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General Introduction 

The seismological model (Version 5) currently used in the assessment of hazard and risk for the induced 

seismicity in Groningen, provides a probabilistic prediction of the seismicity dependent on the local 

reservoir pressure depletion associated with the gas volume produced. The seismicity is in this model not 

dependent on the gas production rate. The gas volume extracted determines reservoir pressure depletion, 

which governs the expected number and magnitude of induced earthquakes. Within the model, the 

expected number of events depends on the pressure depletion, but not the rate of that depletion. 

Theoretically, there are processes which potentially could cause the expected event number, for a given 

incremental volume of gas production to depend on the rate of that gas production. These could be 

associated with the geomechanical behaviour of faults (e.g. rate and state frictional fault behaviour) or 

compaction (e.g. a-seismic stress relaxation at production time scales).  

However, studies carried out as part of the research program of NAM have not been able to identify 

whether these processes play a significant role or been able to quantify the impact of gas production rate 

on seismicity. In an environment of decreasing and more stable gas production rates, ignoring potential 

production rate dependency of the seismicity will be conservative and lead to a potential over-estimation 

of hazard and risk.  

Given the current state of knowledge, NAM is not in a position to increase the sensitivity of the 

seismological model to production rate changes as this was so far found to degrade the performance of 

the model and accepts that as a result the assessment of hazard and risk might be conservative. The 

current model yields a sensitivity to seasonal depletion rate changes that is thought to be close to the 

upper bound of sensitivities consistent with the observed catalogue. On the other hand, based on the 

research to date, seasonal seismicity variations within the catalogue are lower than the detection 

threshold.  

In the operation of the field, NAM will make every effort to reduce fluctuations in gas production. The 

Minister of Economic Affairs has, on the advice of the regulator SodM, imposed limits to the production 

fluctuations. NAM will report on any excursions from these set limits.  

Over the past years, NAM has carried out several studies into the dependency of the induced seismicity 

in Groningen on the gas production rate from the field. This included studies into reservoir behaviour (Ref. 

1), modelling of the various mechanisms that could induce production rate dependency (Ref. 4 and 5) and 

analysis of field data using machine-learning and statistical techniques (Ref. 2, 3, 4, 6, 7 and 8). The last 

study (Ref. 8) investigated, using Machine-learning techniques, whether the earthquake catalogue for the 

Groningen field shows seasonality resulting from the seasonally changing gas production rate. As an 

extension to this seasonality study the current report investigates the detectability threshold for seasonal 

variations in earthquake occurrence rates within the Groningen field.   
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Executive Summary 

Business purpose: 

Decades of gas production caused induced seismicity in the Groningen gas field, located in the 
Northern part of the Netherlands. Any increased understanding of the physical mechanisms 
governing induced seismicity within the Groningen field will create opportunities to improve the 
reliability of the Probabilistic Seismic Hazard and Risk Analysis (PSHRA) for the exposed 
population. Potential seasonality of seismicity might be a useful diagnostic to screen candidate 
physical mechanisms (Bourne & Oates, 2018). This study is a direct extension of (Park, et al., 2018), 
who concluded that for magnitude ranges above the concordance magnitude of completeness, little 
to no evidence for seasonality could be found. (Park, et al., 2018) could not say whether the absence 
of evidence for seasonality is due to: 

a. there is no seasonal pattern in the event rates; 
b. there is a pattern, but its amplitude is too small for our tests to detect. 

This study further investigates the absence of evidence by determining the amplitude of seasonality 
required for detection.  

 

Approach: 

As the true form of the seismicity event rate function – and any seasonal variations therein – is 
unknown, seismicity event rate model functions are simulated using a factorial approach based on 
factors like the mean event rate, seasonal shape and dispersion level. We also crucially vary the 
amplitude of any seasonal effect. Here we follow (Ader & Avouac, 2013) and define the amplitude 
as the size of the seasonal variation in earthquake rates as compared to the mean rate. Analysis of 
the agreement between the simulation models and the observed seismicity allows us to rule out 
certain factor combinations. Subsequently, five hypothesis tests based on different assumptions 
and potentially sensitive to different simulation factors are applied to the simulated data: spectral 
analysis using the Schuster Test or the Discrete Fourier Transform, model fitting using Generalized 
Additive Models and comparing monthly seismicity either parametrically or nonparametrically. 
Testing at an increasing level of seasonality amplitude allows us to determine at which threshold 
amplitude seasonality becomes statistically significantly detectable.  

 

Main Findings: 

• The false positive rates of the hypothesis tests employed varies quite a lot. The Discrete 
Fourier Transform and the Parametric Hypothesis tests have a false positive rate close to 
the expected level of 5%. The Generalized Additive Models have an elevated false positive 
rate, in some cases exceeding 15%, positive results of this test should be treated with some 
caution and subject to additional scrutiny. The nonparametric hypothesis test was in general 
conservative with a rate closer to 4%. The Schuster test was found to have the expected 
5% false positives for the case of independent events but was found to have an elevated 
false positive rate for counts simulated from an over dispersed distribution. Positive results 
from the Schuster test should also be scrutinised for aftershocks. 

• In terms of detecting seasonal variations, (reassuringly) the magnitude of the seasonal effect 
is the most important factor. The form of the seasonal function also plays a large role, 
especially for the Schuster Test and the Discrete Fourier Transform. The same is true for 
the mean earthquake occurrence rate, which is particularly important for the parametric 
and nonparametric hypothesis tests. 
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• Let the minimum seasonality detection threshold be the minimum amplitude of any 
seasonality variation in the earthquake occurrence rate where a given test has a false 
negative rate, tested at the 95% confidence level, of less than 20%. For the range of the 
factors considered, the minimum seasonality detectability threshold is in the range 17.5%-
27.5% for a minimum magnitude of 1.2 and in the range of 22.5%-55% for a minimum 
magnitude of 1.5.   
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1. Introduction: Overview, Earlier Work & Study Goals  

In our previous report, (Park, et al., 2018), we aimed to detect seasonal variations in the occurrence 
rate of earthquakes in the Groningen field. This is relevant as gas production rates are seasonal, 
with higher rates in the winter months as compared to the summer, and consequently so might be 
the occurrence rate. The exact size and shape of the seasonal effect will depend on the physical 
properties of the reservoir. Studying the seasonal patterns can therefore lead to a greater 
appreciation of physical earthquake generating mechanism (Bourne & Oates, 2018). For certain 
potential physical mechanisms, it is possible to reduce the expected number of earthquakes for a 
given volume of production by reducing the fluctuations in production rate. As part of the Study 
and Data Acquisition Plan (NAM, 2016) in the context of the Measure and Control Protocol 
(NAM, 2017), this study aims to answer some key questions following on from (Park, et al., 2018). 

1.1. Open questions from Previous Work 

Our previous report, (Park, et al., 2018), concluded that for magnitude ranges above the generally 
agreed magnitude of completeness (the concordance magnitude of completeness), little to no 
evidence for seasonality in seismicity event rates could be found. Given this result there are two 
possible explanations, 

1) There is no seasonal pattern in the event rates. 
2) There is a pattern, but its size is too small for our tests to detect. 

The natural next question is to consider is:  

• how small does the amplitude of any seasonal effect need to be for our tests to fail to detect 
it?  

Another issue arising from the previous study is around the relative merits of the five tests we 
applied. Each one has different theoretical properties and expected strengths and weaknesses 
however it is not immediately clear which, if any, are appropriate for our use case. Each test may 
also have a different definition of the null and alternative hypotheses. We address this by looking 
at the following questions: 

• What are the false negative rates of each test? 

• What are the false positive rates of each test? 

