minor                   | Albania        | 2004  | 12   | 9     | 10     | 35   | 19       | 20.379  | 42.04    | 12    | 4.00         |      |      | v       | ^      |        |           | V       |         |                       |
| Asia Minor                   | Tuikey         | 2004  | 12   | 20    | 23     | 2    | 15       | 20.303  | 30.937   | 20    | 5.34         |      | ×    | ^<br>V  |        |        |           | T       |         |                       |
| Asia Minor                   | Turkey         | 2005  | 1    | 10    | 23     | 48   | 50       | 27.920  | 30.850   | 17    | 5.48         |      | ×    | X       |        |        |           |         |         |                       |
| East Asia                    | China          | 2005  | 1    | 25    | 16     | 30   | 36       | 100.73  | 22.451   | 10    | 5.33         |      |      | X       | X      |        |           |         |         |                       |
| Mediterranean Europe         | Spain          | 2005  | 1    | 29    | /      | 41   | 30       | -1.885  | 37.981   | 10    | 4.82         |      |      | X       | X      |        |           |         |         |                       |
| South-East Asia              | Indonesia      | 2005  | 2    | 2     | 5      | 55   | 16       | 107.683 | -7.071   | 10    | 5.46         |      | X    | X       | X      |        | Y         |         |         |                       |
| South-East Asia              | Indonesia      | 2005  | 2    | 7     | 11     | 24   | 18       | 116.527 | -8.275   | 6.5   | 4.90         |      |      | X       | X      |        |           |         |         | Of many (2)           |
| Sub-Saharan Africa           | South Africa   | 2005  | 3    | 9     | 10     | 15   | 30       | 26.709  | -26.871  | 2     | 5.01         | 1    | Х    | Х       |        |        |           |         |         |                       |
| Japan                        | Japan          | 2005  | 4    | 19    | 21     | 11   | 27       | 130.272 | 33.635   | 18    | 5.48         |      |      | Х       | Х      | Х      | Y         | Y       |         |                       |
| Japan                        | Japan          | 2005  | 5    | 1     | 16     | 23   | 58       | 130.322 | 33.664   | 19    | 4.60         |      |      | Х       |        |        |           |         |         |                       |
| Middle East                  | Iran           | 2005  | 5    | 3     | 7      | 21   | 8        | 48.63   | 33.489   | 12    | 4.97         |      | Х    | Х       | Х      |        |           |         |         |                       |
| Asia Minor                   | Turkey         | 2005  | 5    | 12    | 9      | 25   | 39       | 37.398  | 40.438   | 5     | 4.88         |      |      |         | Х      |        |           |         |         | May include foreshock |
| Sub-Saharan Africa           | South Africa   | 2005  | 5    | 23    | 6      | 9    | 10       | 27.39   | -26.322  | 0     | 4.70         | 1    |      | Х       |        |        |           |         |         |                       |
| Caribbean                    | Jamaica        | 2005  | 6    | 13    | 3      | 58   | 2        | -77.444 | 18.31    | 17    | 5.21         |      |      |         | Х      | Х      | Y         | Y       |         |                       |
| North America                | USA            | 2005  | 6    | 16    | 20     | 53   | 23       | -117.01 | 34.061   | 6     | 4.90         |      | Х    |         |        |        |           |         |         |                       |
| East Asia                    | China          | 2005  | 7    | 25    | 15     | 43   | 36       | 124.944 | 46.91    | 16    | 5.01         |      | Х    | X       | Х      |        |           |         |         |                       |
| East Asia                    | China          | 2005  | 8    | 13    | 4      | 58   | 43       | 104.098 | 23.453   | 10    | 5.14         |      |      | X       | Х      |        | Y         |         |         |                       |
| Japan                        | Japan          | 2005  | 8    | 21    | 2      | 29   | 29       | 138.677 | 37.332   | 14    | 4.85         |      | Х    |         |        |        |           |         |         |                       |
| North South America          | Peru           | 2005  | 10   | 1     | 22     | 19   | 47       | -70.662 | -16.627  | 10    | 5.33         |      |      | X       | X      |        | Y         | Y       |         |                       |
| Indian Subcontinent          | Pakistan       | 2005  | 10   | 15    | 4      | 24   | 5        | 74.017  | 33.969   | 13    | 5.08         |      | Х    |         |        |        |           |         |         |                       |
| East Asia                    | China          | 2005  | 10   | 27    | 11     | 18   | 55       | 107.533 | 23.459   | 10    | 4.44         |      | Х    | х       | Х      | Х      |           | Y       |         |                       |
| Indian Subcontinent          | Pakistan       | 2005  | 11   | 6     | 2      | 11   | 52       | 73.404  | 34.544   | 13    | 5.16         |      |      | Х       |        |        |           | 1       |         |                       |
| East Asia                    | China          | 2005  | 11   | 26    | 0      | 49   | 37       | 115.657 | 29.688   | 11    | 5.20         |      | Х    | х       | Х      | Х      |           | 1       | l       |                       |
| East Asia                    | China          | 2006  | 1    | 12    | 1      | 5    | 29       | 101.698 | 23,198   | 10    | 5.08         |      |      | х       | х      |        |           |         |         |                       |
| Central Asia                 | Tajikistan     | 2006  | 1    | 13    | 15     | 49   | 6        | 69.455  | 38,123   | 10    | 4.95         |      |      |         | X      | х      | Y         |         |         | Of many               |
| Eastern Europe               | Bulgaria       | 2006  | 2    | 20    | 17     | 20   | 10       | 25 501  | 41 679   | 7     | 4.82         |      |      | X       | X      |        | Y         |         |         |                       |
| Indian Subcontinent          | India          | 2006  | 3    | 7     | 18     | 20   | 47       | 70 811  | 23 715   | 15    | 5.48         |      | x    | ~       | ~      |        |           |         |         |                       |
| Indian Subcontinent          | Pakistan       | 2000  | 3    | 10    | 7      | 50   | 15       | 73.802  | 33 083   | 13    | 4 97         |      | X    | x       | x      |        |           |         |         |                       |
| Mediterranean Africa         | Algeria        | 2000  | 3    | 20    | 10     | 44   | 25       | 5 351   | 36 657   | 13    | 5.21         |      | Y    | X       | Y      | Y      | v         | v       |         |                       |
| Mediterranean Europe         | Serbia         | 2000  | 3    | 20    | 11     | 26   | 20       | 20.066  | 44 044   | 20    | 4.80         |      | ~    | ~       | X      | ~      |           |         |         |                       |
| East Asia                    | Chipa          | 2000  | 2    | 21    | 12     | 20   | 10       | 124 140 | 44.502   | 10    | 4.00         |      |      |         | ×      | ×      | V         |         |         |                       |
| Indian Subcontinent          | Dakietan       | 2000  | 3    | 4     | 0      | 12   | 25       | 72 146  | 24 670   | 12    | 4.77         |      |      | ×       | ~      | ×      |           |         |         |                       |
| Middle East                  | Imp            | 2000  | -    | 7     | 6      | 20   | 55       | 56.65   | 20.704   | 10    | 4.00         |      |      | ×       | ×      | ~      | v         |         |         |                       |
| Middle East                  | Iran           | 2000  | 6    | 2     | 7      | 15   | 26       | 55.00   | 26 794   | 10    | 4.99         |      | ×    | ^       | ^      |        |           |         |         |                       |
| Middle East                  | Iran           | 2006  | 6    | 12    | 14     | 10   | 30       | 10.025  | 20.704   | 13    | 0.10<br>4.05 |      | ^    | v       | v      | v      |           |         |         |                       |
| Weultenanean Europe          | Alballia       | 2000  | 0    | 13    | 14     | 15   | 40       | 19.935  | 40.20    | 1     | 4.95         |      | ×    | ^<br>   | ~      | ^<br>V | X         |         |         |                       |
| Central Asia                 | Atgnanistan    | 2006  | 1    | 29    | 10     | 5/   | 17       | 68.728  | 37.225   | 15    | 5.45         |      | *    | ~       | X      | ×      | Y Y       | X       |         |                       |
| North America                | USA            | 2006  | 10   | 3     | 0      | 1    | 37       | -68.202 | 44.336   | 10    | 4.31         |      |      | ×       |        |        | Ŷ         | Y       |         |                       |
| Indian Subcontinent          | Pakistan       | 2006  | 10   | 9     | 5      | 12   | 51       | 00.027  | 30.929   | 10    | 4.44         |      |      | ~       |        | ×.     |           |         |         |                       |
| East Asia                    | China          | 2006  | 11   | 3     | 6      | 21   | 39       | 119.523 | 43.44    | 10    | 4.50         |      |      |         | X      | X      |           |         |         |                       |
| South-East Asia              | Inailand       | 2006  | 12   | 12    | 17     | 2    | 30       | 98.859  | 18.858   | 11    | 4.95         |      |      |         | X      |        | Y         |         |         |                       |
| Central America              | El Salvador    | 2006  | 12   | 20    | 17     | 6    | 57       | -89.798 | 14.134   | 10    | 5.00         |      |      |         | X      | X      | Y         |         |         | Of many               |
| Eastern Europe               | Hungary        | 2006  | 12   | 31    | 13     | 39   | 24       | 19.334  | 47.448   | 11    | 4.67         |      |      |         | Х      |        |           |         |         | -                     |
| East Asia                    | China          | 2007  | 1    | 9     | 14     | 49   | 47       | 103.935 | 36.971   | 10    | 4.70         |      |      |         | Х      | Х      |           |         |         |                       |
| Asia Minor                   | Turkey         | 2007  | 1    | 21    | 7      | 38   | 59       | 42.895  | 39.6     | 8     | 5.20         |      |      | Х       | Х      |        |           |         |         |                       |
| Asia Minor                   | Turkey         | 2007  | 1    | 26    | 8      | 20   | 38       | 40.13   | 38.678   | 9     | 4.90         |      |      |         | Х      |        |           |         |         |                       |
| Central Asia                 | Kyrgyzstan     | 2007  | 1    | 31    | 10     | 52   | 35       | 70.249  | 39.675   | 17    | 5.20         |      |      |         | Х      |        | Y         | Y       |         |                       |
| Asia Minor                   | Turkey         | 2007  | 2    | 9     | 2      | 22   | 58       | 39.119  | 38.343   | 0     | 5.50         |      |      | х       | Х      |        |           |         |         |                       |
| Middle East                  | Iran           | 2007  | 3    | 6     | 22     | 32   | 6        | 48.865  | 33.406   | 17    | 4.89         |      |      | Х       | Х      |        |           |         |         |                       |
| East Asia                    | China          | 2007  | 3    | 13    | 2      | 23   | 0        | 117.713 | 26.759   | 13    | 4.54         |      |      |         | Х      |        | Y         |         |         | Of many (2)           |
| Mediterranean Europe         | Greece         | 2007  | 4    | 10    | 3      | 17   | 57       | 21.593  | 38.541   | 7     | 5.00         |      |      |         | Х      |        |           |         |         | Possibly of many      |
| Japan                        | Japan          | 2007  | 4    | 15    | 3      | 19   | 31       | 136.276 | 34.825   | 16    | 5.20         |      |      | Х       | Х      |        |           |         |         |                       |
| Mediterranean Europe         | Albania        | 2007  | 4    | 16    | 7      | 38   | 55       | 20.022  | 41.189   | 12    | 5.08         |      |      |         |        |        |           |         |         |                       |
| Northern and Central Europe  | United Kingdom | 2007  | 4    | 28    | 7      | 18   | 10       | 1.072   | 51.058   | 1     | 4.95         |      |      | X       | Х      |        | Y         |         |         |                       |
| North America                | USA            | 2007  | 5    | 8     | 15     | 46   | 50       | -112.15 | 45.464   | 12    | 4.82         |      |      |         | Х      |        |           |         |         |                       |
| South-East Asia              | Philippines    | 2007  | 7    | 19    | 15     | 10   | 18       | 125.245 | 10.312   | 10    | 5.30         |      |      | х       | Х      | Х      | Y         |         |         |                       |
| North America                | USA            | 2007  | 7    | 20    | 11     | 42   | 22       | -122.19 | 37.804   | 5.3   | 4.20         |      |      |         | Х      |        | Y         |         |         |                       |
| Central Asia                 | Tajikistan     | 2007  | 7    | 21    | 22     | 44   | 15       | 70.53   | 38.954   | 16    | 5.20         |      | Х    | х       | Х      | Х      | Y         |         |         |                       |
| Russia                       | Russia         | 2007  | 8    | 4     | 22     | 21   | 54       | 141.829 | 46.671   | 11    | 4.40         |      | Х    |         |        |        |           |         |         |                       |
| North America                | USA            | 2007  | 8    | 6     | 8      | 48   | 42       | -111.07 | 39.445   | 0     | 4.65         | 1    | Х    |         |        |        |           |         |         |                       |
| Middle East                  | Iran           | 2007  | 8    | 25    | 4      | 24   | 23       | 56.688  | 28.273   | 10    | 5.00         |      |      | х       |        |        |           |         |         |                       |
| Indian Subcontinent          | India          | 2007  | 9    | 6     | 7      | 9    | 44       | 76.688  | 18.082   | 8     | 4.45         |      |      | х       |        |        | Y         |         |         |                       |
| South-East Asia              | Indonesia      | 2007  | 9    | 9     | 18     | 36   | 34       | 114.254 | -7.88    | 2     | 4.90         |      |      | х       |        |        | Y         |         |         |                       |
| Central America              | Honduras       | 2007  | 9    | 15    | 17     | 59   | 52       | -87.16  | 15.18    | 12    | 5.30         |      |      |         |        |        |           | 1       | 1       |                       |
| Indian Subcontinent          | India          | 2007  | 11   | 6     | 9      | 38   | 6        | 70,536  | 21,151   | 10    | 5,10         |      | х    | x       | Х      |        |           |         |         |                       |
| Amazonia                     | Brazil         | 2007  | 12   | 9     | 2      | 3    | 30       | -44.281 | -15.118  | 10    | 4.95         |      | X    | X       | X      | х      |           |         |         |                       |
| Central Asia                 | Kyrgvzstan     | 2007  | 12   | 26    | 4      | 45   | 27       | 73.1    | 40.408   | 3     | 5.10         |      |      |         | X      |        | Y         |         |         |                       |
| Mediterranean Africa         | Algeria        | 2007  | 1    | 0     | 22     | 24   | 1        | -0 577  | 35.62    | 10    | 4 80         |      | x    |         | X      |        | - '       |         |         |                       |
| Mediterranean Africa         | Algeria        | 2000  | 2    | 1     | 7      | 32   | 41<br>41 | 3 303   | 36.86    | 10    | 4 80         |      | ^    | x       | ~      |        |           |         |         |                       |
| Indian Subcontinent          | India          | 2000  | 2    | 6     | 6      | 0    | 41       | 87 082  | 23 /09   | 10    | 4.09         |      | Y    | Ŷ       |        | Y      |           |         |         |                       |
| North America                | Mexico         | 2000  | 2    | 0     | 7      | 10   | -+1      | -115 24 | 20.400   | 10    | 5 20         |      |      | ^       |        |        | ~         |         |         |                       |
| Middle East                  | Iran           | 2000  | 2    | 10    | 20     | 1Z   | 20       | 50.004  | 31 700   | 10    | 5.40         |      |      | ~       | ~      |        |           |         |         |                       |
| Sub-Sabaran Africa           | Bwondo         | 2008  | 4    | 13    | 20     | 30   | 32       | 20.904  | 2 1.788  | 10    | J.40<br>5 30 |      | v    | - Û     | ~      |        | v         |         |         |                       |
| Middle East                  | rswantia       | 2008  | 2    | 14    | 40     | 1    | 48       | 20.00/  | -2.41    | 14    | 5.30         |      | ^    | $\sim$  | ~      |        | ř         |         |         |                       |
| MIQUE EAST                   | CEDANON        | 2008  | 4    | 15    | 10     | 30   | 19       | 30.331  | 33.322   | 10    | J.∠U         |      |      | ^       | X<br>V |        | ř<br>V    |         |         |                       |
| East Asia                    | United 11      | 2008  | 2    | 26    | 11/    | 50   | 1        | 101.862 | 30.085   | 10    | 5.10         |      |      |         | X      |        | Ϋ́        |         |         |                       |
| Invormern and Central Europe | United Kingdom | 12008 | 12   | 27    | U      | 56   | 45       | -0.32   | 53.318   | 9     | 4.89         |      | 1    | I X I   | 1      | 1      | 1         | 1       | 1       |                       |