In both cases the questions need to be considered for a range of different assumptions about the 
earthquake generating process. While there is no data set which truly matches the assumptions of 
a test, the degree to which the assumptions are violated and the sensitivity of the test to those 
assumptions can dictate if the test results are valid. Different tests may also test different null 
hypotheses which will again affect their suitability for our application. These points then lead us to 
another question: 

• Which of the tests is most suitable for use on the Groningen catalogue? 
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1.2. This Study: Finding a Detectability Threshold for Seasonal Variations 

In order to answer the above questions, we perform a simulation study. In this study we simulate 
earthquake count data from a range of plausible simulation scenarios. In this way we are able to 
control the properties of the simulated data including the amplitude and form of seasonal patterns. 
Given that we know the truth we also know if the test has returned a positive result when 
seasonality is absent (type I error or false positive) or if the test has returned a negative result when 
seasonality is present (type II error or false negative). If we repeatedly simulate from the same 
model, we can estimate the type I and type II error rates for each test given the simulation model. 
We can then vary the simulation model to explore how the detectability varies under different 
model forms and for different amplitudes and functional forms of seasonality.  

The tests we will be using are detailed in Section 2 and include the four used in (Park, et al., 2018). 
In addition to these we include the Schuster test which is based on the work of (Schuster, 1897). 
This is the original, single hypothesis, test which was later adapted to the multiple hypothesis test 
known as the Schuster Spectrum test (Ader & Avouac, 2013). The reason for including this test is 
that it is widely used for the detection of seasonal patterns in earthquake occurrence rates and has 
previously been applied to the Groningen catalogue (Bierman, 2017) and (Bourne & Oates, 2018). 
As the true earthquake generating process is unknown, a set of simulation models are used. This 
set of models was chosen to test the different assumptions made in the tests whilst also remaining 
consistent with the observed data. The parameters defining the simulation models are described in 
Section 3 and the consistency between the resulting seismicity event rate functional forms and 
observations is discussed in Section 4. Results in terms of type I, type II and the detectability 
thresholds are provided in Section 5 and conclusions and discussions follow in Section 6. 

This study was executed in R version 3.5.1 (R Core Team, 2017). 
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2. Statistical Tests for Seasonal Patterns 

As stated in previous section this study makes use of a range of different test for seasonality in 
order to evaluate their relative merits. The test we have chosen to use are as follows: 

• The Schuster Test (SCH); 

• Spectral analysis using Discrete Fourier Transform (DFT); 

• Seasonal model fitting using Generalized Additive Models (GAM); 

• Group Comparison Parametric Hypothesis Testing (HYP); 

• Group Comparison Nonparametric Hypothesis Testing (NPHYP). 

In our view, these five methods target three different angles to tackle the same problem. More 
specifically, SCH and DFT decompose the signal in a spectrum with different frequencies looked 
at individually, GAM explores how well our data fits a model with a periodic component of interest, 
and HYP and NPHYP aim at discovering the differences among data groups (in our case grouped 
by month) to detect seasonal behaviour. The output of each method is a p-value, this is the 
confidence with which we can reject the null hypothesis H0. In all cases we judge that the test result 
is significant at the 95% confidence level if the p-value is below a threshold of 0.05. The exact 
definition of the null and alternative hypothesis varies for each test but all are chosen to be sensitive 
to yearly seasonal patterns in the earthquake event rate.  

2.1. Detrending 

For most of the test methods we will use there is an assumption that the rate of earthquake 
occurrences is constant between years. The Groningen catalogue does not appear to meet this 
assumption as the rate of event occurrences appears to be increasing over time. To correct for this 
we can apply a detrending method to the count data. The detrending method we use is the same 
as (Park, et al., 2018). This method involves estimating the trend in the earthquake count time 
series using a simple moving average. The window size for the moving average is 24 months. We 
chose this size as it is a multiple of 12 months and so will avoid adding or removing any yearly 
seasonal pattern. To avoid inducing any phase shift in the detrended series we apply the average 
symmetrically about the current month such that the window in fact covers 25 months with the 
1st and 25th months having half weights.  

This detrending method cannot be applied to the catalogue directly but is instead applied to a time 
series of counts within time bins, after detrending these counts are no longer guaranteed to be 
positive or integers. This is not an issue for most of the methods as they are already applied to 
binned data and do not assume positive integers. The exception is the Schuster test which makes 
use of the times of individual events and cannot be easily applied to non-integer or negative count 
data, we therefore do not apply the detrending step when applying this test. We also do not apply 
the detrending when using the GAM test, this is because this test does not make the assumption 
of constant event rates between years. A summary of the input data for each test is given in Table 
1, note that while the Schuster test does not require binning we are applying it to daily counts, or 
equivalently event times rounded to the nearest day. This is for ease of simulation and should have 
negligible influence on yearly seasonal signals.  
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Table 1: Summary of input data and pre-processing for each test. 

2.2.  Schuster Test 

The Schuster test is a hypothesis based on the work of (Schuster, 1897). This test was later adapted 
to a multiple hypothesis test by (Ader & Avouac, 2013). The Schuster test is based on a 2D random 
walk process which consists of jumps of unit length. The number of jumps is the total number of 
recorded earthquakes and the direction of each jump is dictated by the occurrence time of the 

earthquakes. For an earthquake occurring at time �� the direction is given by, θ� = 2π (�� 
�� 
)
  

Where L is the period of seasonality we are testing for, in our case L = 1 year, and �� 
�� 
 is 

the remainder found when dividing �� by L. The final distance from the origin of the random walk 
is then given as, 

D� = ��� ���(�
��� θ�)�� + �� ���(�

��� θ�)��. 
The is value of D� can then be used as our test statistic for the following null and alternative 
hypotheses: 

• H0: The random walk is a uniform random walk, i.e. (�� 
�� 
)/
 follows a uniform 
distribution. 

• H1: There is a seasonal pattern with period L. 

The p-value for this test is calculated as, " = #$%&'/�. 
Where N is the total number of earthquakes in the catalogue. This test makes the following 
assumptions, 

• Events occur independently of each other, e.g. no aftershock process. 

• The distribution of event times may vary within a year but is constant between years, e.g. 
no trend. 

Note that the Schuster test can equally be applied to binned count data, in this case all events in a 
bin are assumed to have the same event time. 

2.3. Discrete Fourier Transform 

The Discrete Fourier transform (DFT) is the discrete version of the general Fourier transform. It 
converts a sequence of equally-spaced samples (in our context from the time domain given the 
time-series we are dealing with) into an equivalent representation in the Fourier domain as follows: 

Test Detrending Applied Input Data 

Schuster Test No Daily Counts 

Discrete Fourier Transform Yes Monthly Counts 

GAM No Monthly Counts 

Parametric Hypothesis Testing Yes Monthly Counts 

Nonparametric Hypothesis Testing Yes Monthly Counts 
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DFT:             () =  ∑ +, . #$-�.),///$�,�0  

Inverse DFT:  +, = �/  ∑ () . #-�.),///$�)�0  

where � and 1 are integer indices of the data +� and its discrete Fourier domain representation (). 

Using this representation, () will be complex valued. Therefore, it is more usual to analyse the 

Fourier periodogram, 2) = |()|�. Figure 1 helps to illustrate how Fourier Transforms work. Far 
left we see a simple sine function, where middle left a noise term is added – the combined pattern 
is shown middle right. Far right the Fourier Transform is shown, where each peak corresponds to 
a repeated pattern: the more left the longer the period, the higher the peak the stronger the repeated 
pattern. Fourier transform is a well-known concept in signal processing with a plethora of 
techniques related to its resolution and accuracy; the interested reader is referred to (Oppenheim, 
et al., 1983) and (Kay, 1993) for more details. 

 

Figure 1: Visual illustration of DFT (right figure) of the time series in the middle-right figure. The 

time series is a superposition of a higher frequency signal (red, middle-left figure) and a lower 

frequency signal (left figure). 