|                             | _              |      | Date   | and '  | Time ( | UTC)    |    | Co      | ordinate | s        |              |          | Casu | alties  | Build | dinas  |           |         |          | _                    |
|-----------------------------|----------------|------|--------|--------|--------|---------|----|---------|----------|----------|--------------|----------|------|---------|-------|--------|-----------|---------|----------|----------------------|
| Region                      | Country        | Y    | M      | D      | н      | M       | S  | Lon.    | Lat.     | Depth    | M            | Ind.     | Dead | Iniured | Dam.  | Destr. | Infrastr. | Landsl. | Liquef.  | Consequences         |
| East Asia                   | China          | 2008 | 3      | 21     | 12     | 36      | 58 | 97.66   | 24,527   | 10       | 5.10         |          |      |         | X     | X      | Y         |         |          |                      |
| Middle East                 | Iran           | 2008 | 3      | 23     | 12     | 11      | 30 | 48.59   | 37.407   | 3        | 4.70         |          |      |         | X     | X      |           |         |          |                      |
| Fast Asia                   | China          | 2008 | 3      | 30     | 8      | 32      | 26 | 101 835 | 37 881   | 4        | 5 10         |          |      |         | X     | ~      | v         |         |          |                      |
| Central Asia                | Kazakhstan     | 2008 | 4      | 26     | 13     | 14      | 54 | 51.8    | 50.71    | . 12     | 5.13         |          |      |         | X     | x      |           |         |          |                      |
| Middle East                 | Iran           | 2008 | 5      | 1      | 0      | 15      | 25 | 48 514  | 33 921   | 10       | 4 70         |          |      | x       | ~     | ~      |           |         |          |                      |
| Mediterranean Africa        | Algeria        | 2008 | 6      | 6      | 20     | 2       | 58 | -0.606  | 35 924   | 10       | 5.50         |          | x    | X       | x     | x      | Y         |         |          |                      |
| Indian Subcontinent         | India          | 2008 | 6      | 6      | 21     | 16      | 34 | 84 875  | 24 673   | 17       | 4.51         |          | ~    | X       | ~     | ~      | Ŷ         |         |          |                      |
| East Asia                   | China          | 2008 | 6      | 17     | 5      | 51      | 43 | 105 634 | 32 763   | 10       | 4.63         |          | x    | ~       |       |        |           |         |          |                      |
| East Asia                   | Bangladesh     | 2008 | 7      | 26     | 18     | 51      | 51 | 90.513  | 24,743   | 18       | 4.82         |          |      | х       |       |        |           |         |          |                      |
| North America               | USA            | 2008 | 7      | 29     | 18     | 42      | 16 | -117 87 | 33 827   | 16       | 5.50         |          | x    | X       | x     | x      | Y         |         |          |                      |
| North South America         | Venezuela      | 2008 | 8      | 11     | 7      | 19      | 26 | -64 183 | 10 466   | 10       | 5.00         |          | ~    | ~       | X     | ~      | Ŷ         |         |          |                      |
| Indian Subcontinent         | India          | 2008 | 9      | 16     | 21     | 47      | 13 | 73 874  | 17 385   | 0        | 4 95         |          | x    | x       | X     | x      | Ŷ         |         |          |                      |
| Middle East                 | Iran           | 2008 | 10     | 25     | 20     | 17      | 17 | 55 023  | 26.583   | 10       | 5.40         |          | ~    | X       | X     | X      | Ŷ         |         |          |                      |
| Northern and Central Europe | Czech Republic | 2008 | 11     | 22     | 22     | 27      | 54 | 18.382  | 49,906   | 0        | 4.74         | 1        | x    | X       |       |        | Y         |         |          |                      |
| Middle East                 | Iran           | 2008 | 12     | 7      | 13     | 36      | 21 | 55,901  | 26,913   | 13       | 5.40         |          |      | X       | х     | x      | Y         |         |          |                      |
| East Asia                   | China          | 2008 | 12     | 9      | 18     | 53      | 9  | 105,391 | 32,528   | 9        | 5.10         |          | x    | X       |       |        |           |         |          |                      |
| South South America         | Argentina      | 2008 | 12     | 10     | 10     | 53      | 51 | -69.18  | -33,109  | 7        | 4.63         |          |      |         | х     | x      |           |         |          |                      |
| East Asia                   | China          | 2008 | 12     | 25     | 20     | 20      | 47 | 97.632  | 23.932   | 4        | 4.80         |          |      | х       | X     | X      | Y         |         | 1        |                      |
| Mediterranean Europe        | Greece         | 2009 | 1      | 4      | 5      | 10      | 35 | 22.127  | 36.815   | 14       | 4.70         |          | х    | х       |       |        |           |         |          |                      |
| North South America         | Peru           | 2009 | 1      | 21     | 18     | 17      | 3  | -75.629 | -11.779  | 10       | 4.85         |          |      |         | Х     | х      |           |         |          |                      |
| East Asia                   | China          | 2009 | 1      | 25     | 1      | 47      | 47 | 80.897  | 43.316   | 20       | 5.10         |          |      |         | Х     | х      |           |         |          |                      |
| Indian Subcontinent         | India          | 2009 | 3      | 26     | 4      | 44      | 11 | 85.873  | 22.414   | 10       | 4.61         |          |      | Х       |       |        |           |         |          |                      |
| Central America             | Nicaragua      | 2009 | 3      | 31     | 17     | 50      | 32 | -86.191 | 13.518   | 15       | 4.31         |          |      |         | Х     | х      |           |         |          |                      |
| Mediterranean Europe        | Italy          | 2009 | 4      | 7      | 17     | 47      | 38 | 13.474  | 42.317   | 15       | 5.50         |          | х    |         | Х     |        | İ         | i       | l        | Additional damage    |
| Central Asia                | Afghanistan    | 2009 | 4      | 16     | 21     | 27      | 53 | 70.075  | 34.193   | 16       | 5.20         |          | Х    | Х       | Х     |        | İ         | l       | l        |                      |
| Middle East                 | Saudi Arabia   | 2009 | 5      | 17     | 19     | 50      | 7  | 37.597  | 25.244   | 10       | 5.08         |          |      |         |       | Х      |           | 1       |          |                      |
| Indian Subcontinent         | India          | 2009 | 5      | 19     | 19     | 29      | 49 | 75.79   | 33.228   | 19       | 4.76         |          |      |         | Х     |        | l         | l       | 1        |                      |
| Mediterranean Europe        | Macedonia      | 2009 | 5      | 24     | 16     | 17      | 52 | 22.703  | 41.295   | 13       | 5.30         |          |      |         | Х     |        | l         | l       | 1        |                      |
| Central Asia                | Kazakhstan     | 2009 | 6      | 13     | 17     | 17      | 39 | 78.825  | 44.727   | 19       | 5.40         |          | х    |         | Х     |        | İ         | l       |          |                      |
| Mediterranean Europe        | Albania        | 2009 | 9      | 6      | 21     | 49      | 43 | 20.414  | 41.482   | 7        | 5.50         |          | l    |         | Х     | 1      | l         |         |          |                      |
| North America               | USA            | 2009 | 10     | 3      | 1      | 16      | 1  | -117.82 | 36.417   | 10       | 5.20         |          |      |         |       |        |           | 1       | Y        |                      |
| North South America         | Ecuador        | 2009 | 10     | 9      | 18     | 11      | 36 | -77.896 | -1       | 12       | 5.20         |          |      |         | Х     |        |           |         |          |                      |
| East Asia                   | Bhutan         | 2009 | 10     | 29     | 17     | 0       | 38 | 91.395  | 27.265   | 24       | 5.10         |          |      |         |       | х      |           |         |          |                      |
| Middle East                 | Iran           | 2009 | 11     | 3      | 23     | 26      | 52 | 56.195  | 27.261   | 22       | 5.00         |          |      | Х       |       |        |           |         |          |                      |
| North South America         | Venezuela      | 2009 | 11     | 27     | 8      | 15      | 54 | -69.768 | 10.435   | 13       | 5.40         |          |      |         | Х     |        |           |         |          |                      |
| Sub-Saharan Africa          | South Africa   | 2009 | 12     | 6      | 21     | 52      | 0  | 27.455  | -26.378  | 11       | 4.76         | 1        | Х    | Х       |       |        |           |         |          |                      |
| Indian Subcontinent         | India          | 2009 | 12     | 12     | 11     | 51      | 27 | 73.82   | 17.214   | 16       | 4.80         |          |      |         | Х     |        |           |         |          |                      |
| Japan                       | Japan          | 2009 | 12     | 17     | 23     | 45      | 39 | 139.235 | 34.953   | 18       | 5.00         |          |      | Х       | Х     | Х      |           |         |          |                      |
| Middle East                 | Iran           | 2010 | 1      | 16     | 20     | 23      | 36 | 48.368  | 32.512   | 10       | 5.14         |          |      |         | Х     |        |           |         |          | Possibly of many (2) |
| East Asia                   | China          | 2010 | 1      | 17     | 9      | 37      | 23 | 105.877 | 25.529   | 10       | 4.75         |          | Х    | Х       |       |        |           | Y       |          |                      |
| East Asia                   | China          | 2010 | 1      | 30     | 21     | 36      | 59 | 105.762 | 30.278   | 13       | 5.08         |          | Х    | Х       | Х     | Х      |           |         |          |                      |
| East Asia                   | China          | 2010 | 2      | 25     | 4      | 56      | 53 | 101.99  | 25.478   | 18       | 5.20         |          |      | Х       | Х     |        |           |         |          |                      |
| Mediterranean Africa        | Algeria        | 2010 | 5      | 14     | 12     | 29      | 24 | 4.107   | 36.03    | 15       | 5.30         |          | х    | Х       |       |        |           |         |          |                      |
| Indian Subcontinent         | India          | 2010 | 6      | 22     | 23     | 14      | 12 | 80.46   | 29.91    | 20       | 4.89         |          |      |         |       | х      |           |         |          |                      |
| North America               | Canada         | 2010 | 6      | 23     | 17     | 41      | 41 | -75.587 | 45.876   | 19       | 5.20         |          |      |         | Х     |        | Y         | Y       |          |                      |
| Middle East                 | Iran           | 2010 | 7      | 30     | 13     | 50      | 13 | 59.383  | 35.268   | 19       | 5.50         |          |      | Х       |       |        | Y         |         |          |                      |
| East Asia                   | China          | 2010 | 8      | 29     | 0      | 53      | 28 | 103.014 | 27.137   | 15       | 4.95         |          |      | Х       | Х     | х      |           |         |          |                      |
| Oceania                     | New Zealand    | 2010 | 9      | 6      | 11     | 24      | 2  | 172.4   | -43.576  | 5        | 4.80         |          |      |         |       |        |           |         |          |                      |
| Oceania                     | New Zealand    | 2010 | 9      | 7      | 19     | 49      | 57 | 172.756 | -43.523  | 3        | 4.70         |          |      |         | х     |        |           |         |          |                      |
| Indian Subcontinent         | Bangladesh     | 2010 | 9      | 10     | 17     | 24      | 17 | 90.669  | 23.474   | 13       | 5.10         |          |      |         | Х     |        |           |         |          |                      |
| North America               | USA            | 2010 | 10     | 13     | 14     | 6       | 28 | -97.326 | 35.22    | 4        | 4.30         |          |      | Х       |       |        |           |         |          |                      |
| Mediterranean Europe        | Serbia         | 2010 | 11     | 3      | 0      | 56      | 56 | 20.683  | 43.767   | 13       | 5.50         |          | Х    | Х       | Х     | х      | Y         |         | Y        |                      |
| Oceania                     | New Zealand    | 2010 | 12     | 25     | 21     | 30      | 16 | 172.681 | -43.5    | 16       | 4.89         |          |      |         | Х     |        |           |         |          |                      |
| Middle East                 | Iran           | 2011 | 1      | 5      | 5      | 55      | 48 | 51.815  | 30.159   | 9        | 5.40         |          |      | Х       | Х     |        |           |         |          | Of many              |
| North America               | USA            | 2011 | 2      | 28     | 5      | 0       | 49 | -92.3   | 35.326   | 10       | 4.80         | 1        |      |         | X     |        |           |         |          |                      |
| South-East Asia             | Philippines    | 2011 | 3      | 3      | 15     | 11      | 59 | 126.05  | 9.524    | 25       | 5.47         |          |      |         | X     |        |           |         |          |                      |
| East Asia                   | China          | 2011 | 3      | 10     | 4      | 58      | 16 | 97.901  | 24.758   | 23       | 5.50         |          | X    | Х       | X     | X      |           |         |          |                      |
| Indian Subcontinent         | Nepal-India    | 2011 | 4      | 4      | 11     | 31      | 41 | 80.729  | 29.627   | 17       | 5.40         |          |      |         | X     |        |           |         |          |                      |
| East Asia                   | China          | 2011 | 4      | 10     | 9      | 2       | 45 | 100.772 | 31.333   | 18       | 5.40         |          |      |         | X     |        |           |         |          |                      |
| Mediterranean Europe        | Spain          | 2011 | 5      | 11     | 16     | 47      | 28 | -1.65   | 37.7     | 12       | 5.12         |          | X    | X       | X     | X      | Y         | Y       |          |                      |
| East Asia                   | China          | 2011 | 6      | 8      | 1      | 53      | 26 | 88.251  | 43.035   | 22       | 5.10         |          |      | X       | X     |        |           |         |          |                      |
| East Asia                   | China          | 2011 | 6      | 20     | 10     | 16      | 53 | 98.724  | 25.046   | 19       | 5.00         |          |      | X       |       |        |           |         |          |                      |
| Japan                       | Japan          | 2011 | 6      | 29     | 23     | 16      | 40 | 137.981 | 36.207   | 14       | 5.00         |          |      | X       | ~     |        |           |         |          |                      |
| East Asia                   | Unina          | 2011 | 8<br>C | 9      | 11     | 00      | 21 | 98.701  | 24.893   | 25       | 5.10         |          |      | ×       | X     |        |           |         |          |                      |
| North America               | USA            | 2011 | 8      | 23     | 5      | 46      | 19 | -104.65 | 37.068   | 10       | 5.30         |          |      | ~       | X     |        |           | Y       |          |                      |
| Inclan Supcontinent         | India          | 2011 | 9      | /      | 17     | 58      | 19 | 11.171  | 28.636   | 15       | 4.44         |          |      | X       | X     |        |           |         |          |                      |
| INUITIN AMERICA             | USA            | 2011 | 10     | 20     | 12     | 24      | 42 | -98.148 | 20.848   | 14       | 4.80         |          |      | ,       |       |        |           |         |          |                      |
| Indian Subcontinent         | india          | 2011 | 10     | 20     | 1/     | 18      | 34 | 70.622  | 21.1/6   | 10       | 5.10         |          | ~    | ×       | X     |        |           |         |          |                      |
| North South America         | Ecuador        | 2011 | 10     | 29     | 10     | 43      | 00 | 00.399  | 21.098   | 4        | 4.12         |          | ^    | ~       | ~     |        |           | v       |          |                      |
| South-Fast Aeia             | Philinninee    | 2011 | 11     | 29     | 0      | 12      | 49 | -70.4   | 7 0/5    | 12       | 4.57         |          |      | × ×     | × ×   |        |           | T       |          |                      |
| North America               | USA            | 2011 | 11     | /<br>8 | 2      | 40      | 56 | -96 702 | 1.940    | 2        | 4.90<br>5.00 |          |      | ^       | × ×   |        |           |         |          |                      |
| Central America             | FI Salvador    | 2011 | 11     | 24     | 21     | 40      | 10 | -30.792 | 13 32    | 6        | 5.00         |          |      |         | × ×   |        |           |         |          |                      |
| Middle Fast                 | Iran           | 2011 | 1      | 10     | 12     | 35      | 52 | 58 061  | 36 350   | 15       | 5 30         |          |      | x       | x     |        |           |         |          |                      |
| Middle East                 | Iran           | 2012 | 2      | 27     | 12     | 48      | 56 | 56 779  | 31 401   | 24       | 5 20         |          |      | x       | x     |        |           |         |          |                      |
| Middle Fast                 | ran            | 2012 | 5      | 21     | 10     | 40<br>0 | 36 | 47 725  | 32 780   | 24<br>14 | 5.40         |          |      | × ×     | × ×   |        |           |         |          |                      |
| North America               | USA            | 2012 | 5      | 17     | 8      | 12      | 1  | -94 30/ | 31 936   | 10       | 4 90         | 1        |      | ~       | x     |        |           |         |          |                      |
| Asia Minor                  | Azerbaiian     | 2012 | 5      | 18     | 14     | 47      | 23 | 46.75   | 41.477   | 19       | 5.21         | <u> </u> |      |         | x     |        |           |         |          | Possibly of manv     |
| Amazonia                    | Brazil         | 2012 | 5      | 19     | 13     | 41      | 22 | -43.91  | -16.724  | 10       | 4.61         |          |      |         | x     |        | l         |         |          | ,,                   |
| Mediterranean Europe        | Italy          | 2012 | 5      | 20     | 13     | 18      | 3  | 11.392  | 44.817   | 14       | 5.20         |          |      |         |       |        |           |         |          | Additional damage    |
| Asia Minor                  | Turkey         | 2012 | 6      | 14     | 5      | 52      | 54 | 42.483  | 37.216   | 11       | 5.20         |          |      | Х       | х     |        | l –       |         | <u> </u> | Ť                    |
| South South America         | Argentina      | 2012 | 6      | 18     | 8      | 29      | 3  | -68.65  | -33.095  | 16       | 5.00         |          |      | X       | X     | х      |           |         |          |                      |
| East Asia                   | China          | 2012 | 7      | 20     | 12     | 11      | 53 | 119.7   | 33.022   | 18       | 5.00         |          | х    | X       | X     | X      | l –       |         | <u> </u> | 1                    |
| East Asia                   | China          | 2013 | 2      | 19     | 2      | 47      | 2  | 102.973 | 27.189   | 12       | 4.90         |          | l    | Х       | Х     | X      | 1         | 1       |          |                      |