When applying this transform to the Groningen catalogue we must convert the continuous event 
times into a discrete time series of counts within equally spaced bins. In principle the bins can be 
any size, smaller bins give higher temporal resolution but at the risk of having a large number of 
zero counts. We choose to use monthly bins as this should give sufficient resolution to observe 

yearly periodicity whilst minimising zero counts. Our sampling time is therefore 45 = 1  month 
and thus we can calculate the Fourier periodogram for frequencies up to 0.5 month-1 or 6 year-1, 
this is known as the Nyquist frequency for this sampling rate. A time series which shows a peak in 

the periodogram at a frequency 6 = 1 year-1 corresponds to behaviour with a period L = 12 
months, i.e. yearly seasonal behaviour. The null and alternative hypotheses for this test are as 
follows, 

• H0: The expected value of the periodogram component, 2), corresponding to a frequency 
of 1 year-1 is equal to the expected value across all frequencies. 

• H1: The expected value of 2) is larger than the expected value of the periodogram across 
all frequencies indicating the presence of a sinusoidal seasonal pattern with frequency 1 
year-1. 

Under the null hypothesis it can be shown that, 78(2) 9 �) =  #$5:/; . 
Here � = 4$� ∑ 2)/$�)�0 , is the mean value of the periodogram across all frequencies. This 
relationship can therefore be used to calculate a p-value indicating the probability of observing a 

given value of 2) or higher given H0. This test has the following assumptions: 

• The distribution of event counts varies within a year but is constant between years. 

• Within a year the pattern of the mean event rate has a Sinusoidal component. 

• Events occur independently of each other, e.g. no aftershock process. 
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2.3.1. Comparison of DFT and Schuster Tests 

While the Schuster and DFT tests are generally presented in a different way, one makes use of 
event times and the other binned counts, we can show that under certain circumstances the tests 
are very similar. Let us assume an idealised case where earthquakes only occur at discrete time 

points which are equally spaced with separation 45. Without loss of generality we can pick our time 

units such that 45 = 1. Following Section 2.2 we can say that, θ� = 2π (�� 
�� 
)
  for �� ∈ {0, 1, 2, . . . , 4 − 1}, 
E�� = �� ���(�

��� θ�)�� + �� ���(�
��� θ�)��, 

= �� ����
��� F2π (�� 
�� 
)
 G�� + �� ����

��� F2π (�� 
�� 
)
 G��. 
Since cos(θ + 2π) = cos(θ) and sin(θ + 2π) = sin(θ) we can say that, cos F2π (�� 
�� 
)
 G = cos F2π ��
 G, 

sin F2π (�� 
�� 
)
 G = sin F2π ��
 G. 
We now introduce +, = ∑ L,,M�  where LNO is the Kronecker delta function. Equivalently +, is the 

count of the number of earthquakes occurring at time �. Putting this together we can say that, 

 

E�� = �� +, ���/$�
,�0 F2π �
G�� + �� +,  ���/$�

,�0 F2π �
G��
 

= P� +,#$-�Q,�/$�
,�0 P�. 

The period 
 is related to the index of the Fourier spectrum, 1, as 
 = 4 1⁄ . Therefore we can say 
that, 

E�� = P� +,#$-�Q),//$�
,�0 P� = 2). 

The differences between the DFT and Schuster Tests, as we have applied them, can be summarised 
as, 

• The p-value calculation makes use of either the mean spectrum, �, for the DFT test or the 

number of earthquakes, S, for the Schuster test. 

• The DFT involves grouping the times of earthquakes into discrete bins while the Schuster 
test makes use of the continuous event times. 

• The binning of events allows us to detrend the count series before applying the DFT test 
which is not done for the Schuster test. 

2.4. Model fitting using Generalized Additive Models (GAMs) 

An alternative way to test for the presence of seasonality is by model comparison. This is the 
process of comparing the relative fit of different models, in our case those which contain seasonal 
terms and those which do not. The models we compare are part of a simple class of Generalised 
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Additive Models (GAM). A GAM is a flexible class of parametric models, more information can 
be found in for example (Hastie & Tibshirani, 1990). The exact form of model we choose aims to 

model the log of the earthquake occurrence rate in the �th month of the jth year of the time series, T-,U, as, log(T-,U) =  XU + �(�). 

Here  XU is a term which depends on the year, Y, only. The second term, �(�), is a smooth spline 

function which depends only on the month of the year, �, only. The addition of the yearly term is 
in place of the detrending which is not needed for the GAM test. We chose this model form as it 
clearly separates the within year seasonality from any trends or longer-term variation. It also makes 
few assumptions about the form of any seasonal behaviour except that there should be some 
smoothness between adjacent months within a year. This model form is also used in (Bierman, et 
al., 2016). Again following (Bierman, et al., 2016) we use the quasi-Poisson likelihood. This is 
similar to the usual Poisson likelihood but allows for an inflation of the variance caused by possible 
non-independence of earthquake events, see (Verhoef & Boveng, 2007). An alternative distribution 
commonly used for this is the negative binomial. In using the quasi-Poisson likelihood we aim to 
reduce the sensitivity of our test to the assumption of independent earthquake events. 

We estimate the values of T-,U time series of monthly counts and the gam function in the R package 

mgcv, details of the fitting algorithms can be found in (Wood, 2004) and (Wood, 2011). The 
hypothesis test we are applying has the following null and alternative hypotheses, 

• H0: �(�) = 0 for � = 1, 2, . . . , 12. 
• H1: ∃ � = 1, 2, . . . , 12: �(�) ≠ 0. 

Or in other words, we are testing if the function �(�) is nonzero for at least one month. In order 
to test for the significance of the seasonal effect we examine the significance of the spline term. 
The p-value for this test is taken directly from the R implementation and is calculated during the 
model fitting process.  

2.5. Group Comparison Parametric Hypothesis Testing 

Group Comparison Hypothesis testing can be used to decide whether several groups are 
statistically significantly different. Here, we test whether the earthquake count in any one month is 
significantly different to at least one other month. If this is the case, the null hypothesis of no 
seasonality, H0, can be rejected.  This is done using a multiple hypothesis post-hoc test (multiple 
comparison test). Post-hoc tests gain insight via pairwise comparison between all the possible 

combinations of different groups. For example, if we have ] different groups of data, multiple 

comparison post-hoc tests conduct ](] − 1)/2 different pairwise tests. In our case we group 
together earthquake counts which correspond to the same month in different years. Therefore, 
each group will have as many data points as there are years in the data set. If we do not have a 
whole number of years in our data set then some months will have more data points than others, 
this is taken into account by the test we are applying. In order to use a post-hoc test we must first 
use a portmanteau test to test if there is any pair of groups which are different, the post-hoc test is 
then used to identify which pair are significantly different. 

An important point to highlight is that the more groups we compare, the higher the chance of 
erroneous inference to occur, as each individual post-hoc comparison has a Type I error rate, where 
a true null hypothesis is rejected, equal to the significance level. Several statistical methods try to 
prevent this from happening by requiring a stricter significance threshold for individual 
comparisons to compensate for the number of inferences being made. This is called p-adjustment 
for post-hoc tests and well-known examples of that are Bonferroni and Holm tests, see for example 
(Miller, 1981).  
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We have chosen to apply the test to monthly earthquake counts, ] = 12, but could have grouped 
the events in other ways such as weekly, quarterly or any arbitrary time bin. The choice of time bin 
is a trade-off, large bins give greater statistical power as M is reduced. If the bins are too large we 
reduce the temporal resolution which may, depending on the phase and functional form of any 
seasonality, reduce the separation between bins. We could also use larger bins and a range of 
starting points. We chose not to do this as it would increase the number of individual tests done 
and necessitate additional p-value adjustment.  

For the parametric test we first apply an ANOVA test to test if there are any differences between 
at least one pair of months, if this gives a positive result we move on to the post-hoc test. The 
parametric post-hoc test we use is Tukey’s honest significant difference test, this is very similar to 
a two-sample unpaired t-test with a build in p-adjustment. The p-values are inflated to keep the 
Type I error rate equal to the significance level. As with a standard t-test this test assumes that the 
data follow a normal distribution and are independent. For this test we consider the mean of the 

detrended event count in each month, denoted as -̂  for month �. The null and alternative 
hypotheses for this test are as follows: 

• H0: -̂ = Û  for �, Y = 1, 2, . . . , 12, � ≠ Y. 
• H1: ∃ �, Y = 1, 2, . . . , 12;   � ≠ Y: -̂ ≠ Û . 

Or alternatively we are testing if the mean of the detrended event rate count is the same for every 
month or if there is at least one pair of months with different means. We applied this test using the 
standard R implementations of the ANOVA test with Tukey’s HSD. 

2.6. Group Comparison Nonparametric Hypothesis Testing 

The final test we apply is the nonparametric version of the parametric test described in Section 2.5. 
We again do this using monthly earthquake counts. The portmanteau tests is the Kruskal-Wallis 
hypothesis test and the post-hoc test is the Dunn’s test with Bonferroni p-value adjustment. This 
test does not require the data to be normally distributed. The Kruskal-Wallis H-test (sometimes 
also called the "one-way ANOVA on ranks") is a rank-based nonparametric test that can be used 
to determine if there are statistically significant differences in the ranking between multiple groups. 

If (- is a single sample of the detrended counts from the �th month then the null and alternative 
hypotheses for this test are as follows: 

• H0: Pr((-  9   (U) = 0.5 for �, Y = 1, 2, . . . , 12; � ≠ Y. 
• H1: ∃�, Y = 1, 2, . . . , 12;  i ≠ j: Pr((-  9   (U) ≠ 0.5. 

We applied this test using the standard R implementations of the Kruskal-Wallis and Dunn’s test. 
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3. Earthquake Simulation Model 

In order to evaluate our hypothesis testing methods we must be able to simulate earthquake 
catalogues from different models. This allows us to test the ability of each method to detect 
different levels of seasonality under a range of different assumptions. In all cases we will simulate 

count data within a bin. For a given model we define the mean count in time as, μ(�). This mean 
function is used as the mean parameter for the distribution we simulate from, either Poisson or 
Negative Binomial. We define this mean function in terms of the different simulation factors we 
wish to include and we define it on the time range 1995-01-01 to 2016-12-01 inclusive. For the 
DFT, GAM, parametric and nonparametric hypothesis tests we simulate earthquake counts in 
discrete monthly bins. The Schuster test is different from the others as it does assume discrete time 
steps but rather uses continuous event times. For this test we therefore simulate counts per day by 
first scaling the mean function by a factor of 12/365. While this still does not give a continuous 
scale, we believe that daily bins are sufficiently small compare the expected yearly seasonal period. 
The validity of this simulation model in terms of its match to observed data will be explored in 
Section 4. The general form of the simulation model is, μ(�)  =  d0e(1 − f) +  f+(�)ge1 +  X�(� + h)g. 
In the following sections we will define the different parts of this model. 

3.1. Overall Mean 

The first factor we can vary is the overall mean number of events per month in the catalogue, d0. 
In its simplest form we can define the mean function as, μ(�)  =  d0. 
3.2. Trend 

We can see from the observed earthquake counts that there may be a trend in the event count over 

time. We can include this into our simulation model by introducing both a trend function, x(t), 

and a trend multiplier f ∈ e0,1g. We can use these to modify the mean function, μ(�)  =  d0e(1 − f) +  f+(�)g. 
We place the following restrictions on the trend function, 

• x(t) ≥ 0for t = 1, 2, . . . , T, 
• ∑ +(�)/,�� = 1. 

With these restrictions it is clear that defining the trend in this way ensures that 4$� ∑ d(�)/,�� =d0 and d(�) 9 0∀t ∈ {1, T}. The trend functions we consider are shown in Figure 2.  
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Figure 2: Trend functions considered in the simulations.  

3.3. Seasonality 

In order to determine the threshold value for detecting seasonality we must be able to vary the 
amplitude of seasonal variation within the simulated counts. In a similar way to the trend we 

introduce the seasonal function �(�), and the seasonality amplitude, X ∈ e0,1g. We then introduce 
seasonal variation in the following way, μ(�)  =  d0e(1 − f) +  f+(�)ge1 +  X�(� + h)g. 
We place the following restrictions on the seasonal function,  

• min,∈{�,o} s(t) = −1, 
• ∑ �(�)��,�� = 0, 
• �(�) = �(� + 12) p�� ∃�: �(�) ≠ �(� + L) ∀ L < 12. 

This again ensures that 4$� ∑ d(�)/,�� = d0 if f = 0. For the cases where f ≠ 0 the rate will 
deviate slightly due to the fact that the seasonal amplitude will increase following the trend 

function. The minimum value of �(�) ensures that d(�) 9 0 for t = 1, 2, . . . , T. The final bullet 
point above ensures that the function has a period of 12 months and is not seasonal for periods 
smaller than this. This form of seasonality gives a clear separation between the amplitude and the 
trend. We expect both of these factors to influence the outcome of the tests and by separating 
them we are able to explore their individual influence on the test outcomes. 

There are an infinite number of choices of �(�) which satisfy the above constraints. We have 
chosen to consider six different functions, these are shown in Figure 3. In all cases the function is 
characterised by one large peak and one large trough. We can then further classify the functions in 
terms of the separation between peak and trough and also the absolute ratio between the sizes of 
the peak and trough. The ratio between the peak and trough sizes has a physical basis as there may 
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be an asymmetry between how the reservoir responds to an increase in production rate as opposed 
to a decrease. The physical explanation for the change in separation between peak and through is 
the case where any lag between a change in production rate and a change in earthquake rate is again 
dependent on if that change is an increase or a decrease. Our baseline case is a Sinusoidal pattern 
where the peak and trough are separated by 6 months and their ratio is 1. The other 5 cases are 
constructed so that the peak and trough separation is on of {2 months, 6 months} and the absolute 
ratio between peak and trough values is one of {0.5, 1, 2}. We can also vary the phase of the 

seasonal function by varying φ. Most of our tests do make any assumptions about the phase of 
any seasonal pattern. This should in theory make a negligible difference to the detectability however 
due to monthly binning an offset of a non-integer number of months will affect the size of the 
largest average rate in any month. The possible exception is the GAM test which does allow for 
discontinuities in the event rate between years and so may be influenced by the phase, this should 
be kept in mind when using this test.  

 

Figure 3: Seasonal Functions, those on the top row have a separation between peak and trough of 

6 months while those on the bottom row have a separation of 2 months. Moving from left to right 

the functions have an absolute peak value to trough value of 1, 2, and 0.5. In each case the black 

lines show the original function and the red lines show the functions offset by � = 0.5 Months. 

3.4. Dispersion 

If we assume that earthquakes occur independently of each other then we would expect the count 
of earthquakes within a given period to follow a Poisson distribution. However, it is likely that due 
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to aftershock processes real earthquake data will not follow this distribution. We represent this by 

introducing a dispersion parameter, �. This parameter controls the ratio between the variance and 
mean of the distribution of counts. A higher dispersion makes it more likely to have a large cluster 
of events in the same month, such an event can also be seen as an outlier. We note that this is not 
a physical aftershock process as it does not introduce dependency between events which fall into 
different bins. In Section 4 we will explore the fit of this distribution to the data. For a dispersion 
of 1 we simulate counts from a Poisson distribution. For dispersions greater than 1 we use a 
negative binomial distribution. The Probability Mass Function, PMF, from which we simulate the 
earthquake count for month t is then given by, 

7(( =  +)  =  d(�)s#$t(,)+!  for � = 1, 
7(( = +) = v+ + 8 − 1+ w (1 − ")x"s for � ≠ 1. 