| <b>_</b> .           |           |      | Date | and 1 | lime (l | JTC) |    | Co      | ordinate | S     |      |      | Casu | alties  | Build | lings  |           |         |         | •                |
|----------------------|-----------|------|------|-------|---------|------|----|---------|----------|-------|------|------|------|---------|-------|--------|-----------|---------|---------|------------------|
| Region               | Country   | Y    | М    | D     | Н       | М    | s  | Lon.    | Lat.     | Depth | M    | ind. | Dead | Injured | Dam.  | Destr. | Infrastr. | Landsi. | Liquet. | Consequences     |
| North South America  | Peru      | 2013 | 2    | 22    | 21      | 1    | 48 | -71.506 | -15.757  | 10    | 5.30 |      |      |         | х     |        |           |         |         |                  |
| East Asia            | China     | 2013 | 3    | 3     | 5       | 41   | 18 | 99.751  | 25.902   | 18    | 5.40 |      |      | Х       | Х     | Х      | Y         |         |         |                  |
| East Asia            | China     | 2013 | 3    | 11    | 3       | 1    | 37 | 77.29   | 40.082   | 10    | 5.20 |      |      |         |       | Х      |           |         |         |                  |
| Central America      | Honduras  | 2013 | 4    | 10    | 19      | 14   | 2  | -87.205 | 15.602   | 8     | 5.40 |      |      |         | х     | Х      |           |         |         |                  |
| East Asia            | China     | 2013 | 4    | 17    | 1       | 45   | 56 | 99.706  | 25.963   | 10    | 5.30 |      |      | Х       | х     | Х      |           |         |         |                  |
| Mediterranean Africa | Algeria   | 2013 | 5    | 19    | 9       | 7    | 27 | 5.192   | 36.743   | 13    | 5.20 |      |      | Х       | х     |        |           |         |         |                  |
| Russia               | Russia    | 2013 | 6    | 18    | 23      | 2    | 10 | 86      | 54.28    | 12    | 5.27 |      |      |         | Х     |        |           |         |         |                  |
| Mediterranean Africa | Algeria   | 2013 | 7    | 17    | 3       | 0    | 57 | 3.086   | 36.534   | 16    | 5.20 |      |      | Х       | х     |        |           |         |         |                  |
| Mediterranean Europe | Greece    | 2013 | 8    | 7     | 9       | 6    | 53 | 22.68   | 38.698   | 15    | 5.40 |      |      |         | х     | Х      |           |         |         |                  |
| South-East Asia      | Indonesia | 2013 | 10   | 22    | 5       | 40   | 40 | 95.836  | 5.083    | 17.4  | 5.47 |      | Х    | Х       | х     |        |           |         |         |                  |
| East Asia            | China     | 2013 | 11   | 22    | 22      | 4    | 25 | 124.15  | 44.611   | 10    | 5.20 |      |      |         | х     | Х      |           |         |         | Possibly of many |
| East Asia            | China     | 2013 | 12   | 1     | 8       | 34   | 25 | 78.905  | 40.292   | 12    | 5.30 |      |      |         | Х     | Х      |           |         |         |                  |
| East Asia            | China     | 2013 | 12   | 16    | 5       | 4    | 53 | 110.438 | 31.08    | 10    | 4.90 | 1    |      | Х       | х     | Х      |           | Y       |         |                  |
| Asia Minor           | Iran      | 2014 | 1    | 2     | 3       | 13   | 56 | 54.407  | 27.177   | 9     | 5.30 |      | Х    | Х       | Х     | Х      |           |         |         |                  |
| Middle East          | Iran      | 2014 | 2    | 2     | 14      | 26   | 48 | 57.78   | 26.624   | 19    | 5.30 |      |      |         | х     |        |           |         |         |                  |
| Oceania              | Australia | 2014 | 2    | 26    | 0       | 0    | 6  | 121.386 | -30.63   | 10    | 4.63 | 1    |      |         | х     |        |           |         |         |                  |
| Sub-Saharan Africa   | Comoros   | 2014 | 3    | 12    | 20      | 43   | 32 | 44.096  | -12.203  | 10    | 4.95 |      |      |         |       |        |           | Y       |         |                  |
| North America        | USA       | 2014 | 3    | 29    | 4       | 9    | 44 | -117.92 | 33.885   | 13    | 5.10 |      |      |         | х     |        | Y         | Y       | Y       |                  |
| East Asia            | China     | 2014 | 4    | 4     | 22      | 40   | 35 | 103.647 | 28.132   | 18    | 4.90 |      |      | Х       |       | Х      | Y         |         |         |                  |
| Central America      | Nicaragua | 2014 | 4    | 14    | 5       | 7    | 5  | -86.339 | 12.185   | 16    | 5.20 |      |      |         |       | Х      |           |         |         |                  |
| Indian Subcontinent  | Pakistan  | 2014 | 5    | 8     | 22      | 51   | 15 | 68.325  | 26.23    | 10    | 5.00 |      | Х    | Х       |       | Х      |           |         |         |                  |
| Mediterranean Europe | Albania   | 2014 | 5    | 19    | 0       | 59   | 21 | 19.937  | 40.938   | 19    | 5.10 |      |      |         | Х     |        |           |         |         |                  |