Here � is the dispersion parameter. For the Negative Binomial case the parameters can be 

expressed in terms of � and d(�) as, 

8 =  d(�)�(� − 1), 
" = d(�)(� − 1)d(�)�  + d(�)(� − 1) . 

The PMFs of the distributions we use are shown in Figure 4. Defining the parameters in this way 

allows for us to vary � whilst keeping d(�) fixed. 

 

Figure 4: PMFs of Poisson and Negative Binomial distributions, all have a mean count of 2 and 

dispersions ranging from 1 to 3. 
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4. Consistency Between Simulated and Observed Earthquakes 

In the previous section we detail the range of different factors which go into building the range of 
different simulation models. It is then natural to ask how closely each of these models matches to 
the observed data. Clearly results from models which closely match the observations are of greater 
relevance than those which do not. To analyse this, first earthquake observations are shortly 
described in Section 4.1. Subsequently, the consistency between observations and simulations is 
discussed in Section 4.2. 

4.1. Observed Earthquakes 

4.1.1. Earthquake measurements 

The KNMI (the Royal Netherlands Meteorological Institute) has seismicity monitoring stations 
throughout the Netherlands and specifically in Groningen1. The network is described in more detail 
in e.g. (Dost, et al., 2012) and (Dost & Haak, 2002). Measurements from this network are 
automatically processed by KNMI and earthquakes detected are formally published in a catalogue2, 
which we use as source for seismic events. The induced seismicity catalogue has a straightforward 
structure as shown in Table 2: The data is provided in tabular form with each row representing an 
event, with event date and time, location, latitude, longitude, depth, magnitude and evaluation 
mode. Most of these fields are self-explanatory, possibly except for the location field3 but that field 
is not used in our analysis. 

Table 2 KNMI induced earthquake catalogue data structure 

Date Time Location Lat Lon Depth Mag Eval mode 

1986-dec-26 07h47m51s Assen 52.992 6.548 1 2.8 Manual 

1987-dec-14 20h49m48s Hooghalen 52.928 6.552 1.5 2.5 Manual 

… … … … … … … … 

4.1.2. Uncertainties 

The number of sensors in the seismic sensor network, their locations and the data processing 
procedures used influence detection sensitivities and location uncertainties. As the network has 
been extended over time, detection sensitivity and location uncertainties vary over time. Table 3 
provides an overview of sensitivities as reported by the KNMI, see e.g. (Dost, et al., 2012), 
(Kraaijpoel, et al., 2015), (Dost, et al., 2017), (Spetzler & Dost, 2017) and the overview of stations 
referred to above. In general, the horizontal location uncertainty is around 1 km and the vertical 
uncertainty is between 1-2 km. Given the large vertical uncertainty, vertical locations are pre-set to 
3 km for nearly all events. 

 

 

 

                                                 

1 For an overview of these stations, see https://www.knmi.nl/nederland-nu/seismologie/stations.  

2 Catalogue available at https://www.knmi.nl/kennis-en-datacentrum/dataset/aardbevingscatalogus.  

3 Up to November 30, 2016 the location field described the city or village centre nearest to the event, whilst as of December 1, 

2016 the municipality border within which the event took place is registered. 
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Table 3 KNMI Seismic Sensor Network developments over time 

Time Detection Localisation Comments 

Since 1995 ≥ 1.5 ≥ 2.3-1.5 Network installed (8 borehole stations in 
Northern Netherlands) 

±±±±2010 Processing software upgrade, real-time continuous data transmission 

2009-2010 ≥ 1.0 ≥ 1.5 6 additional borehole stations in Northern 
Netherlands 

2015-2017  ≥ ~0.5 Major extension: 64 additional borehole 
stations in Northern Netherlands 

4.1.3. Choice of min. magnitude yz{|, temporal interval and temporal aggregation period }~�� 

The magnitude of completeness ]; of a sensor network is usually defined as the lowest value of 
the moment magnitude of an event for it to be detected with 100% reliability. Event counts with 

a moment magnitude below ]; are incomplete. With the detection sensitivity increasing over time, 
an increase in the detection of earthquakes is a combination between a change in seismicity and a 
change in detection sensitivity. As this effect is strongest for low magnitude seismicity a minimum 

magnitude cut-off ]�-� is chosen, only earthquakes with a magnitude equal to or higher than ]�-� are taken into account. A sensible choice for ]�-� is the magnitude of completeness ]; – 
this choice would ensure that all signal picked up comes from seismicity instead of sensor network 

sensitivity changes. Given the improvements in the sensor network over time, the choice of ]; 

and the start of the temporal interval 45,Nx, are coupled: a later 45,Nx, might allow for a lower ]; 
and vice versa. The choice for both parameters is, of course, driven by the desire to use as much 
of the data as possible, while avoiding the introduction of bias. 

 

Following the extensive analysis of ]�-� in section 3.2 of (Limbeck, et al., 2018) we proceed with 

the following choices for ]�-�, 45,Nx, and 4N��: 

• Following both KNMI reported ]; values and the PSHRA default (Bourne & Oates, 2017) ]�-� = 1.5 with 45,Nx, = 1995 are used with a 4N�� = 1 months. 

• In line with the discussion in (Limbeck, et al., 2018) we find ]�-� = 1.2 to be worth 

considering as an alternative to ]�-� = 1.5, whilst acknowledging the possibility that ]; 

could exceed this choice of ]�-�. This would mean, in turn, that the detectability function 

would differ between training and forecasting period. Again we take 45,Nx, = 1995 and 4N�� = 1 months. 
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4.2. Agreement between Observations and Simulations 

In order to decide on the range of values to use for the factors in our simulation study we fit the 
simulation model to the observed monthly earthquake counts. We can then use the uncertainty 
ranges for each of the parameters as the basis for our simulations. The exact model we are fitting 
follows that described in Section 3 and takes the form,  μ(�|d0, f, +(�)) =  d0e(1 − f) +  f+(�)g. 
Here we have excluded any seasonal variation, this is because we are already interested in simulating 
for the full range of all of the factors associated with seasonality. The purpose of this section is to 
set suitable ranges for the other parameters. In addition to the parameters in the above formula we 

also fit the dispersion parameter, �. This parameter is present in the likelihood which is either a 

Poisson if � = 1 or a Negative Binomial if � ≥ 1, this follows on from Section 3.4. 

4.2.1. Bayesian Model Fitting 

We fit this model using a Bayesian framework and uninformative priors. The priors chosen for 
each parameter are as follows, 

• Mean Rate, d0: Gamma(shape = 1, rate = 0.001). 

• Trend Multiplier, f: Uniform(0, 1). 

• Trend Type, +(�): Uniform Probability across all four functions shown in Figure 2. 

• Dispersion, �: Gamma(shape = 1, rate = 0.001). 

The posterior distributions for each of the parameters is estimated using MCMC. At each iteration 
of the MCMC scheme we propose new value for each of the parameters as follows, 

• Mean Rate: d0′ =  d0 + L, δ~N(0, 0.01). 

• Trend Multiplier: f′~�(0,1). 

• Trend Type: +(�)′ is sampled with equal probability from the function in Figure 3. 

• Dispersion: �′ =  � + L, δ~N(0, 0.01). 

The MCMC ran for 11,000 iterations, the first 1000 were treated as burn-in and discarded leaving 
10,000 posterior samples. 

4.2.2. Posterior Distributions 

The results of this are shown in  

Figure 5 for M≥1.2 and   

Figure 6 for M≥1.5. Looking at these plots we see that for all factors there is some information in 
the data to constrain our choices. For the mean rate the 95% quantiles for the posteriors were 
[1.59, 1.98] for M≥1.2 and [0.86, 1.12] for M≥1.5, unsurprisingly these are different and fairly well 
constrained. The dispersion parameter is also informed by the data, the 95% quantiles for the 

posteriors were [1.17, 1.61] for M≥1.2 and [1.13, 1.63] for M≥1.5. This indicates that the dispersion 
parameters are not significantly different for the two choices of minimum magnitude. The 95% 
quantiles of the trend multiplier were [0.55, 0.93] for M≥1.2 and [0.5, 0.92] for M≥1.5. Again this 
is a similar range for both choices of minimum magnitude. Finally, we see that for the trend 
function the linear and polynomial functions are the only two which have a significant posterior 
probability. Based on these results we can make a choice of what factors to use in our simulations. 
These are shown in Table 4. In all cases we have extended the range to include the 95% quantiles 
of the posteriors. For the trend multipler the value  0 is included as well even though this is well 
outside of the range of posterior values. This is because this is the case of no trend which should 
fit the assumptions of all of the tests and so is a useful case to consider. 
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Figure 5: Posterior Distributions from fitting to counts of earthquakes with M≥1.2. 

 

  

Figure 6: Posterior Distributions from fitting to counts of earthquakes with M≥1.5. 
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Table 4: Factors used in Simulation Model. 

Factor Name Symbol Factor Levels Used in Simulation 

Mean Rate d0 {0.5, 1, 1.5, 2, 2.5} 

Trend Function +(�) {Linear, Polynomial} 

Trend Multiple f {0, 0.5, 1} 

Dispersion � {1, 1.5, 2} 

Seasonal Function �(�) All six from Figure 3. 

Seasonal Amplitude X {0, 0.025, 0.05, …, 0.975, 1} 

Seasonal Offset φ {0, 0.5} Months 

4.2.3. Inter Event Times 

So far in this section we have only considered the cases of simulating monthly counts. When 
applying the Schuster test we will be simulating daily counts using the same factors detailed in 
Table 4. It is therefore important that the catalogue is well represented by these daily counts 
simulations as well as the monthly counts. We do this by comparing the distribution of inter-event 
times of the simulated data with those from the observed catalogue. The inter-event times are 
important as they are linked to both the rate of earthquake occurrences and also any aftershock 
process. As stated in Section 3.4 we use the dispersion parameter to represent an aftershock 

 Figure 7: Inter Event times comparisons. The plots on the left show a histogram of the observed 

inter event times (black boxes) and a density of the simulated inter event times (red lines). The 

plots on the right show qq-plots comparing the quantiles of the observed and simulated times. The 

red line shows the expected relationship of Y=X. 
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process. This is not a physical aftershock process as it does not allow for events from different 
bins (either months or days) to be correlated. However, comparing the inter-event times from this 
model with those in the observed catalogue should reveal any significant differences. The results 
of this comparison are shown in Figure 7. Here the observed inter event times are taken directly 
from the catalogue without binning. The simulated inter event times are found by simulating daily 
earthquake counts from the model, μ(�|d0, f, +(�)) =  d0e(1 − f) +  f+(�)g. 
The parameters used are the mean posterior parameters found in Section 4.2.2. We see that for 
both choices of minimum magnitude there is a good agreement between the simulated inter event 
times and the observations. This is an indication that there is a good match between our simulated 
counts and the observed catalogue in terms of the mean earthquake rate and correlations between 
events.  
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5. Simulation Results   

In this section we present the results of the simulation study into the detectability of seasonal 
variations in earthquake occurrences. The factors used for the simulation are those outlined in 
Table 4. We have a total of 5×2×3×3×6×41×2=44,280 different factor combinations. For each 
combination of factors, we simulate 1000 time series of event counts, both daily and monthly. Each 
of the five tests is then applied to each of the 1000 count series, in each case we calculate the 
proportion of tests which give a positive result. This proportion, for each test and factor 
combination, is then used in the following sections. 

5.1. False Positive Rates 

In this section we examine the false positive rate of the different methods. Under ideal conditions 
we would expect each method to have a false positive rate of 5% since we are evaluating the tests 
at the 95% significance level. In practice since the data will violate some of the test assumptions 
there will be some deviation from this value. In our simulation study we can examine the false 
positive rate by looking at the 1080 factor combination where the amplitude of the seasonal effect, α, is 0. For these cases we would expect all tests to return a positive result in 5% of simulations. 
The results of this are shown in Figure 8. Looking at this plot we see that there are some deviations 
from the expected level. In particular the GAM test has a higher rate and, in some cases, the false 
positive rate is greater than 15%. This indicates that for this test the p-value by itself is not sufficient 
to judge the presence of seasonality. To apply this test in practice we should also look at other ways 
to assess the fit of the GAM to the data. Going forward we will omit results from the GAM test 
as we believe that simply taking the p-value will not give reliable results.  

The other test which has a higher than expected false positive rate is the Schuster test. This test is 

highly influenced by the dispersion parameter, �. For the Poisson case, where the dispersion 
parameter is equal to 1, the false positive rate is close to the expected level of 5% however for 
higher values of the dispersion the false positive rate increases dramatically. This issue is already 
identified by (Ader & Avouac, 2013) who explore simulations from aftershock processes. They 
suggest that aftershock processes can be distinguished from seasonal processes using the Schuster 
Spectrum test. Aftershock processes will produce significant results across a range of frequencies 
whereas seasonality will only produce significant results for a narrow range of frequencies. This 
does not apply to our single frequency Schuster test and so we cannot distinguish aftershock 
processes from seasonality without further exploration. The Fourier and parametric hypothesis 
tests give a similar level of performance with a median rate of just above the expected 5% level and 
all cases below 10%. The non-parametric hypothesis test has, in general, a lower than expected 
false positive rate around 4%. This is an indication that this test is perhaps overly conservative.  

5.1.1. Disparity Between the Schuster and DFT False Positive Rates 

It is interesting to note the difference between the Schuster and DFT tests. The DFT is not 
sensitive to the dispersion parameter whereas the Schuster test is highly sensitive. The reason for 
this can be traced back to the test statistics used for each test. In the Schuster test our test statistic 

is equal to #$%'/� where S is the total number of earthquakes. For the DFT test our test statistic 

is #$5/; where � is the mean value of the Fourier periodogram. The Schuster test statistic is 
therefore linked to the expected number of earthquakes within the time span whereas the DFT 
test statistic is linked to the variance of the monthly earthquake count series. In this way the DFT 
test implicitly accounts for the increased variance of the count series whereas the Schuster test 
cannot make this correction as it is based on the event times rather than counts. 
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Figure 8: Box plot of false positive rates for each combination of features, broken down by test 

method. The horizontal dashed line shows the expected 5% level. 

5.2. False Negative Rates 

In this section we present the results of the 43,200 factor combinations which contain seasonality 

with an amplitude ranging from α = 0.025 to α = 1. For each set of factors, we calculate the false 
negative rate, this is the proportion of simulations where the test incorrectly rejects the null 
hypothesis. Given the number of different factors we first perform an exploratory analysis to 
determine which of the factors is the most influential. We do this by performing an ANOVA 
analysis on the false negative value of each test for the different simulation factor values. This 
analysis quantifies how much of the variance can be explained by each factor. This is done by fitting 
a simple linear model for each of the factors separately and looking at the difference between the 
original sum of squared difference from the mean and that of the residuals of each model. Factors 
which are highly influential will have a high value to indicate that they explain a large proportion 
of the variation in false negative rates. The results of this analysis should not be over interpreted 
as there are several strong assumptions being made such as a linear functional form of the 
relationships and a lack of interaction terms. It is however useful as an exploratory tool to identify 
the main influential factors. The results are shown in Table 5 alongside a 95% confidence interval. 
The confidence intervals have been obtained by bootstrap resampling the simulation results with 
replacement. The ANOVA results are then recalculated for each resample.  
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Table 5: Influence on detectability of each factor. 