#### IV.2. Damaging Events that Get Filtered out of the World Database of Crustal Smallto-Medium Magnitude Earthquakes Near Urbanised Areas

Of the 412 events identified as having caused damage or casualties, the 127 shown in Tables IV.3 and IV.4 were not part of the world database of crustal small-to-medium magnitude earthquakes near urbanised areas. The five in Table IV.3 satisfied the magnitude-depth criterion defined in Table 2.1 but not the exposure criterion, while the 122 in Table IV.4 were discarded when filtering by depth.

Table IV.3. Earthquakes with consequences to the population that were filtered out of the world database of crustal small-to-medium magnitude events due to not complying with the exposure criterion.

| Region          | Country     |      | Date and Time (UTC) |    |    |    |    |         | Coordinates |       |      | Ind  | Casualties |         | Buildings |        | Infractor | Landal  | Linuaf  | 0                    |
|-----------------|-------------|------|---------------------|----|----|----|----|---------|-------------|-------|------|------|------------|---------|-----------|--------|-----------|---------|---------|----------------------|
|                 |             | Y    | м                   | D  | н  | М  | S  | Lon.    | Lat.        | Depth | NI   | ina. | Dead       | Injured | Dam.      | Destr. | mirasır.  | Lanusi. | Liquei. | consequences         |
| East Asia       | Vietnam     | 2005 | 8                   | 5  | 18 | 7  | 12 | 108.363 | 9.985       | 10    | 5.01 |      |            |         | Х         |        |           |         |         | Possibly of many (2) |
| South-East Asia | Vietnam     | 2005 | 11                  | 8  | 7  | 54 | 37 | 108.225 | 9.95        | 6     | 5.33 |      | Х          |         |           |        |           |         |         |                      |
| Oceania         | Australia   | 2010 | 4                   | 20 | 0  | 17 | 10 | 121.77  | -30.745     | 10    | 4.50 | I    |            | Х       |           |        |           |         |         |                      |
| Oceania         | New Zealand | 2010 | 9                   | 6  | 22 | 48 | 34 | 176.711 | -40.379     | 16    | 5.00 |      |            |         | х         |        |           |         |         |                      |
| East Asia       | China       | 2012 | 11                  | 26 | 5  | 33 | 49 | 90.371  | 40,408      | 11    | 5.10 |      |            |         | Х         |        |           |         |         |                      |

Table IV.4. Earthquakes with consequences to the population that were filtered out of the world database of crustal small-to-medium magnitude events due to not complying with the magnitude-depth criterion.

| Pegion               | 0          |      | Date | and 1 | Time ( | UTC) |    | Co      | oordinate | s     |      | lu al | Casu | alties  | Buil | dings  | 1         | Landal  | Linuaf  | Consequences |
|----------------------|------------|------|------|-------|--------|------|----|---------|-----------|-------|------|-------|------|---------|------|--------|-----------|---------|---------|--------------|
| Region               | Country    | Y    | М    | D     | н      | М    | S  | Lon.    | Lat.      | Depth | IVI  | ina.  | Dead | Injured | Dam. | Destr. | intrastr. | Landsi. | Liquet. |              |
| Mediterranean Europe | Cyprus     | 1999 | 8    | 13    | 15     | 31   | 40 | 32.922  | 34.723    | 27    | 5.08 |       |      |         | Х    |        |           |         |         |              |
| North South America  | Peru       | 1999 | 10   | 31    | 13     | 27   | 41 | -74.255 | -13.204   | 33    | 4.75 |       | Х    | Х       | Х    | Х      |           |         |         |              |
| East Asia            | China      | 2000 | 1    | 11    | 23     | 44   | 3  | 123.031 | 40.577    | 35    | 5.10 |       |      | Х       | Х    | Х      |           |         |         |              |
| Sub-Saharan Africa   | Swaziland  | 2000 | 2    | 7     | 19     | 35   | 2  | 30.876  | -26.203   | 37    | 4.80 | Ι     |      | Х       | Х    |        |           | Y       |         |              |
| Asia Minor           | Turkey     | 2000 | 5    | 12    | 3      | 1    | 50 | 36.055  | 36.992    | 36    | 4.63 |       |      | Х       | Х    |        | Y         |         |         |              |
| Middle East          | Iran       | 2000 | 7    | 10    | 22     | 51   | 9  | 52.830  | 33.120    | 38    | 4.30 |       |      |         | Х    |        |           |         |         |              |
| South-East Asia      | Indonesia  | 2000 | 7    | 12    | 1      | 10   | 44 | 106.820 | -6.851    | 29    | 5.37 |       |      | Х       | Х    | Х      | Y         |         |         |              |
| Asia Minor           | Turkey     | 2000 | 8    | 19    | 21     | 26   | 17 | 41.445  | 39.812    | 33    | 4.61 |       |      | Х       |      |        |           |         |         |              |
| North South America  | Ecuador    | 2000 | 9    | 20    | 8      | 37   | 21 | -80.454 | -1.870    | 59    | 5.52 |       | Х    |         | Х    | Х      | Y         |         |         |              |
| Japan                | Japan      | 2000 | 10   | 30    | 16     | 42   | 53 | 136.274 | 34.280    | 34    | 5.48 |       |      | Х       |      |        |           |         |         |              |
| Central Asia         | Tajikistan | 2000 | 10   | 30    | 22     | 39   | 8  | 69.590  | 37.495    | 28    | 5.12 |       |      |         | Х    | Х      | Y         |         |         |              |
| Japan                | Japan      | 2001 | 4    | 3     | 14     | 57   | 12 | 138.088 | 34.936    | 29    | 5.35 |       |      | Х       |      |        |           |         |         |              |
| East Asia            | China      | 2001 | 5    | 23    | 21     | 10   | 44 | 100.941 | 27.591    | 33    | 5.47 |       | Х    | Х       | Х    |        | Y         |         |         |              |