 

Looking at the results we see that for all tests the largest influence on the detectability is the 
amplitude of the seasonal signal. This is as expected but it is encouraging to see that this is by far 
the largest influence on the likelihood of a positive test result. For both the parametric and non-
parametric hypothesis tests we see that the next largest influence comes from the mean rate. As 
discussed previously we do expect this to have an influence as larger mean count rates will have a 
distribution which is closer to a Normal distribution and it is less likely to have zero values. It is 
interesting to note that the effect is similar for both the parametric and non-parametric tests as the 
non-parametric test does not make the assumption that the data is Normally distributed. The 
Fourier and Schuster tests shows a different behaviour, these tests are influenced to a lesser, 
although still significant, extent by the mean rate. The other factor which plays a role in all tests is 
the dispersion factor.  We also see that the dispersion has the smallest influence on the Schuster 
test. This is perhaps surprising as the dispersion was a major factor in the false positive rate for this 
test however this points to an interaction term where the dispersion is only influential for certain 
value of the Seasonality Amplitude.  

The Seasonality Offset has an influence in the Parametric and Non-Parametric Hypothesis tests 
however it has no significant influence on the DFT and Schuster tests. This is not surprising as 
these two tests rely on a large difference between the highest and lowest monthly counts whereas 
the DFT and Schuster test look for seasonality through all events. Finally, we see that the trend 
plays a very small role in the detectability, likely this is in part due to the use of a detrending step 
although the Schuster test does not include detrending and is still not influenced by the trend. 

Figure 9 shows a plot with the median false negative rates for each of the different tests broken 
down by the three most influential factors. In this plot we can see the relative influence of each 
factor as described in   

Factor 
DFT Variance 
Explained (%) 

HYP Variance 
Explained (%) 

NPHYP Variance 
Explained (%) 

SCH Variance 
Explained (%) 

Seasonality Amplitude 58.5 (57.6, 59.3) 78.5 (77.7, 79.2) 77.0 (76.2, 77.7) 68.3 (67.5, 69.2) 

Seasonality Type  32.9 (32.0, 33.7) 7.51 (7.01, 8.02) 5.89 (5.45, 6.34) 23.2 (22.4, 24.0) 

Mean Rate        6.96 (329, 382) 11.1 (10.5, 11.7) 14.7 (14.1, 15.4) 7.95 (7.40, 8.54) 

Dispersion  1.57 (1.33 1.83) 2.24 (1.96, 2.54) 1.64 (1.41, 1.89) 0.411 (0.295, 0.554) 

Seasonality Offset  0.006 (0.000, 0.031) 0.610 (0.471, 0.771) 0.667 (0.523, 0.832) 0.001 (0.000, 0.018) 

Trend Multiplier 0.101 (0.048, 0.177) 0.041 (0.012, 0.092) 0.080 (0.037, 0.146) 0.057 (0.021, 0.120) 

Trend Type        0.009 (0.000, 0.037) 0.005 (0.000, 0.028) 0.028 (0.006, 0.068) 0.007 (0.000, 0.033) 
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Table 5. Here we clearly see that false negative rate decreases with increasing seasonal amplitude 
and also with increasing mean rate. We can also see from this plot that the Schuster and DFT tests 
struggle to detect seasonality of the forms of Spline 3 and Spline 5. Figure 9 also shows that for 
lower values of the seasonal amplitude the Schuster test has a generally lower false negative rate 
than the DFT test. This result can be explained by the dispersion parameter causing a general 
increase in the number of positive tests as demonstrated in Section 5.1. 

 

Figure 9: False negative rates for the main influential factors. The colour shows the false negative 

rates for the simulation runs when testing at the 95% confidence level. The main columns show 

the different tests, the main rows show the different seasonal functions. The sub columns show the 

amplitude of the seasonal effect and the sub rows show the mean rate.  

  

5.3. Detectability Threshold 

In this section we present the results of estimating the detectability threshold for seasonality. We 

define this threshold as the minimum value of α needed to achieve a false negative value of less 
than 20% when applying the tests at the 95% confidence level. In other words, we are estimating 
the seasonal amplitude where there is an 80% probability that a given test will return a positive 
result at the 95% confidence level. The value of 20% is chosen as at this level there is a reasonable 
chance that any true seasonality will be detected. Given that in our previous work we were not able 
to detect seasonality we can conclude that if seasonality is present then it is likely to be smaller than 
this threshold. In (Ader & Avouac, 2013) the authors derive a formula for the threshold which is, 

X�� = 2√S �2 + �� �4
�. 
Where T is the time span, L is the period of interest and N is the total count of events. We note 
that the authors derive this threshold by considering the case that the expected value of their p-
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value is equal to 0.05 as opposed to considering false negatives directly. Their approach is analogous 
to looking at a false negative rate of 50% meaning there is still a 50% probability that seasonality 
of this level will not give a positive test result. We consider this level to be overly optimistic. 
Another difference is that this formula is derived for the Schuster Spectrum test which is a multiple 
hypothesis test, we are only interested in yearly seasonality and so are using single hypothesis tests. 
It is therefore expected that our results will differ from this threshold. For the Groningen catalogue 

the Ader and Avouac thresholds are X�� = 27.8% for M≥1.5 and X�� = 20.9% for M≥1.2. We 
present our results separately for the two minimum magnitudes. For each case we use the results 
of Section 4 to focus on the simulation runs where the factors are reasonable given the 
observations.  

5.3.1. Threshold for M≥1.2 

For this minimum magnitude we restrict ourselves to only runs where the mean rate,  d0, is in the interval [1.5, 2.5] based on the results in Section 4. For comparison the observed rate 
above this magnitude is 1.8 events per month. Figure 10 shows a boxplot of the threshold results 
broken down by test method and by type of seasonality. We can already see from this plot that 
again the type of seasonality plays a large role here. Spline 1, which has a larger peak and 6-month 
spacing has a consistently lower threshold. The Sinusoidal shape is also easier to detect for the 
DFT and Schuster tests. Spline 4, which has a higher peak and 2-month separation is also relatively 
easy for the two hypothesis tests to detect. Figure 11, Figure 12, Figure 13 and Figure 14 show the 
results for each test separately. These are broken down by seasonality type and mean rate. Here we 
see that the mean rate also has a large impact on the threshold for detecting seasonality. If we focus 
on the easier to detect seasonal functions which are sinusoidal and Spline 1, we see that the Schuster 
and DFT tests both have a detectability threshold of between 17.5% and 27.5%. The parametric 
and nonparametric hypothesis tests have threshold in the range of 22.5% and 55% for these 
functions. If we look across all types of seasonality the upper limits of these ranges increase 
substantially, up to 100% for the DFT test.  
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Figure 10: Detectability threshold for M≥1.2 broken down by test method and form of seasonality. 

The horizontal line shows the Ader and Avouac level of 20.9%. 

 

Figure 11: Detectability of the Schuster Test broken down by both seasonality type and mean rate 

for M≥1.2. The horizontal line shows the Ader and Avouac level of 20.9%. 
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Figure 12: Detectability of the DFT Test broken down by both seasonality type and mean rate for 

M≥1.2. The horizontal line shows the Ader and Avouac level of 20.9%. 

 

Figure 13: Detectability of the Parametric Hypothesis Test broken down by both seasonality type 

and mean rate for M≥1.2. The horizontal line shows the Ader and Avouac level of 20.9%. 
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Figure 14: Detectability of the Non Parametric Hypothesis Test broken down by both seasonality 

type and mean rate for M≥1.2. The horizontal line shows the Ader and Avouac level of 20.9%. 