| <b>_</b> .                  | <b>a</b> .          |      | Date and Time (UTC) |    |    | Co       | Coordinates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |         |          | d Casualties Buildings |      |          |          |        | 0        |           |         |          |                         |
|-----------------------------|---------------------|------|---------------------|----|----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|------------------------|------|----------|----------|--------|----------|-----------|---------|----------|-------------------------|
| Region                      | Country             | Y    | м                   | D  | н  | M        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lon.    | Lat.    | Depth    | M                      | Ind. | Dead     | Injured  | Dam.   | Destr.   | Infrastr. | Landsi. | Liquet.  | Consequences            |
| Central Asia                | Afghanistan         | 2001 | 6                   | 1  | 14 | 0        | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69.349  | 35.113  | 45       | 5.03                   |      | Х        | Х        |        | Х        | Y         | Y       |          |                         |
| Asia Minor                  | Turkey              | 2001 | 7                   | 10 | 21 | 42       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41.629  | 39.818  | 35       | 5.42                   |      |          | Х        | х      |          |           |         |          |                         |
| South South America         | Chile               | 2001 | 7                   | 24 | 17 | 42       | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -71.578 | -32.968 | 42       | 5.24                   |      |          | Х        |        |          |           |         |          |                         |
| Asia Minor                  | Turkey              | 2001 | 8                   | 20 | 18 | 50       | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42.049  | 40.144  | 30       | 4.63                   |      |          |          | Х      |          |           |         |          |                         |
| Middle East                 | Iran                | 2001 | 10                  | 8  | 1  | 17       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60.276  | 32.899  | 27       | 5.08                   |      |          | Х        | Х      | Х        |           |         |          |                         |
| Central Asia                | Afghanistan         | 2001 | 11                  | 15 | 15 | 35       | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69.411  | 36.905  | 33       | 4.80                   |      |          |          | Х      | Х        |           |         |          |                         |
| Indian Subcontinent         | Bangladesh          | 2001 | 12                  | 19 | 7  | 54       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90.283  | 23.640  | 60       | 4.80                   |      | Х        | Х        | Х      | Х        |           |         |          |                         |
| South South America         | Chile               | 2002 | 1                   | 14 | 15 | 36       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -69.174 | -19.442 | 15       | 5.60                   |      |          |          | Х      |          |           | Y       |          |                         |
| Asia Minor                  | Turkey              | 2002 | 1                   | 21 | 14 | 34       | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.881  | 38.626  | 26       | 4.82                   |      | Х        |          |        |          |           |         |          |                         |
| Central Asia                | Tajikistan          | 2002 | 2                   | 3  | 20 | 59       | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69.869  | 38.723  | 41       | 4.89                   |      |          | Х        | Х      |          |           |         | 1        |                         |
| Central Asia                | Tajikistan          | 2002 | 2                   | 4  | 13 | 46       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69.990  | 39.119  | 44       | 4.80                   |      |          | Х        | Х      |          |           |         |          |                         |
| Central Asia                | Tajikistan          | 2002 | 2                   | 11 | 17 | 13       | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69.863  | 38.675  | 40       | 4.57                   |      |          | Х        | Х      | Х        |           |         |          |                         |
| Oceania                     | Papua New Guinea    | 2002 | 4                   | 1  | 6  | 14       | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 147,533 | -6.231  | 81       | 5.31                   |      | х        | х        | х      |          | Y         | Y       |          |                         |
| North South America         | Peru                | 2002 | 4                   | 22 | 4  | 57       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -76 578 | -12 427 | 64       | 4 75                   |      | X        |          |        |          |           |         |          |                         |
| Asia Minor                  | Georgia             | 2002 | 4                   | 25 | 17 | 41       | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44 856  | 41 767  | 34       | 5.01                   |      | X        | x        | x      | x        | Y         | Y       |          |                         |
| Sub-Saharan Africa          | Tanzania            | 2002 | 5                   | 18 | 15 | 15       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33 673  | -3.050  | 10       | 5 54                   |      | X        | ~        | X      | ~        | ·         |         |          |                         |
| Japan                       | Japan               | 2002 | 6                   | 14 | 2  | 42       | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 139 845 | 36 238  | 56       | 4 90                   |      | X        |          | ~      |          |           |         |          |                         |
| Indian Subcontinent         | Bangladesh          | 2002 | 6                   | 20 | 5  | 42       | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88 00/  | 25 087  | 25       | 4.30                   |      | ~        | ×        | Y      |          |           |         |          |                         |
| Mediterranean Africa        | Tunicia             | 2002 | 6                   | 20 | 1  | 20       | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.976   | 25.000  | 47       | 4.03<br>5.21           |      |          | ×        | ×      | ×        |           |         |          |                         |
| East Asia                   | Chino               | 2002 | 0                   | 24 | 14 | 20       | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.070   | 20.950  | 47       | 5.21                   |      |          | ^        | ~      | ~<br>V   | V         |         |          |                         |
| Edst Asid                   | United Kingdom      | 2002 | 0                   | 0  | 22 | 42       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99.092  | 50.000  | 30       | 5.29                   |      | ~        | v        | ~      | ^        | T         |         |          |                         |
| Northern and Central Europe | United Kingdom      | 2002 | 9                   | 22 | 23 | 55       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.100  | 52.497  | 20       | 4.70                   |      | ^        | ^<br>V   | ^<br>V |          |           |         |          |                         |
| South-East Asia             | Indonesia           | 2003 | 1                   | 23 | 0  | 8        | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118.388 | -8.872  | 33       | 5.53                   |      |          | *        | X      |          |           |         |          |                         |
| South-East Asia             | Indonesia           | 2003 | 3                   | 21 | 11 | 38       | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.386 | -7.033  | 35       | 4.50                   |      | ×        | v        | X      |          |           |         |          |                         |
| Central Asia                | Atgnanistan         | 2003 | 4                   | 10 | 14 | 0        | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.756  | 35.963  | 87       | 4.85                   |      | X        | X        | X      |          |           |         |          |                         |
| Japan                       | Japan               | 2003 | 5                   | 11 | 15 | 57       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 139.982 | 35.852  | 55       | 5.29                   |      |          | ×        |        |          |           |         |          |                         |
| South-East Asia             | Indonesia           | 2003 | 7                   | 11 | 0  | 19       | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.007 | -6.633  | 33       | 4.50                   |      |          | <u> </u> | X      |          |           |         |          |                         |
| Central America             | Panama              | 2003 | 8                   | 13 | 8  | 29       | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -79.892 | 9.361   | 47       | 5.37                   |      |          | X        | X      | X        |           |         |          |                         |
| East Asia                   | China               | 2003 | 11                  | 26 | 13 | 38       | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103.767 | 27.283  | 43       | 5.08                   |      |          | Х        | Х      | Х        | Y         |         |          |                         |
| South-East Asia             | Indonesia           | 2003 | 12                  | 5  | 23 | 41       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.358 | -8.199  | 38       | 5.33                   |      |          |          | Х      |          |           |         | L        |                         |
| Middle East                 | Iran                | 2003 | 12                  | 11 | 16 | 28       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49.234  | 31.994  | 25       | 4.82                   |      | Х        |          | Х      | Х        |           |         |          |                         |
| Middle East                 | Jordan              | 2004 | 2                   | 11 | 8  | 15       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35.452  | 31.711  | 26       | 5.34                   |      |          | х        | Х      |          |           | Y       |          |                         |
| Indian Subcontinent         | Pakistan            | 2004 | 2                   | 14 | 10 | 30       | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73.161  | 34.746  | 26       | 5.44                   |      | Х        | х        | Х      | Х        | Y         | Y       |          | Includes aftershock     |
| South-East Asia             | Indonesia           | 2004 | 2                   | 16 | 14 | 44       | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.592 | -0.513  | 45       | 5.08                   |      | Х        | Х        | Х      | Х        |           |         |          |                         |
| Sub-Saharan Africa          | Burundi             | 2004 | 2                   | 24 | 2  | 14       | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29.429  | -3.487  | 28       | 4.95                   |      | Х        | Х        |        | Х        |           |         |          |                         |
| Asia Minor                  | Turkey              | 2004 | 2                   | 25 | 22 | 2        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.583  | 35.949  | 57       | 4.82                   |      |          |          | Х      |          |           |         |          | Joint with C31          |
| Asia Minor                  | Turkey              | 2004 | 3                   | 25 | 19 | 30       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40.879  | 39.917  | 10       | 5.62                   |      | Х        | Х        | Х      |          |           |         |          |                         |
| Asia Minor                  | Turkey              | 2004 | 3                   | 28 | 3  | 51       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40.880  | 39.909  | 10       | 5.57                   |      |          | Х        | Х      |          |           |         |          |                         |
| East Asia                   | Taiwan              | 2004 | 5                   | 1  | 7  | 56       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.648 | 24.059  | 29       | 5.21                   |      | Х        | Х        |        | Х        | Y         | Y       |          |                         |
| Asia Minor                  | Turkey              | 2004 | 8                   | 4  | 3  | 1        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.768  | 36.837  | 10       | 5.55                   |      |          | х        |        |          |           |         |          |                         |
| East Asia                   | China               | 2004 | 9                   | 7  | 12 | 15       | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103.833 | 34.694  | 2        | 5.59                   |      |          | х        | х      | х        |           |         |          |                         |
| South-East Asia             | Indonesia           | 2004 | 9                   | 15 | 8  | 35       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 115,242 | -8.878  | 107      | 5.37                   |      | х        | х        |        |          |           |         |          |                         |
| Japan                       | Japan               | 2004 | 11                  | 8  | 2  | 15       | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 138,946 | 37,428  | 17       | 5.54                   |      |          | X        |        |          |           | Y       |          |                         |
| Middle Fast                 | Iran                | 2004 | 11                  | 22 | 4  | 1        | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47 920  | 33 206  | 34       | 5.01                   |      |          | X        | x      |          | Y         |         |          |                         |
| Indian Subcontinent         | India               | 2004 | 12                  | 9  | 8  | 48       | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92 536  | 24 715  | 41       | 5.37                   |      |          | X        | ~      |          |           |         |          |                         |
| Middle East                 | Iran                | 2004 | 1                   | 10 | 10 | 40       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54 514  | 27.012  | 21       | 5.29                   |      |          | ×        |        |          |           |         |          |                         |
| lanan                       | lanan               | 2005 | 2                   | 10 | 10 | 47       | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130 775 | 35.002  | /18      | 5.30                   |      |          | ×        |        |          | v         |         |          |                         |
| Japan Subcontinent          | Dapan               | 2005 | 2                   | 2  | 13 | 40       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69 242  | 20.005  | 40       | 5.44                   |      |          | ×        | ×      |          |           |         |          |                         |
| Indian Subcontinent         | Fakistali           | 2005 | 0                   | 2  |    | 12       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.070  | 30.095  | 00       | 0.00                   |      |          | ^<br>V   | ~      |          | V         |         |          |                         |
| Indian Subcontinent         | india               | 2005 | 3                   | 14 | 9  | 43       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.813  | 17.288  | 20       | 4.92                   |      |          | X        | ×      |          | Ŷ         |         |          |                         |
| Middle East                 | iran                | 2005 | 4                   | 2  | 22 | 24       | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07.117  | 31.239  | 10       | 4.40                   |      | ×        | ^        | ^      |          |           |         |          |                         |
| Sub-Sanaran Atrica          | South Africa        | 2005 | 5                   | 10 | 5  | 38       | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.447  | -26.365 | 2        | 3.70                   | 1    | X        |          |        |          |           |         |          |                         |
| Japan                       | Japan               | 2005 | 6                   | 20 | 4  | 3        | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 138.518 | 37.263  | 21       | 4.96                   |      |          | X        | X      |          | Y         |         |          |                         |
| East Asia                   | China               | 2005 | 8                   | 5  | 14 | 14       | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103.010 | 26.568  | 40       | 5.26                   |      |          | X        | X      |          |           |         |          |                         |
| Japan                       | Japan               | 2005 | 10                  | 16 | 7  | 5        | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 139.893 | 35.989  | 46       | 5.06                   |      |          | Х        |        |          |           |         |          |                         |
| North South America         | Peru                | 2005 | 10                  | 31 | 2  | 10       | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -78.802 | -5.879  | 39       | 5.35                   |      |          |          | Х      |          |           |         |          |                         |
| Northern and Central Europe | Switzerland         | 2005 | 11                  | 12 | 19 | 31       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.155   | 47.524  | 18       | 3.60                   |      |          |          |        |          |           |         |          |                         |
| Indian Subcontinent         | India               | 2005 | 12                  | 14 | 7  | 9        | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79.250  | 30.515  | 36       | 5.14                   |      | Х        | Х        | Х      | Х        |           | Y       | L        |                         |
| Japan                       | Japan               | 2005 | 12                  | 24 | 2  | 1        | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 136.797 | 35.274  | 42       | 4.70                   |      | Х        |          |        |          |           |         |          |                         |
| Indian Subcontinent         | India               | 2006 | 2                   | 14 | 0  | 55       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88.416  | 27.387  | 28       | 5.33                   |      | Х        | Х        | Х      |          | Y         | Y       | L        |                         |
| South-East Asia             | Indonesia           | 2006 | 5                   | 24 | 10 | 11       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 139.152 | -2.261  | 30       | 5.70                   |      | Х        |          |        |          |           |         |          |                         |
| East Asia                   | China               | 2006 | 6                   | 20 | 16 | 52       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104.952 | 33.077  | 22       | 4.95                   |      |          | х        | Х      | Х        | Y         | Y       |          |                         |
| East Asia                   | China               | 2006 | 7                   | 22 | 1  | 10       | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104.187 | 28.049  | 46       | 4.96                   |      | Х        | Х        | Х      | Х        | Y         | Y       |          |                         |
| South South America         | Argentina           | 2006 | 8                   | 5  | 14 | 3        | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -68.835 | -33.116 | 20       | 5.56                   |      |          | х        | Х      |          |           |         |          |                         |
| Indian Subcontinent         | Pakistan            | 2006 | 8                   | 17 | 12 | 24       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67.901  | 29.372  | 36       | 4.89                   |      |          | х        | Х      |          |           |         |          |                         |
| East Asia                   | China               | 2006 | 8                   | 25 | 5  | 51       | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104.177 | 28.074  | 31       | 5.05                   |      | Х        | Х        | Х      |          | Y         | Y       |          |                         |
| Caribbean                   | Trinidad and Tobago | 2006 | 9                   | 29 | 18 | 23       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -61.745 | 10.794  | 52       | 5.50                   |      | Х        |          |        |          |           |         |          |                         |
| Northern and Central Europe | Switzerland         | 2006 | 12                  | 8  | 16 | 48       | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.593   | 47.569  | 1        | 3.90                   | 1    |          |          | Х      |          |           |         |          |                         |
| South-East Asia             | Indonesia           | 2007 | 3                   | 3  | 4  | 4        | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 134.257 | -0.897  | 43       | 4.90                   |      |          |          | Х      |          | Y         |         |          |                         |
| North South America         | Colombia            | 2007 | 3                   | 6  | 13 | 5        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -76.453 | 2.090   | 40       | 5.20                   |      |          | х        | Х      | Х        | Y         | ĺ       | 1        | 1                       |
| Indian Subcontinent         | India               | 2007 | 7                   | 22 | 23 | 2        | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78.288  | 30.869  | 32       | 5.01                   |      |          | х        | Х      |          | Y         | İ       |          |                         |
| Indian Subcontinent         | Pakistan            | 2007 | 10                  | 26 | 6  | 50       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 76.705  | 35.252  | 30       | 5.20                   |      | Х        | x        |        | Х        | Y         |         |          |                         |
| Asia Minor                  | Turkev              | 2007 | 10                  | 29 | 9  | 23       | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29.327  | 36.916  | 36       | 5.30                   |      | <u> </u> | ···      | х      | <u> </u> |           |         | 1        |                         |
| South-East Asia             | Philippines         | 2007 | 11                  | 7  | 4  | 12       | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 124 646 | 9,788   | 52       | 5.30                   |      | x        |          |        |          |           |         | <u> </u> |                         |
| Indian Subcontinent         | Bangladesh          | 2007 | 11                  | 7  | 7  | 10       | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92 402  | 22 163  | 20       | 5.50                   |      | ~        | x        |        |          | Y         |         | <u> </u> |                         |
| Middle East                 | Iran                | 2007 | 11                  | 20 | 5  | 20       | - <u>- </u> - <u>-</u> | 40.040  | 31 672  | 23       | 4 05                   |      |          | Ŷ        | Y      |          |           |         |          |                         |
| Asja Minor                  | Turkau              | 2007 | 12                  | 20 | 22 | 17       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33 114  | 30 /1/  | 12.5     | 4.90                   |      |          |          | Ŷ      |          | v         |         |          |                         |
| North South Amorico         | Dani                | 2001 | 2                   | 20 | 10 | 41<br>54 | 11<br>2F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -77 490 | -12 164 | 12.0     | 5.00                   |      |          | ~        | ^      | ~        | v         |         |          |                         |
| North South America         | Feru<br>Domi        | 2008 | 3                   | 29 | 12 | 17       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -11.130 | 10.057  | 02<br>00 | 0.3U                   |      |          | ×        | ~      |          | ř         |         |          |                         |
| North South America         | reru                | 2008 |                     | 1  | 0  | -17      | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -75.502 | -10.357 | 28       | 5.40                   |      | ~        | ×        | ×      | X        | Ϋ́        | Ý       |          |                         |
| South-East Asia             | indonesia           | 2008 | 9                   | 9  | 3  | 1        | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 102.928 | -3.899  | 35       | 5.20                   |      | X        |          | X      |          |           |         |          |                         |
| Indian Subcontinent         | Pakistan            | 2009 | 2                   | 20 | 3  | 48       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73.824  | 34.236  | 21       | 5.55                   |      |          | X        |        |          |           | Y       |          |                         |
| East Asia                   | China               | 2009 | 2                   | 20 | 10 | 2        | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78.707  | 40.613  | 30       | 5.28                   |      |          |          | Х      | Х        | ļ         |         |          | May include aftershocks |
| Indian Subcontinent         | India               | 2009 | 4                   | 9  | 1  | 46       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.769  | 27.169  | 42       | 5.10                   |      |          | Х        |        |          |           |         |          |                         |
| North America               | USA                 | 2009 | 5                   | 2  | 1  | 11       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -118.91 | 34.003  | 16       | 4.38                   |      |          | х        |        |          |           |         | L        |                         |
| East Asia                   | China               | 2009 | 8                   | 8  | 13 | 26       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 105.511 | 29.273  | 29       | 4.50                   |      | Х        | Х        | Х      | Х        |           |         |          |                         |
| East Asia                   | Myanmar             | 2009 | 8                   | 30 | 19 | 27       | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95.072  | 25.238  | 83       | 5.30                   |      |          |          | х      |          |           |         |          |                         |