5.3.2. Threshold for M≥1.5 

For this minimum magnitude we restrict ourselves to only runs where the mean rate,  d0, is in the interval [0.5, 1.5], for comparison the observed rate above this magnitude is 1.0 events 
per month. Figure 15 shows the threshold results broken down by test method and by type of 
seasonality. From this plot we can already see that the general picture is similar to that for M≥1.2. 
The main difference is that there is generally more variability in the threshold for a given seasonal 
function. Figure 16, Figure 17, Figure 18 and  

Figure 19 show the results for each test broken down by seasonal function and mean rate. From 
these plots we see that for the lower rates the detectability threshold is generally higher, this in part 
explains the additional variability. For this minimum magnitude the Schuster and DFT tests applied 
to the Sinusoidal and Spline 1 functions, again have the lowest thresholds which range from 22.5% 
to 55%. 
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Figure 15: Detectability threshold for M≥1.5 broken down by test method and form of seasonality. 

The horizontal line shows the Ader and Avouac level of 27.8%. 

 

Figure 16: Detectability of the Schuster Test broken down by both seasonality type and mean rate 

for M≥1.5. The horizontal line shows the Ader and Avouac level of 27.8%. 
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Figure 17: Detectability of the DFT Test broken down by both seasonality type and mean rate for 

M≥1.5. The horizontal line shows the Ader and Avouac level of 27.8%. 

Figure 18: Detectability of the Parametric Hypothesis Test broken down by both seasonality type 

and mean rate for M≥1.5. The horizontal line shows the Ader and Avouac level of 27.8%. 
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Figure 19: Detectability of the Non Parametric Hypothesis Test broken down by both seasonality 

type and mean rate for M≥1.5. The horizontal line shows the Ader and Avouac level of 27.8%. 

 

5.3.3. DFT Bin Size 

In this report we have applied the DFT test using monthly bins. As detailed in Section 2.3 the DFT 
must be applied to binned data however there is no restriction on the size of bins. Section 2.3.1 
showed the equivalence of the DFT and Schuster tests under certain assumptions, one of these is 
that the bin size is equal to the minimum recordable time between earthquakes. This raises the 
possibility of removing the binning assumption from the DFT test by setting the bin size to be 
very small and so a close approximation of continuous time. We explore this by looking at our 
default of monthly bins as compared to daily bins. Since this will result in a large number of bins 
with zero count we do not apply the detrending as this will result in nonzero values for every day. 
Figure 20 and Figure 21 show the detectability thresholds as calculated for the DFT when either 
daily or monthly bins are used. These plots are analogous to Figure 10 and Figure 15. Looking at 
these plots we see that there is very little difference between the two methods for all seasonal 
functions where the peak and trough are evenly spaced. For the other seasonal functions there is 
some difference, in particular for Spline 4 which is the most difficult to predict. This shows that 
changing the bin size from monthly to daily has little effect, in terms of the threshold, for the most 
physically plausible forms of seasonality we have considered.  
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Figure 20: Detectability threshold for M≥1.2 comparing the DFT test used with Monthly and Daily 

bins. 

 

Figure 21: Detectability threshold for M≥1.2 comparing the DFT test used with Monthly and Daily 

bins. 
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6. Conclusions & Discussion  

In conclusion this report presents the results of a simulation study into the detectability threshold 
of yearly seasonal variation in earthquake occurrence rates for a range of different testing methods, 
shown in Table 1, and under a range of different simulation factors, shown in Table 4 . Our main 
findings are as follows. 

6.1. Testing Methods 

In addition to describing a range of different test methodologies in Section 2.3.1 we explore the 
relationship between the Schuster and DFT tests and show that, under certain assumptions, the 

test statistics E� and 2) are identical.  

6.2. False Positives 

We found that the DFT and Parametric Hypothesis tests have a false positive rate which shows 
good agreement with the expected rate of 5%. The nonparametric hypothesis test was slightly 
conservative with a false positive rate around 4%. The GAM test shows an elevated false positive 
rate and so any positive results from this test should be treated with some caution and looked at in 
the wider context of the fitted model form by looking at additional model comparison diagnostics. 
The Schuster test shows an elevated false positive rate when the dispersion parameter, d, is greater 
than 1. We therefore recommend steps are taken to ensure that any positive result is due to 
seasonality and not aftershocks. These steps may include looking at the full Schuster Spectrum or 
a separate test for aftershocks. The DFT did not suffer from this issue as it takes into account the 
variance of the earthquake counts when calculating the p-value which makes use of the mean 

spectrum, c, rather than the number of events, N. 

6.3. False Negatives 

We found that the probability of detecting seasonal variation in earthquake rates is highly 
influenced by the magnitude of the seasonal effect. This is perhaps obvious but is still reassuring. 
The form of the seasonal function played a large role in the detectability. In particular this was an 
important factor for the DFT and Schuster test which both make assumptions about the form of 
the seasonality. The parametric and nonparametric hypothesis tests were also influenced by this 
factor, but this is likely to be linked to differences in the maximum separation in rates between any 
two months. Another important factor was the rate of earthquake occurrence, this is to be expected 
as fewer data points generally makes any inference more difficult. The dispersion parameter in the 
distribution has the next largest effect. This parameter is linked to both the assumption of 
independence of events and the presence of outliers in the monthly counts. We also found that the 
amplitude and shape of any trend or an offset in the phase of seasonality did not play a significant 
role in the detectability.  

6.4. Detectability Threshold 

Using the detectability results we were able to calculate the minimum detectability threshold for 
each of the choices of factors for the simulations. We defined this as the minimum amplitude of 
seasonality where a given test had a false negative rate, when testing at the 95% significance level, 
of less than 20% of the simulations. We did this separately for choices of minimum magnitude 1.2 
and 1.5. For magnitude 1.2 we found that the threshold appears to be in the range 17.5% and 
27.5% and for magnitude 1.5 and above we found a threshold in the range of 22.5%-55%. In both 
cases this is valid under the assumption that the seasonality follows the form of a sinusoid or Spline 
1 which has a peak which is larger than the trough. None of the test methods explored are able to 
test this assumption and so we rely on physical arguments to constrain the expected form of 
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seasonality. The most difficult to detect seasonal forms tested were those with a short separation 
between the peak and trough, Spline 3, Spline 4 and Spline 5. There is also less physical justification 
for these as they would rely on the lag between a change in production rate and a change in 
earthquake rate being highly dependent on the direction of the change. There is more physical 
justification for a seasonal form similar to Spline 1 or Spline 2 where the peak and trough are 
asymmetric. This is particularly relevant for Spline 2 which is generally more difficult to detect and 
so has a higher detectability threshold. 

6.5. General Discussion 

Overall in this report we have shown how it is important to consider all assumptions on a test 
when applying it to real data. This is not always simple as some assumptions, such as in this case 
trend, can be easily corrected for or simply have little impact when violated. Other assumptions 
may be very influential only for some tests, such as the independence of events. This highlights the 
importance of considering the results of the test beyond simply the p-value. This may include 
additional diagnostic plots or tests, such as testing for aftershocks when using the Schuster test. 
Related to this we show that the Schuster and DFT tests generally perform the best on the most 
physically plausible seasonal shapes considered. Each however has drawbacks, the Schuster test 
relies on a lack of aftershocks and the DFT relies on a good choice of bin size. This therefore 
opens the possibility of adapting one of these tests to address these weaknesses. The parametric 
and nonparametric hypothesis tests were more robust to the choice of seasonal function and 
performed best on the less physically plausible functions. 

Finally, we note that the validity of the results of this simulation study are heavily reliant on the 
choice of factors we have simulated from. While we have motivated these choices based on the 
assumptions of the test, the observed earthquake catalogue and known physical processes, we 
acknowledge that this is a limitation of this type of study. 
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