| Beaten                      | 0           |      | Date | and 1 | Time ( | JTC) |    | Co      | ordinate | s     |      | lu al | Casu | alties  | Build | lings  | In face to | I an dal | 1.1     | 0            |
|-----------------------------|-------------|------|------|-------|--------|------|----|---------|----------|-------|------|-------|------|---------|-------|--------|------------|----------|---------|--------------|
| Region                      | Country     | Y    | М    | D     | н      | М    | S  | Lon.    | Lat.     | Depth | IVI  | ina.  | Dead | Injured | Dam.  | Destr. | intrastr.  | Landsi.  | Liquet. | Consequences |
| East Asia                   | China       | 2009 | 11   | 1     | 21     | 7    | 21 | 100.767 | 25.895   | 26    | 4.90 |       |      | х       | Х     | х      |            |          |         |              |
| East Asia                   | Bhutan      | 2009 | 12   | 31    | 9      | 57   | 31 | 91.481  | 27.332   | 18    | 5.59 |       |      | Х       | х     | Х      |            |          |         |              |
| Central Asia                | Tajikistan  | 2010 | 1    | 2     | 2      | 15   | 10 | 71.452  | 38.294   | 29    | 5.40 |       |      |         | х     | Х      |            |          |         |              |
| South-East Asia             | Indonesia   | 2010 | 1    | 10    | 0      | 25   | 5  | 107.924 | -7.906   | 70    | 5.21 |       | Х    | х       |       |        |            |          |         |              |
| North South America         | Venezuela   | 2010 | 1    | 15    | 18     | 0    | 47 | -63.486 | 10.474   | 10    | 5.57 |       |      | Х       | Х     | Х      |            |          |         |              |
| Indian Subcontinent         | India       | 2010 | 5    | 1     | 22     | 36   | 31 | 80.020  | 30.078   | 49    | 4.57 |       |      |         | х     |        |            |          |         |              |
| Indian Subcontinent         | Pakistan    | 2010 | 10   | 10    | 21     | 44   | 26 | 72.884  | 33.826   | 34    | 5.20 |       | Х    | х       | х     | Х      |            |          |         |              |
| Middle East                 | Iran        | 2010 | 11   | 6     | 3      | 52   | 22 | 48.927  | 33.413   | 22    | 4.82 |       |      | х       | х     |        |            |          |         |              |
| Indian Subcontinent         | Pakistan    | 2010 | 11   | 12    | 9      | 37   | 20 | 67.141  | 30.081   | 29    | 4.38 |       |      | х       | х     |        |            |          |         |              |
| North America               | USA         | 2010 | 12   | 19    | 5      | 5    | 30 | -96.772 | 35.827   | 5     | 3.30 |       |      |         | Х     |        |            |          |         |              |
| East Asia                   | China       | 2011 | 2    | 1     | 7      | 11   | 26 | 97.888  | 24.669   | 28    | 4.95 |       | Х    | х       | х     | Х      |            |          |         |              |
| South South America         | Argentina   | 2011 | 2    | 21    | 6      | 58   | 37 | -64.718 | -27.113  | 15.9  | 5.56 |       |      |         | х     | Х      |            |          |         |              |
| East Asia                   | China       | 2011 | 6    | 26    | 7      | 48   | 17 | 95.963  | 32.412   | 29    | 5.30 |       |      |         | Х     | Х      |            |          |         |              |
| North America               | USA         | 2011 | 11   | 6     | 3      | 53   | 11 | -96.705 | 35.533   | 10    | 5.72 | Ι     |      | Х       | Х     |        |            |          |         |              |
| East Asia                   | China       | 2011 | 12   | 1     | 12     | 48   | 18 | 76.833  | 38.248   | 33    | 4.90 |       |      |         | Х     |        |            |          |         |              |
| Oceania                     | New Zealand | 2011 | 12   | 3     | 6      | 19   | 10 | 174.337 | -41.403  | 57    | 5.10 |       |      |         | Х     |        |            |          |         |              |
| Indian Subcontinent         | India       | 2012 | 5    | 11    | 12     | 41   | 35 | 92.857  | 26.219   | 43    | 5.40 |       |      | Х       | Х     |        |            |          |         |              |
| East Asia                   | China       | 2012 | 6    | 24    | 7      | 59   | 36 | 100.706 | 27.740   | 15    | 5.57 |       | Х    | Х       | Х     |        | Y          |          |         |              |
| East Asia                   | China       | 2012 | 9    | 7     | 3      | 19   | 42 | 104.019 | 27.527   | 10    | 5.57 |       | Х    | Х       | Х     | Х      | Y          |          |         |              |
| Indian Subcontinent         | India       | 2012 | 10   | 18    | 2      | 33   | 32 | 81.258  | 23.801   | 35    | 5.14 |       |      |         | Х     | Х      |            |          |         |              |
| East Asia                   | China       | 2012 | 12   | 7     | 14     | 8    | 46 | 88.045  | 38.839   | 30    | 5.20 |       |      |         | Х     | Х      |            |          |         |              |
| Eastern Europe              | Hungary     | 2013 | 4    | 22    | 22     | 28   | 49 | 20.272  | 47.676   | 22    | 4.40 |       |      |         | Х     |        |            |          |         |              |
| Central Asia                | Afghanistan | 2013 | 4    | 24    | 9      | 25   | 30 | 70.236  | 34.513   | 65    | 5.52 |       | Х    | х       | Х     |        |            |          |         |              |
| South-East Asia             | Indonesia   | 2013 | 6    | 22    | 5      | 42   | 39 | 116.046 | -8.389   | 35    | 5.20 |       |      | х       | Х     | х      |            |          |         |              |
| Northern and Central Europe | Germany     | 2014 | 5    | 17    | 16     | 46   | 26 | 8.636   | 49.827   | 16    | 4.45 |       |      |         | Х     |        |            |          |         |              |

#### IV.3. Damaging Events that Cannot be Found in the World Catalogue

The three events presented in Table IV.5 were identified as having caused damage or casualties during the compilation of the database of earthquakes with consequences for the population, but could not be found in the merged world catalogue, even before the application of magnitude-depth and exposure filters. The characteristics of these events are discussed in Section 4.1.3.

Table IV.5. Events identified as having caused damage or casualties not found in the unfilteredmerged catalogue.

| Region              | Country    |      | Date | and ' | Time ( | UTC) |    | Coordinates |        |       | м    | Ind  | Casualties |         | Buildings |        | Infractr | Landel  | Liquof  | Concoguonooo         |
|---------------------|------------|------|------|-------|--------|------|----|-------------|--------|-------|------|------|------------|---------|-----------|--------|----------|---------|---------|----------------------|
|                     |            | Y    | М    | D     | н      | М    | s  | Lon.        | Lat.   | Depth | IVI  | inu. | Dead       | Injured | Dam.      | Destr. | mirastr. | Lanusi. | Liquei. | consequences         |
| Asia Minor          | Turkey     | 2004 | 3    | 1     | 23     | 55   | 20 | 38.277      | 38.058 | 5     | 3.80 |      | Х          | х       |           | х      |          |         |         |                      |
| North South America | Peru       | 2005 | 5    | 1     | 12     | 23   | 0  | -13.583     | -74.35 | 0     | 4.70 |      |            |         | х         | х      |          |         |         | Possibly of many (4) |
| Sub-Saharan Africa  | Mozambique | 2007 | 3    | 13    | 8      | 4    | 0  | -18.083     | 33.2   | 0     | 4.50 | 1    |            | Х       |           |        |          |         |         |                      |

#### **IV.4. Final Remarks**

As noted in Chapter 3, the database of damaging small-to-medium magnitude earthquakes is still work in progress. As such, and taking into account the numerous challenges associated with compiling a database of this kind, it is unlikely that this Appendix contain absolutely all events that have caused damage or casualties in the time interval of interest, in spite of all the efforts invested in tracking them.